Summary:

This paper presents a distribution model for binary vectors, called the influence combination model and show how this model can be used as the basis for unsupervised learning algorithms for feature selection. The model can be represented by a particular type of Boltzmann machine with a bipartite graph structure that we call the combination machine. This machine is closely related to the Harmonium model defined by Smolensky.
Strong points and main contributions:

1. It shows that arbitrary distributions of binary vectors can be approximated by the combination model.

2. It shows how the weight vectors in the model can be interpreted as high order correlation patterns among the input bits, and how the combination machine can be used as a mechanism for detecting these patterns.

3. It presents two algorithms for learning the combination model from examples.

Weak points:

The run time of this method may cost a little more than before.

Approaches:

Suppose that we are given a large (unordered) set of binary vectors and we wish to find the types of correlations and redundancies that exist between the bits in these vectors.
The organization and presentation of the paper:

The organization of this paper is very clear, it divides into three parts, and it shows important idea in each of parts. Moreover, it use powerful test results to show the correctness of its theory.

At last, it talks about some disadvantage of its' theory.