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Two major areas of quantum cryptography 

  Quantum key exchange 
  exchanging bits securely via a quantum channel, with the help of a 

classical channel, which can be public but must be authentic 

  Cryptography on quantum computers 
  Shor’s algorithm, anything else? 
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Quantum key exchange 

  Transferring data via a quantum channel is 
inefficient 

  used for key exchange only 

  Need a public classical channel 
  for coordinating the key exchange and transferring data 

  Can be used for one-time pad or with other 
symmetrical ciphers 
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The elements of quantum physics 
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Unpolarized light through a polarizer 

6 

Unpolarized	  light	  
(like	  sunlight)	  

Polarizer	  

Polarized light 

http://en.wikipedia.org/wiki/File:Wire-grid-polarizer.svg 



Polarized light through another polarizer 
polarizer in front of a computer "at screen 
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Polarized light through a polarizer 
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Table 1: Linearly polarized light incident on a polarizer. We assume that the perpendicularly polarized
light is reflected, not absorbed.

If the electric field is given as
!E(!r, t) = E cos(!k ·!r − ωt + φ)n̂

then the Jones vector is [
Enxeiφ

Enxeiφ

]
= Eeiφ

[
nx

ny

]
= Eeiφ

[
cos θ
sin θ

]

Circular polarization is slightly more complicated. In this case, the x and y components of the wave
will be phase shifted by 90o or π/2 radians. When the electric field is observed at a definite position (say
!r = 0), it will be seen to be rotating as time passes without changing its magnitude. In the case of right
circularly polarized wave, the electric field rotates clockwise. Alternatively, when you look at the fields at
a fixed time (say t = 0), the tips of the electric field draw a right-handed spiral. The expression for the
electric field is then

!E(!r, t) = E cos(!k ·!r − ωt + φ)x̂ + E sin(!k ·!r − ωt + φ)ŷ .

Note that the magnitude of the field does not change with time. Since sin ξ = cos(ξ−π/2), we can rewrite
this expression as

!E(!r, t) = E cos(!k ·!r − ωt + φ)x̂ + E cos(!k ·!r − ωt + φ − π

2
)ŷ .

As a result, the matrix for right circularly polarized wave is
[

Eeiφ

Eei(φ−π
2 )

]
= Eeiφ

[
1
−i

]
.

For the case of left circularly polarized wave, the tips of electric field vectors draw a left-handed spiral
at constant time. The electric field is given by

!E(!r, t) = E cos(!k ·!r − ωt + φ)x̂ − E sin(!k ·!r − ωt + φ)ŷ

= E cos(!k ·!r − ωt + φ)x̂ + E cos(!k ·!r − ωt + φ +
π

2
)ŷ (7)

and the matrix representation is [
Eeiφ

Eei(φ+ π
2 )

]
= Eeiφ

[
1
i

]
.
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No light can pass orthogonal polarizers 
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Figure 1: The light that is transmitted by the first polarizer is definitely reflected by the second polarizer.
Therefore, the photons should do the same.

(To be strict we are forcing the Copenhagen interpretation in here. Think of it like this. Suppose that
we detect the photon and find out where it has gone. In other words we measure its position. Then the
answer would be either ‘reflected’ or ‘transmitted’, but not both.)

Since many photons would make up a classical wave, then we can say that some photons are transmitted
and some are reflected. That is if the classical wave has an incidence polarization such that it is divided
into a transmitted and reflected beams, then some of the photons have to be transmitted and some have
to be reflected. Therefore, when the photon starts to pass the polarizer, some mechanism starts to take
place and right at that moment it is decided in which way the photon should go. That mechanism has to
be un-deterministic. We cannot predict before the incidence in which way the photon goes.

Next, let us find the probability of transmission and reflection. Suppose that the classical wave has
the Jones vector

W =
[

A
B

]
.

The classical theory tells us that the fraction

|A|2

|A|2 + |B|2

of the energy has to be transmitted when the polarizer is oriented along x. Since all photons have the
same energy, this should be equal to the probability that the photons are transmitted

Ptrans =
|A|2

|A|2 + |B|2 .

The reflection probability, then, has to be

Prefl = 1 − Ptrans =
|B|2

|A|2 + |B|2 .

2.0.3 The state after

Now, suppose that we have sent a photon to the polarizer and found that it is transmitted. Can we
say that the photon now is horizontally polarized? We can rephrase this question as “Is a horizontally
polarized wave formed only by horizontally polarized photons or can there be a few photons with other
polarizations?” To answer that question we can appeal to the Correspondence Principle again. Place
another polarizer in front of the transmitted beam with polarization direction along y. For a classical
wave, the wave is split up in the first polarizer. The transmitted wave then has horizontal polarization
and therefore it cannot pass the second polarizer. Since no energy can pass the second polarizer, no
photons can pass it as well. Then the answer is obvious: When the photon passes the first polarizer,
its polarization state changes to horizontal polarization. Similarly, if the photon is reflected by the first
polarizer, its polarization state changes to the vertical.

This is the Copenhagen interpretation of quantum mechanics. When a measurement is carried out on
a state, (1) only one of the few possible results are found probabilistically and (2) the state collapses to
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Same for photons 
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Polarization state of a photon 
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A photon 

Vertically polarized 



Polarization state of a photon 
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A photon 

Horizontally polarized 



Polarization state of a photon 
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A photon 

45° polarized 



Polarization state of a photon 
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A photon 

-45° polarized 



Quantum indeterminism 
a fundamental principle of quantum mechanics 

  A physical system—such as a photon—exists partly 
in all its particular, theoretically possible states 
simultaneously; but, when measured or observed, it 
gives a result corresponding to only one of the 
possible con#gurations. 
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http://en.wikipedia.org/wiki/Quantum_superposition 



Photons passing a polarizer 
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Vertical #lter 

100% passing rate 

A vertically polarized photon 



Photons passing a polarizer 
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Vertical #lter 

0% passing rate 

A horizontally polarized photon 



Photons passing a polarizer 

18 

Vertical #lter 

50% passing rate 

A diagonally polarized photon 



Photons passing a polarizer 
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Vertical #lter 

50% passing rate 

A diagonally polarized photon 

for one speci#c 
photon, the 
result is totally 
random and 
unpredictable 



Two quantum states constitute a basis 
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a basis 



Two quantum states constitute a basis 
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two different bases 



Detecting a photon’s state 
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A photon in either vertical 
or horizontal state 

? 



A detector in the same basis yields 100% 
accurate results 
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A photon in either vertical 
or horizontal state 

? 

A detector in the same basis 

1 – horizontal 
0 – vertical 



Photons passing a polarizer 
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Vertical #lter 

50% passing rate 

A diagonally polarized photon 



Using a wrong basis yields 50% detection rate 
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A photon in either 45° or 
-45° state 

? 

A detector in the same basis 

the result will be 
random 



Two important properties 

  In order to correctly identify the status of a photon, 
the basis must be known 

  quantum indeterminism 

  Measuring a photon destroys its state 
  thus, no-cloning 
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The BB84 Protocol 
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The BB84 Protocol 

  Relies on quantum indeterminism and no-cloning 
theorem 

  Can be used between Alice and Bob to “negotiate” a 
key through a quantum channel + a classical 
channel 

  the classical channel doesn’t have to be con#dential, but has to be 
authentic 

  Key is generated on-the-"y 
  neither Alice nor Bob knows the key beforehand 



The BB84 Protocol’s steps 

  1. Key transmission through the quantum channel 
  for getting a “raw key” 

  2. Error correction 
  for getting a “sifted key” 

  3. Key distillation 
  to counter man-in-the-middle attack 
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Alice randomly generates a bit randomly and 
randomly choose a basis to generate a photon 
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1 

0 

with basis 1 Use these two states 



Alice randomly generates a bit randomly and 
randomly choose a basis to generate a photon 
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1 

0 

with basis 2 Use these two states 



The photon Alice sends out can be in either 
four states 
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1 

0 



Bob randomly choose a basis to measure the 
photon 
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1 

0 

? 

? 



If Bob chooses the same basis as Alice 
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1 

0 

a correct measure can be got 



If Bob chooses the wrong basis 
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1 

0 

the measure result will have 
50% chance to be correct 



Over all, Bob got a “raw key” with 25% error rate 

  … without considering noise and man-in-the-
middle attack, 

  and is too high for traditional error correction 
coding. 

  A classical channel is needed for coordinating the 
quantum communication 

  to transfer signals, like start, stop, sending a bit, etc., and it has to 
be authentic. 
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QBER: Quantum Bit Error Rate 

  is the error rate of the sifted key 

  different from BER, which is the error rate of an 
optical communication channel 

  can be caused by noise or eavesdropping in the 
quantum channel, 

  or imperfection of sending and receiving devices 

37 



A straightforward error correction scheme: 
basis reconciliation 

  Bob asks Alice whether the basis he used was 
correct or not 

  through an unencrypted public classical channel 

  Bits detected by using a wrong basis are discarded 

  The result is a more correct “sifted key” 
  can’t be 100% correct due to either noise or man-in-the-middle 
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Now, introducing the attacker Eve 

39 



Eve’s possible attacks 

  1. Cloning the photon 

  2. Intercept-resend 

  3. Intercept the public classical channel 

  4. Spoo#ng attack through the public channel 



1. Perfect cloning a photon is impossible 

  Observing a photon irreversibly collapses it and 
corrupts the information it carries 

  because a measurement takes energy away from the photon 

  Mathematically proofed 
  Wootters-Zurek theorem 

  Note the “perfect” here, non-perfect cloning is 
possible 

  through a process called weak measure 
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2. Intercept-resend 

  Eve intercepts the photon, measures it in a random 
basis, and resent a new photon to Bob 

  Eve has a 50% chance to steal a bit correctly 
  in which cases Bob and Alice won’t be able to notice 

  In other cases, Eve guessed the wrong bases and 
introduces more errors into the quantum channel 

  thus higher than noise level errors in a channel may indicate a 
man-in-the-middle attack 
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3. Intercept the public classical channel 
4. Spoo#ng attack through the public channel 

  Alice and Bob only exchanges bases information 
  thus Eve can’t get the key directly 

  After a key has been exchanged, all following 
communication in the classical channel can be 
encrypted 

  However, authentication remains a big issue 
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Error correction 

  Error rate in the sifted key can be detected by 
comparing part of the key through the classical 
channel 

  those bits will be discarded 

  A simple error correction method: Alice randomly 
chooses pairs of bits and announces their XOR 
value. Bob replies either “accept” or “reject.”  They 
keep the #rst bit in the #rst case and discard the two 
bits in the second case. 

  How do they know when to stop this process? 
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Use privacy ampli#cation to reduce the 
information Eve may possess 

  Alice announces two random locations, Alice and 
Bob then replace these two bits by their XOR value 

  shrinks the key, also the bits Eve may possess 

  Bob must be possessing more information then Eve 
does for this algorithm to be useful 
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Quantum secret growing 

  Alice and Bob needs to share a (short) secret 
beforehand for authentication 

  They can use quantum key exchange to get a longer 
key, thus “secret growing” 
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Intuitive illustration of error correction and 
privacy ampli#cation 

47 

main ideas on how to prove security.55 In 1998, two ma-
jor papers were made public on the Los Alamos archives
(Mayers, 1998, and Lo and Chau, 1999). Today, these
proofs are generally considered valid, thanks to the
work of—among others—Shor and Preskill (2000), In-
amori et al. (2001), and Biham et al. (1999). However, it
is worth noting that during the first few years after the
initial disclosure of these proofs, hardly anyone in the
community understood them.

Here we shall present the argument in a form quite
different from the original proofs. Our presentation
aims at being transparent in the sense that it rests on two
theorems. The proofs of the theorems are difficult and
will be omitted. However, their claims are easy to under-
stand and rather intuitive. Once one accepts the theo-
rems, the security proof is straightforward.

The general idea is that at some point Alice, Bob, and
Eve perform measurements on their quantum systems.
The outcomes provide them with classical random vari-
ables !, ", and #, respectively, with P(! ," ,#) the joint
probability distribution. The first theorem, a standard of
classical information-based cryptography, states the nec-
essary and sufficient condition on P(! ," ,#) for Alice
and Bob to extract a secret key from P(! ," ,#) (Csiszár
and Körner, 1978). The second theorem is a clever ver-
sion of Heisenberg’s uncertainty relation expressed in
terms of available information (Hall, 1995): it sets a
bound on the sum of the information about Alice’s key
available to Bob and to Eve.

Theorem 1. For a given P(! ," ,#), Alice and Bob can
establish a secret key (using only error correction and
classical privacy amplification) if and only if I(! ,")
$I(! ,#) or I(! ,")$I(" ,#), where I(! ,")!H(!)
"H(!!") denotes the mutual information and H is the
Shannon entropy.

Theorem 2. Let E and B be two observables in an
N-dimensional Hilbert space. Let #, ", !#%, and !"% be
the corresponding eigenvalues and eigenvectors, respec-
tively, and let c!max#,"&!'#!"%!(. Then

I)! ,#*#I)! ,"*+2 log2)Nc *, (73)

where I(! ,#)!H(!)"H(!!#) and I(! ,")!H(!)
"H(!!") are the entropy differences corresponding to
the probability distribution of the eigenvalues ! prior to
and deduced from any measurement by Eve and Bob,
respectively.

The first theorem states that Bob must have more in-
formation about Alice’s bits than does Eve (see Fig. 31).

Since error correction and privacy amplification can be
implemented using only one-way communication, Theo-
rem 1 can be understood intuitively as follows. The ini-
tial situation is depicted in Fig. 31(a). During the public
phase of the protocol, because of the one-way commu-
nication, Eve receives as much information as Bob. The
initial information difference , thus remains. After error
correction, Bob’s information equals 1, as illustrated in
Fig. 31(b). After privacy amplification Eve’s information
is zero. In Fig. 31(c) Bob has replaced all bits to be
disregarded by random bits. Hence the key still has its
original length, but his information has decreased. Fi-
nally, upon removal of the random bits, the key is short-
ened to the initial information difference , ; see Fig.
31(d). Bob has full information about this final key,
while Eve has none.

The second theorem states that if Eve performs a
measurement providing her with some information
I(! ,#), then, because of the perturbation, Bob’s infor-
mation is necessarily limited. Using these two theorems,
the argument now runs as follows. Suppose Alice sends
out a large number of qubits and that n are received by
Bob in the correct basis. The relevant Hilbert space’s
dimension is thus N!2n. Let us relabel the bases used
for each of the n qubits such that Alice uses n times the
x basis. Hence Bob’s observable is the n-time tensor
product -x ! ¯ ! -x . By symmetry, Eve’s optimal infor-
mation about the correct bases is precisely the same as
her optimal information about the incorrect ones (May-
ers, 1998). Hence one can bound her information, as-
suming she measures -z ! ¯ ! -z . Accordingly, c
!2"n/2, and Theorem 2 implies

I)! ,#*#I)! ,"*+2 log2)2n2"n/2*!n . (74)

That is, the sum of Eve’s and Bob’s information per qu-
bit is less than or equal to 1. This result is quite intuitive:

55One of the authors (N.G.) vividly remembers the 1996 In-
stitute for Scientific Interchange workshop in Torino, Italy,
sponsored by Elsag Bailey, where he ended his talk by stress-
ing the importance of security proofs. Dominic Mayers stood
up, gave some explanation, and wrote a formula on a transpar-
ency, claiming that this was the result of his proof. We think it
is fair to say that no one in the audience understood Mayers’
explanation. However, N.G. kept the transparency, and it con-
tains the basic Eq. (75) (up to a factor of 2, which corresponds
to an improvement of Mayer’s result obtained in 2000 by Shor
and Preskill, using ideas from Lo and Chau).

FIG. 31. Intuitive illustration of Theorem 1. The initial situa-
tion is depicted in (a). During the one-way public discussion
phase of the protocol, Eve receives as much information as
Bob; the initial information difference , thus remains. After
error correction, Bob’s information equals 1, as illustrated in
(b). After privacy amplification Eve’s information is zero. In
(c) Bob has replaced with random bits all bits to be disre-
garded. Hence the key still has its original length, but his in-
formation has decreased. Finally, in (d) removal of the random
bits shortens the key to the initial information difference. Bob
has full information on this final key, while Eve has none.
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Other weaknesses 

  Relies on the quality of the random number 
generators 

  Relies on the authentication of the classical channel 

  Recently progress in weak measurement makes 
directly measuring a photon more efficient 

  thus Eve may intercept more information without disturbing the 
photon stream 

48 



BB84 Protocol summary 

  Cool on paper 

  Somehow succeeded in experiments 

  Some products are available 

  Has many shortcomings 
  needs an authentic classical channel’s help 

  Can be a complement to standard symmetrical 
cryptosystems 
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Other protocols 

50 



Two-state protocol 

  Two nonorthogonal states are necessary and 
enough 

  But not good in practice 



Six-state protocol 

  Uses three different bases 

  Simpli#es security analysis 

  Reduces Eve’s optimal information gain for a given 
error rate 

52 



The EPR protocol 

53 

Alice and one to Bob. A first possibility would be that
the source always emits the two qubits in the same state
chosen randomly among the four states of the BB84 pro-
tocol. Alice and Bob would then both measure their qu-
bit in one of the two bases, again chosen independently
and randomly. The source then announces the bases,
and Alice and Bob keep the data only when they hap-
pen to have made their measurements in the compatible
basis. If the source is reliable, this protocol is equivalent
to that of BB84: It is as if the qubit propagates back-
wards in time from Alice to the source, and then for-
ward to Bob. But better than trusting the source, which
could be in Eve’s hand, the Ekert protocol assumes that
the two qubits are emitted in a maximally entangled
state like

!!"
1

&
" !↑ ,↑#!!↓ ,↓#). (9)

Then, when Alice and Bob happen to use the same ba-
sis, either the x basis or the y basis, i.e., in about half of
the cases, their results are identical, providing them with
a common key. Note the similarity between the one-
qubit BB84 protocol illustrated in Fig. 1 and the two-
qubit Ekert protocol of Fig. 3. The analogy can be made
even stronger by noting that for all unitary evolutions
U1 and U2 , the following equality holds:

U1 ! U2$(!)"1! U2U1
t $(!), (10)

where U1
t denotes the transpose.

In his 1991 paper Ekert suggested basing the security
of this two-qubit protocol on Bell’s inequality, an in-
equality which demonstrates that some correlations pre-
dicted by quantum mechanics cannot be reproduced by
any local theory (Bell, 1964). To do this, Alice and Bob
can use a third basis (see Fig. 4). In this way the prob-
ability that they might happen to choose the same basis
is reduced from 1

2 to 2
9, but at the same time as they

establish a key, they collect enough data to test Bell’s
inequality.13 They can thus check that the source really
emits the entangled state (9) and not merely product
states. The following year Bennett, Brassard, and Mer-
min (1992) criticized Ekert’s letter, arguing that the vio-
lation of Bell’s inequality is not necessary for the secu-

rity of QC and emphasizing the close connection
between the Ekert and the BB84 schemes. This criticism
might be missing an important point. Although the exact
relation between security and Bell’s inequality is not yet
fully known, there are clear results establishing fascinat-
ing connections (see Sec. VI.F). In October 1992, an ar-
ticle by Bennett, Brassard, and Ekert demonstrated that
the founding fathers of QC were able to join forces
to develop the field in a pleasant atmosphere (Bennett,
Brassard, and Ekert, 1992).

4. Other variations

There is a large collection of variations on the BB84
protocol. Let us mention a few, chosen somewhat arbi-
trarily. First, one can assume that the two bases are not
chosen with equal probability (Ardehali et al., 1998).
This has the nice consequence that the probability that
Alice and Bob choose the same basis is greater than 1

2,
thus increasing the transmission rate of the sifted key.
However, this protocol makes Eve’s job easier, as she is
more likely to guess correctly the basis that was used.
Consequently, it is not clear whether the final key rate,
after error correction and privacy amplification, is
higher or not.

Another variation consists in using quantum systems
of dimension greater than 2 (Bechmann-Pasquinucci
and Peres, 2000; Bechmann-Pasquinucci and Tittel,
2000; Bourennane, Karlsson, and Björn, 2001). Again,
the practical value of this idea has not yet been fully
determined.

A third variation worth mentioning is due to Golden-
berg and Vaidman of Tel Aviv University (1995). They
suggested preparing the qubits in a superposition of two
spatially separated states, then sending one component
of this superposition and waiting until Bob receives it
before sending the second component. This does not

13A maximal violation of Bell’s inequality is necessary to rule
out tampering by Eve. In this case, the QBER must necessarily
be equal to zero. With a nonmaximal violation, as typically
obtained in experimental systems, Alice and Bob can distill a
secure key using error correction and privacy amplification.

FIG. 3. Einstein-Podolsky-Rosen (EPR) protocol, with the
source and a Poincaré representation of the four possible
states measured independently by Alice and Bob.

FIG. 4. Illustration of protocols exploiting EPR quantum sys-
tems. To implement the BB84 quantum cryptographic proto-
col, Alice and Bob use the same bases to prepare and measure
their particles. A representation of their states on the Poincaré
sphere is shown. A similar setup, but with Bob’s bases rotated
by 45°, can be used to test the violation of Bell’s inequality.
Finally, in the Ekert protocol, Alice and Bob may use the vio-
lation of Bell’s inequality to test for eavesdropping.
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Quantum teleportation as a 
“quantum one-time pad” 

54 



Qubit 

  A two-state quantum system, such as the 
polarization of a photon. It can be in a superposition 
of both states at the same time. 

  It can be described in the bra-ket notion: 

  |ψ> = α|0> + β|1> 

  |α2| + |β2| = 1 



Quantum entanglement 

  Two qubits can be entangled by some physical 
interact 

  Two qubits can be spatially separately 

  Measuring one qubit yields completely random 
result 

  But measuring the other bit subsequently yields the 
same result 



Quantum teleportation 

  Can be used to “teleport” a quantum system 
  by duplicating its state remotely onto another quantum system 

  Can be used to duplicate a quantum state 
  can duplicate the quantum state matrix 

  Is not cloning 
  the original quantum system will be destroyed 
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Quantum teleportation as a secret channel 

  A number of entangled qubits were distributed to 
two sides that need to communicate beforehand 

  Alice is sending c to Bob 

  Alice measures her qubit and gets an a, sends a XOR 
c to Bob via a public channel 

  Bob measures his qubit and gets b, then a XOR c 
XOR b generates c 
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Quantum teleportation as a secret channel 

  Proofed secure 
  bits in the public channel is like being encrypted by using a one-

time pad 

  Requires pre-deliver a large amount of entangled 
qubits 

  Relies on a classical channel too 
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Technological challenges 
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Optical ampli#cation 

  Due to non-clone theory, perfect ampli#cation is 
not possible 

  Theoretically, cloning a photon can get at most 5/6 
in #delity 



Quantum nondemolition measurements 

  is a measure that doesn’t destroy the photon 

  possible on orthogonal states when you know the 
state beforehand 

  by making the state an eigenstate, however, you can’t gain extra 
information from this process 

  But it is possible to detect a photon without 
disturbing it (much) 

  will increase noise in the system 
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Transmission media 

Fiber	   Free	  space	  

Noise	  level	   0.2	  ~	  0.35	  dB/km	   higher	  

Wavelength	   1300	  ~	  1550	  nm	   800	  nm	  

Speed	   <	  1	  M	   ?	  

Distance	   tens	  of	  km	   1~2	  km	  

Cost	   High	   Low	  
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Photons sources 

  Faint laser pulses 

  Photon pairs 
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Experimental QC with Faint Laser Pulses 



General ideas 

  All implementations rely on photons 

  QBER increases as distances increases 
  current technology put the limit at 100 km 



Different codings 

  Polarizing coding: 10 km, high QBER since 
preserving polarization in #bers is hard 

  Phase coding: lots of research and experiments, 
requires phase sync., not a single photon system, 
lower QBER (~ 1.4%) 

  Frequency coding: easier to implement than phase 
coding, but has higher error rate 
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Free-space line-of-sight applications 

  By 2000, key exchange over 1.6 km (daylight) and 
1.9 km (nighttime) was achieved 

  Can be used with low-orbit satellites (300 – 1200 
km) 
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Experimental QC with 
Entangled Photon Pairs 



Advantages of photon pairs 

  Better detection rate 
  single photon detectors have high dark-count probability 

  Better against eavesdropping 



QC using photon pairs 

  Polarization entanglement 

  Energy-time entanglement 
  Phase coding, phase-time coding 
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Quantum secret sharing 

  Alice sends a split secret to Bob and Charlie 

  Either Bob or Charlie alone doesn’t have any 
information of the key 

  Bob and Charlie can work together to get the key 
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Eavesdropping 



An Eve only limited by quantum physics 

  has unlimited resources 

  has access to future technologies 



Difficulties against an “omnipotent” Eve 

  Eve can hide in noise 

  Eve can replace the quantum channel with better 
instruments of lower noise level 

  this can make discovering Eve very difficult 

  Eve also possesses all traditional methods of 
attacking 

  like attacking the RNG, tapping or spoo#ng the traditional channel, 
or even accessing the local storage of Alice or Bob 
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Supply chain woes 

  Eve can be the device suppliers 

  Or bug the devices while they are in transit 

  Testing quantum equipment is very hard 
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Three classes of attacks 

  Individual attack 
  Eve attaches one probe to a qubit a time, and measures one a time 

  Joint attack 
  Eve processes several qubits collectively 

  Collective attack 
  Attach one probe to a qubit a time, but measures several probes 

coherently 
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Simple individual attacks 

  Eve gets 0.5 bits of information per bit in the sifted 
key 

  Induced QBER of 25% 
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Symmetric individual attacks 

  Eve probes a qubit, changing the possibility of each 
four states equally, thus called “symmetric-attack.” 

79 

Let HEve and C2
! HEve be the Hilbert spaces of Eve’s

probe and of the total qubit!probe system, respectively.
If !m! ! , !0!, and U denote the qubit’s and the probe’s
initial states and the unitary interaction, respectively,
then the state of the qubit received by Bob is given by
the density matrix obtained by tracing out Eve’s probe:

"Bob#m! $"TrHEve
#U!m! ,0!%m! ,0!U†$. (45)

The symmetry of the BB84 protocol makes it very natu-
ral to assume that Bob’s state is related to Alice’s !m! ! by
a simple shrinking factor50 &"'0,1( (see Fig. 29):

"Bob#m! $"
1!&m! )!

2
. (46)

Eavesdropping attacks that satisfy the above condition
are called symmetric-attacks.

Since the qubit state space is two dimensional, the
unitary operator is entirely determined by its action on
two states, for example, the !↑! and !↓! states (in this
section we use spin-1

2 notation for the qubits). After the
unitary interaction, it is convenient to write the states in
the Schmidt form (Peres, 1997):

U!↑ ,0!"!↑! ! *↑!!↓! ! +↑ , (47)

U!↓ ,0!"!↓! ! *↓!!↑! ! +↓ , (48)

where the four states *↑ , *↓ , +↑ , and +↓ belong to the
Hilbert space of Eve’s probe HEve and satisfy *↑"+↑ and
*↓"+↓ . By symmetry !*↑!2"!*↓!2,F and !+↑!2"!+↓!2

,D. Unitarity imposes F!D"1 and

%*↑!+↓!!%+↑!*↓!"0. (49)

The *’s correspond to Eve’s state when Bob receives the
qubit undisturbed, while the +’s are Eve’s state when the
qubit is disturbed.

Let us emphasize that this is the most general unitary
interaction satisfying Eq. (46). One finds that the shrink-
ing factor is given by &"F#D. Accordingly, if Alice
sends !↑! and Bob measures it in the compatible basis,
then %↑!"Bob(m! )!↑!"F is the probability that Bob gets
the correct result. Hence F is the fidelity and D the
QBER.

Note that only four states span Eve’s relevant state
space. Hence Eve’s effective Hilbert space is at most
four dimensional, no matter how subtle she might be.51

This greatly simplifies the analysis.
Symmetry requires that the attack on the other basis

satisfy

U!→ ,0!"U
!↑ ,0!!!↓ ,0!

&
(50)

"
1

&
# !↑! ! *↑!!↓! ! +↑ (51)

!!↓! ! *↓!!↑! ! +↓) (52)

"!→! ! *→!!←! ! +→ , (53)

where

*→"
1
2 #*↑!+↑!*↓!+↓$, (54)

+→"
1
2 #*↑#+↑#*↓!+↓$. (55)

Similarly,

*←"
1
2 #*↑#+↑!*↓#+↓$, (56)

+←"
1
2 #*↑!+↑#*↓#+↓$. (57)

Condition (46) for the -!→!,!←!. basis implies that
+→"*→ and +←"*← . By proper choice of the phases,
%*↑!+↓! can be made real. By condition (49), %+↑!*↓! is
then also real. Symmetry implies that %+→!*←!"Re. A
straightforward computation concludes that all scalar
products among Eve’s states are real and that the *’s
generate a subspace orthogonal to the +’s:

%*↑!+↓!"%*↓!+↑!"0. (58)

Finally, using !*→!2"F, i.e., that the shrinking is the
same for all states, one obtains a relation between the
probe states’ overlap and the fidelity:50Fuchs and Peres were the first to derive the result presented

in this section, using numerical optimization. Almost simulta-
neously, it was derived by Robert Griffiths and his student
Chi-Sheng Niu under very general conditions, and by Nicolas
Gisin using the symmetry argument presented here. These five
authors joined forces to produce a single paper (Fuchs et al.,
1997). The result of this section is thus also valid without this
symmetry assumption.

51Actually, Niu and Griffiths (1999) showed that two-
dimensional probes suffice for Eve to get as much information
as with the strategy presented here, though in their case the
attack is not symmetric (one basis is more disturbed than the
other).

FIG. 29. Poincaré representation of BB84 states in the event
of a symmetrical attack. The state received by Bob after the
interaction of Eve’s probe is related to the one sent by Alice by
a simple shrinking factor. When the unitary operator U en-
tangles the qubit and Eve’s probe, Bob’s state [Eq. (46)] is
mixed and is represented by a point inside the Poincaré
sphere.
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Eve’s info vs Bob’s info 

80 

F!
1"!"̂↑!"̂↓#

2#!$̂↑!$̂↓#"!"̂↑!"̂↓#
, (59)

where the hats denote normalized states, e.g., $̂↑
!$↑D#1/2.

Consequently the entire class of symmetric individual
attacks depends only on two real parameters:52 cos(x)
%!$̂↑!$̂↓# and cos(y)%!"̂↑!"̂↓#.

Thanks to symmetry, it suffices to analyze this sce-
nario for the case when Alice sends the !↑# state and
Bob measures in the &↑ ,↓' basis (if not, Alice, Bob, and
Eve disregard the data). Since Eve knows the basis, she
knows that her probe is in one of the following two
mixed states:

(Eve)↑ *!FP)$↑*"DP)"↑*, (60)

(Eve)↓ *!FP)$↓*"DP)"↓*. (61)

An optimum measurement strategy for Eve to distin-
guish between (Eve(↑) and (Eve(↓) consists in first de-
termining whether her state is in the subspace generated
by $↑ and $↓ or the one generated by "↑ and "↓ . This is
possible, since the two subspaces are mutually orthogo-
nal. Eve must then distinguish between two pure states
with an overlap of either cos x or cos y. The first alterna-
tive occurs with probability F, the second with probabil-
ity D. The optimal measurement distinguishing two
states with overlap cos x is known to provide Eve with
the correct guess with probability +1"sin(x),/2 (Peres,
1997). Eve’s maximal Shannon information, attained
when she performs the optimal measurements, is thus
given by

I)- ,.*!F•"1#h# 1"sin x
2 $ %

"D•"1#h# 1"sin y
2 $ % , (62)

where h(p)!#p log2(p)#(1#p)log2(1#p). For a given
error rate D, this information is maximal when x!y .
Consequently, for D! +1#cos(x),/2, one obtains:

Imax)- ,.*!1#h# 1"sin x
2 $ . (63)

This provides the explicit and analytic optimum eaves-
dropping strategy. For x!0 the QBER (i.e., D) and the
information gain are both zero. For x!//2 the QBER is
1
2 and the information gain 1. For small QBER’s, the
information gain grows linearly:

Imax)- ,.*!
2

ln 2
D"O)D*202.9D. (64)

Once Alice, Bob, and Eve have measured their quan-
tum systems, they are left with classical random vari-
ables -, 1, and ., respectively. Secret-key agreement be-
tween Alice and Bob is then possible using only error
correction and privacy amplification if and only if the
Alice-Bob mutual Shannon information I(- ,1) is
greater than the Alice-Eve or the Bob-Eve mutual
information,53 I(- ,1)$I(- ,.) or I(- ,1)$I(1 ,.). It is
thus interesting to compare Eve’s maximal information
[Eq. (64)] with Bob’s Shannon information. The latter
depends only on the error rate D:

I)- ,1*!1#h)D* (65)

!1"D log2)D*")1#D*log2)1#D*. (66)

Bob’s and Eve’s information are plotted in Fig. 30. As
expected, for low error rates D, Bob’s information is
greater. But, more errors provide Eve with more infor-

52Interestingly, when the symmetry is extended to a third
maximally conjugated basis, as is natural in the six-state pro-
tocol of Sec. II.D.2, the number of parameters reduces to one.
This parameter measures the relative quality of Bob’s and
Eve’s ‘‘copy’’ of the qubit sent by Alice. When both copies are
of equal quality, one recovers the optimal cloning presented in
Sec. II.F (Bechmann-Pasquinucci and Gisin, 1999).

53Note, however, that if this condition is not satisfied, other
protocols might sometimes be used; see Sec. II.C.5. These pro-
tocols are significantly less efficient and are usually not consid-
ered as part of ‘‘standard’’ QC. Note also that, in the scenario
analyzed in this section, I(1 ,.)!I(- ,.).

FIG. 30. Eve’s and Bob’s information vs the QBER, here plot-
ted for incoherent eavesdropping on the four-state protocol.
For QBER’s below QBER0 , Bob has more information than
Eve, and secret-key agreement can be achieved using classical
error correction and privacy amplification, which can, in prin-
ciple, be implemented using only one-way communication.
The secret-key rate can be as large as the information differ-
ences. For QBER’s above QBER0 (%D0), Bob has a disad-
vantage with respect to Eve. Nevertheless, Alice and Bob can
apply quantum privacy amplification up to the QBER corre-
sponding to the intercept-resend eavesdropping strategies (IR4
and IR6 for the four-state and six-state protocols, respectively).
Alternatively, they can apply a classical protocol called advan-
tage distillation, which is effective up to precisely the same
maximal QBER IR4 and IR6 . Both the quantum and the clas-
sical protocols require two-way communication. Note that for
the eavesdropping strategy that will be optimal, from Eve
Shannon point of view, on the four-state protocol, QBER0
should correspond precisely to the noise threshold above
which a Bell’s inequality can no longer be violated.
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Quantum nondemolition measurement attack 

  Taking advantage if Alice sends more than one 
photons with the same information 

  due to imperfection in devices 

  But considered impractical 
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Trojan horse attacks 

  Eve sends pulses to Alice and Bob to understand 
their devices’ status 

  May be thwarted technically 

  Illustrated that analyzing a QC system requires both 
physical and technical measures 



Conclusion of QC 

  Has some unique and interesting features 

  Is the cross of quantum mechanics and information 
theory 

  Has lots of technological limitations 

  Is developing rapidly 

  Some products are on market 

  Can’t signi#cantly improve communication security 
(yet) 
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The End 
 

Questions & discussion? 
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