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a b s t r a c t

The network bottleneck incurred by big data process and transfer has increasingly become a severe
problem in today’s data center and cloud. Exploring and exploiting the advantages of both the scalable
object storage architecture and intelligent active storage technology are one of the ways to address this
challenge. In this paper, we present the design and performance evaluation of Oasis, an active storage
framework for object-based storage platform such as Seagate Kinetic. The basic idea behind Oasis is
to leverage the OSD’s processing capability to run data intensive applications locally. In contrast with
previous work, Oasis has the following advantages. First, Oasis enables users to transparently process
the OSD object and supports different processing granularity. Second, Oasis can ensure the integrity of
execution code using signature scheme and provide the access control for the code execution in the OSD
by enhancing the existing OSD security protocol. Third, Oasis can partition the computation task between
host andOSD dynamically according to the OSDworkload status. Ourwork onOasis can be integrated into
Kinetic object storage platform seamlessly. Experimental results on widely-used real world applications
demonstrate the performance and efficiency of our system.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

Today’s data center and cloud have to process, transfer and
analyze the ever-increasing data deluge. According to the study
from International Data Corporation (IDC) [1,2], at least 800
Exabytes of data were created and analyzed every year, and this
number is still increasing. The big commercial companies like IBM,
EMC, Google, Amazon, also have to handle PB (even EB) data every
day to support their online service [3–5]. As the data center and
cloud are usually networked architecture that is constructed via
interconnecting a large number of servers, it is critical to avoid the
network bottleneck on the interconnect incurred by the big data
transfer so as to provide real-time service to the users.
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Processing the datawhere they are (i.e., Active Storage [6,7]) has
been a simple but popular idea to solve this problem. By exploiting
the processing power of the storage device, active storage is not
only able to filter data and reduce the bandwidth requirement on
the network, but also provide aggregation processing capabilities
through the parallelism of the disks. A number of research institu-
tions have developed active storage systems such as database ma-
chine [8], IDISK [9], Active Disk [6], and IRAM [10]. However, these
approaches do not get wide deployment. A critical reason is that
different approaches need different interface extension. In addi-
tion, most of the systems need big modification to the file system,
which is not acceptable for the commercial systems.

Efficient active storage scheme needs to execute application
function (application-specific code that can be downloaded and
executed on the user data, e.g., compression, classification, etc.)
inside the storage device and answer the questions, such as ‘‘how to
transparently execute application function and how to guarantee
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the execution of application function inside storage device is safe?’’
These problems are more challenging to address, especially the
data deluge is becoming more serious and the data sharing is
more frequently. Specifically, we need to address the following
challenges.

Challenge 1: transparent and multi-granularity process. In most
cases, a user of an active storage product does not wish
to remember the details of application functions: how these
application functions are programmed, the execution parameters
or the identifiers of the application functions. How to accurately
schedule the application function to execute but makes it
transparent to the users simultaneously presents a big challenge to
address. In addition, a user might want to encrypt anything from
a file to a whole directory that contains hundreds of thousands
of files. In many cases, encrypting each file one by one is not an
efficient solution. Especially in the case of data deluge, processing
data in the batch mode is critical. So providing multi-granularity
process is also necessary.

Challenge 2: security. The execution of an application function
must be safe. The reason is obvious, unsafe execution can result
in the wrong results, e.g., a program accesses an invalid memory
space. In addition, a user may not want the code that he
downloaded to the storage device be used by other users, so access
control should be considered.

Challenge 3: resource contention. The users always care about
the response time, especially for the online real-time service.
However, as we are always in the data share circumstance
(e.g., cloud), resource contention issue has become increasingly
serious. This can significantly impact the system performance if
multiple application functions are running in the same storage
devices at the same time. How to avoid the active storage devices
heavily-loaded in a maximum extent is a big challenge to address.

More recently Seagate introduced Kinetic object device that
includes an internal processor [11]. The Panasas has also con-
tinually promoted the standardization of object-based storage
specification and has developed an OSD initiator included in the
Linux 2.6.30 kernel [12]. Motivated by these, and also to address
the challenges above, we propose Oasis, an active storage frame-
work for object storage platform. The basic idea behind Oasis is
to leverage the OSD’s processing power to run data intensive ap-
plications. The rationale comes from the basic understanding be-
tween the properties of object-based storage and active storage.
On one hand, object storage devices canmanage the location of ob-
ject data itself, which makes it possible to process the object data
inside OSD. On the other hand, the application function performed
in OSD can be taken as a kind of object. Thus it is much easier to
process it by using the existing object commands, object security
scheme, and object management methods. In addition, as the ob-
ject has attributes that contain rich semantic information, the user
can control the execution of application function through the ex-
pressive object interface that OSD exports. Specifically, we make
the following contributions.

First, (for challenges 1 and 2), Oasis frees users from needing
to remember the details of application functions and enables
users to transparently process the OSD object. In addition, Oasis
supports different processing granularity (from a single object to
all the objects in the OSD) by extending the OSD object attribute.
Moreover, Oasis uses signature scheme to ensure the integrity of
execution code and provides the access control for the execution
of the application function in the OSD by enhancing the existing
OSD security protocol, thus preventing unauthorized users from
intentionally destroying the system.

Second, (for challenge 3), Oasis can monitor system resources
(e.g., CPU utilization and network traffic status) and partition
the computation workload between host and OSD dynamically
according to their workload status. This can maximumly alleviate
the system traffic and avoid degrading the whole system
performance.

Third, we have implemented the Oasis components in a soft-
ware layer, with only slight modification to the current object
file system. The extensive experiments examine the Oasis perfor-
mance and scalability by using typical real-world applications. Our
work on Oasis can be integrated into the emerging products such
as Kinetic object storage platform.

The rest of the paper is organized as follows. We summarize
background and relatedwork in Section 2 and elaborate the design
and implementation of Oasis in Section 3. In Section 4, we com-
pare Oasis with the recent RPC-based active storage approach. In
Section 5, we evaluate the implementation of Oasis. In Section 6,
we describe how Oasis can be integrated into the Kinetic platform
and analyze the performance result. In Section 7, we discuss the
issues on interface and data consistency in Oasis. In Section 8, we
conclude the paper.

2. Background and related work

In this section, we first give an overview of object-based storage
and Kinetic object storage platform. Then, we present the related
work on active storage and then motivate our research.

2.1. Object-based storage and Kinetic

With the rapidly escalating storage requirements of enterprises,
object-based storage [13] has emerged as one of the most
promising technical solutions to next-generation storage systems
in the past few years. It offloads storage management functions
from the host operating system to the intelligent object-based
storage device (OSD) that manages its own storage space and
exports an expressive object interface. Object-based storage
systems, such as Lustre [14], Panasas [15] and Ceph [16] that
combine the advantages of NAS [17] and SAN [18], can provide
high throughput, reliability, availability and scalability. The widely
used storage media, such as storage class memory [19,20], also
has a better performance and reliability with object-based storage
technology.

Seagate, the hard disk manufacturer, has also proposed
a Kinetic open storage platform that adopts the key/value
object interface [11]. It is a device-based ethernet-attached
storage platform that eliminates the traditional storage server
infrastructure. The client API provides a series of command
interface (such as PUT, GET, andDELETE) to access the objects in the
Kinetic device. It can also restrict the operations a user can perform
by using Access Control Lists (ACLs). It aims to achieve benefits
in the performance, cost, and manageability for the emerging
application demands.

2.2. Existing active storage approaches

Active storage [6,7,21–25], which enables computation inside
storage devices, has long been an important way to make device
intelligent and optimize the system performance. In the earliest
work, researchers developed various database machines [8] to
increase the performance of database application by exploiting the
processing power within the disk arm. These machines failed to
gain wide acceptance as they used non-commodity hardware and
the performance gains were limited. With the development of the
VLSI (Very Large Scale Integrated circuit) technology that makes
it possible for the disk drive to have more powerful processing
capability, researchers proposed the active disk project [6,7]
to re-examine the database machine work. By partitioning
applications (e.g., data mining, image processing) into the host
and disk portions, the Active Disk system is able to obtain higher
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throughput and less response time. In response to the storage
and computational demand for DSS (Decision Support Systems)
and data warehousing workloads, Keeton et al. [9] presented
a computer architecture that utilizes ‘‘intelligent’’ disks, which
exploit the low-cost embedded processing capability and improve
cost–performance by offloading general-purpose computation
from expensive desktop processors. The MapReduce [26,27]
software framework also employs a concept similar to active
storage. It splits a large dataset into many pieces and distributes
them into many commodity-hardware computers that then
process the data locally, and merges the results into the output.
In recent work, Son et al. [25] proposed to deploy active storage
technology on parallel I/O software stack by extending the MPI-IO
interface, and Chen et al. [28,29] further improved their work by
exploring the issues on resource contention and data dependency.
Another important trend is that SSD (but not HDD) has been
gradually suggested to do the active storage work because of the
high performance on random writes and multiple I/O channels to
flash memory [30,31].

Most of the above work is built on the storage systems based
on the block-level interface. Since object-based storage technol-
ogy may be the next wave in the storage field, a lot of studies
have gradually focused on building the active storage system on
object-based storage platforms. Huston et al. [32] presented dia-
mond, an active storage architecture designed to address the issue
of searching non-indexed data from the massive storage system.
This system uses the concept of object-based storage, such as ob-
ject attributes, to perform semantic filter processing in the de-
vice. Piernas et al. [33] presented an active storage framework for
Lustre [14], which is implemented in user space and proves to
be faster and more portable than the previous kernel-space ver-
sion [34]. Our work is closely related to Devulapalli et al.’s [35]
and Runde et al.’s [36]. The former uses sandbox to isolate the exe-
cute code and directly schedules the code to execute by specifying
the method id. The latter further employs multiple execution en-
gines (e.g., C and Java) to support code execution. However, they
do not take into account transparent and multi-granularity pro-
cessing, concrete methods to enable the code integrity and access
control for the code execution, or the load balance management.

In our prior work [37], we gave a basic implementation and
evaluation of the Oasis framework. In this work, we further design
the signature scheme to ensure the integrity of the execution code,
and propose to enable efficient computation workload partition
between host and OSD. The adaptive computation workload
partition is similar to the previous work [32,38] that enables
dynamic function placement among different processing nodes,
but is more straight-forward and easier to implement. Then, we
make a detailed comparison between Oasis and the recent RPC-
based active storage approach [36]. In addition, we discuss how to
integrate Oasis with the promising Seagate Kinetic object storage
platform and analyze the performance results.

3. Oasis design and implementation

In this section, first we will state the overall architecture
of Oasis. Then we will elaborate the details on design and
implementations of Oasis.

3.1. Architecture overview

Fig. 1 shows the architecture of Oasis. As depicted in Fig. 1,
Oasis consists of fivemajormodules, namely, the Object Command
Handler, theObject Filesystem, the Association Check, the Function
Scheduler and the Function Object Run-time Environment. Object
Command Handler gets and analyzes OSD commands from the
client and forwards them to theObject Filesystem that is responsible
Fig. 1. Architecture of Oasis.

for reading and writing the object data, as well as performing
the management of OSD objects and function objects that
represent the offloaded application functions. Association Check is
responsible for checking whether there exists any function object
associated with the OSD object that is being read or written,
reading the function object ID and parameters from the OSD
objects’ attributes if the association exists, and then passing these
information to the Function Scheduler which is responsible for
scheduling the related function objects to execute. Currently, the
Function Scheduler performs schedule work on a first come first
serve basis. However, the Function Scheduler also monitors the
OSD system resource (e.g., CPU utilization) and can send the
computation tasks to the client whenever the OSD workload is
already very heavy. The Function Object Run-time Environment
provides the necessary platform (e.g., virtual machine) for the
execution of function objects in the user space. Oasis provides
access control for the execution of the function objects by
simply extending the Permission Bit Mask of the capability (see
Section 3.4). The execution results will be written to the local disk
or returned to the client. Note that Oasis does not have to modify
object interface between OSD and the client. It also has no impact
on any server components (e.g., metadata server) in a distributed
system.

3.2. Function object

According to the OSD specification [39], the OSD objects are
either used for storing user data (i.e., user object) or used for
addressing and retrieving user data (i.e., root object, partition
object and collection object). The function object is suggested
to hold the offloaded application function (e.g., compression,
classification, etc.).

A function object is identified by a function object ID and
also contains attributes that describe the basic information of
the function object (e.g., creation time, access time, etc.). All the
function objects are motivated to be executed in OSD to perform
operations or analyses on user objects. A function object can be
written using the C programming language or a cross-platform
language such as Tcl/Python script or Java, and the OSD needs to
implement the script interpreter or virtual machine to execute the
corresponding functions. Fig. 2 illustrates a piece of C and Java
code for a function object that performs data filtering respectively.
Both of them retrieve the data from the input stream, process the
data and pass the result to the output stream. Except for the input
stream and output stream, such as a file, a buffer or a pipe, there is
no other way to communicate with the outside operation system.
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Fig. 2. C and Java code for a function object that performs data filtering.
3.3. Association

Oasis allows users to associate a function object with an OSD
object by saving the function object’s ID and its parameters
(e.g., encryption keys) in the OSD object’s attributes. Such an
association design gains several salient advantages. First, the
association operationmakes it possible to execute function objects
during reading or writing OSD objects, making the data processing
in the device completely transparent to the user. Second, this
approach provides a simple and convenient way for users to
flexibly apply different application functions to different kinds of
files. For example, the user can apply an edge detection algorithm
to an image file to acquire the edge feature of the image by
associating the function object that represents the edge detection
algorithm with the user object that represents the image file,
while for a database file that contains millions of records, the
user can apply an efficient database query to it by associating the
function object that represents the database query with the user
object that represents the database file. Third, associating function
objects with different kinds of OSD objects can support different
processing granularity. For example, associating a function object
with the root object will affect the whole OSD logical unit, while
associating a function object with a partition object will only affect
all the sub-partitions and files in it. This flexibility allows a user to
adopt the granularity that best fits the application.

Oasis also supports chaining multiple function objects. For
example, to compress a file before encrypting it, a user can
associate multiple function objects with a single user object.

Fig. 3 shows an example of the association between function
objects and OSD objects in Oasis. File1 is mapped to user object1
and file2 is mapped to user object2, while the directory /dir2
is mapped to partition object1. Associating the edge detection
operationwith partition object1will make all user objectsmapped
from image files under /dir2 (such as file3 and file4) be processed
by the edge detection function using parameters4. Associating the
sort operation with user object2 will make user object2 mapped
from file2 be processed by the sort function using parameters3.
For user object1, two kinds of operations, the compression and
encryption that are identified by function object1’s and function
object2’s ID respectively, have been associated with it. This makes
user object1 be compressed first using parameters1 and then
be encrypted using parameters2 in the write process, while the
reverse processing steps will occur in the read process.

3.4. Security considerations

Executing a function object in an OSD can raise serious security
risks,which aremainly caused by two aspects: bad code in function
objects and illegal users who execute the function objects.

Oasis allows the function objects developed by both the
OSD vendors and common users. The vendors have professional
knowledge and tools to write and validate the code. For common
users, they can also customize function objects according to
their practical application needs. However, the vendors provide
guidelines and templates for users to write the code, and also
provide a set of code test method (such as software fault
isolation [40] and proof-carrying code [41]) to guarantee that the
code is completely safe.

Oasis also employs digital signature method to ensure the
integrity of the code. The administrator controls what function
object can run on the OSD and can allow a signed function
object by installing the vendors or users’ certificates. Of course,
the administrator needs to review and test each function object
thoroughly before signing it. If a user wants to run a customized
function object, she needs to submit it to the administrator to test
and obtain a digital signature before she can run it on the OSD.
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Fig. 3. Mapping from file to object and an example of the association between function objects and OSD objects in Oasis.
Table 1
Permissions bit mask format.

Bit 7 6 5 4 3 2 1 0

49 READ WRITE GET_ATTR SET_ATTR CREATE REMOVE OBJ_MGMT APPEND
50 DEV_MGMT GLOBAL POL/SEC M_OBJECT QUERY GBL_REM FUNC_EXE Reserved
In addition, Oasis can use the existing OSD security model to
authorize the execution of the function object. For instance, a
typical OSD security model relies on the capability that contains
the Permissions Bit Mask fields of various operations. By simply
adding a FUNC_EXE bit (see Table 1) to the Permissions Bit
Mask field in the capability, Oasis provides access control for the
execution of the function objects. A FUNC_EXE bit set to one
allows the function object to be executed on a user object, while
a FUNC_EXE bit set to zero prohibits the execution of the function
object on a user object. A client wishing to access an OSD, requests
such an extended capability from a metadata server and sends it
to the OSD as the part of the command. The OSD can then use
this capability to authorize the execution of the function object,
thus efficiently preventing unauthorized users from intentionally
destroying the system.

Even with the measures mentioned above, exceptions or even
crashes during the execution of code inside OSD are inevitable. In
this case, the client will re-send the READ/WRITE request to invoke
the execution of function objects. If that still does not work, the
system administrator will analyze the crash reason and upload a
new function object to the OSD if possible.

3.5. Dynamic partition of computation

Oasis can partition the computation workload between the
client and OSD according to the processing capability available in
the client and OSD. Oasismonitors the CPU utilization and network
workload in both client and OSD. It acquires these information
from the system kernel or /proc file system every half seconds.
Whenever a READ/WRITE request arrives at OSD, Oasis judges
Fig. 4. CPU utilization partition.

whether the task should be processed in OSD or client according
to the CPU utilization and network workload information. If the
workload is already very heavy in OSD and the network is not so
congested, some of the computation workload will be transferred
to client for processing.

For CPU utilization, we define two threshold: LOWandHIGH, as
shown in Fig. 4. If the CPU utilization is lower than LOW, the CPU
workload is not heavy. If the CPU utilization is between LOW and
HIGH, the CPU workload is a little heavy. If the CPU utilization is
higher than HIGH, the CPU workload is very heavy.

For network utilization, we first make statistics of the number
of bytes per second sent from the OSD side, then divide by the
maximum number calculated according to the system hardware
information. If the value exceeds a predefined threshold (e.g., 0.8),
we consider the network as congested.

As the CPU and network information we acquire may only
record information half seconds ago (not exactly current status),
so we do not take the information we acquire directly as CPU
or network utilization, but instead, we use the following formula
(1). CPUnow is the CPU utilization we directly acquire from the
system. CPUn is the CPU utilization we use to judge whether the
computation task should be processed in OSD or client. CPUn−1
is the CPU utilization we computed at last time. This means that
we compute the CPU utilization by considering both the CPU
utilization we used the last time and the CPU information we
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currently acquire from system status information. p is a tunable
weight factor that we can adjust tomore accurately reflect the true
CPU utilization.

CPUn = p ∗ CPUn−1 + (1 − p) ∗ CPUnow. (1)

Assumes the CPU utilization on the client side is CPU1 and the
CPU utilization on the OSD side is CPU2. Algorithm 1 shows how to
judge whether the computation should be done in OSD or client.
Note that Oasis uses OSD Data-Out Buffer encapsulated in the OSD
commands to transfer the client CPU information to OSD, and uses
Data-In Buffer to transfer the computation task from OSD to client
once the computation is judged to be done in client.

Algorithm 1 Adaptive Computation Partition algorithm. Func-
tion:Judge(CPU1,CPU2,LOW,HIGH)
Input: the CPU utilization on the client side, CPU1
Input: the CPU utilization on the OSD side, CPU2
Input: CPU threshold on the OSD side, LOW, HIGH
Output: The result for whether the computation task should be

done in OSD or client
1: if CPU2<LOW then
2: the computation task should be done in OSD
3: else if CPU2>HIGH then
4: if CPU2 does not exceed HIGH too much && the network is

congested then
5: the computation task should be done in OSD
6: else
7: the computation task should be sent to client for

processing
8: end if
9: else

10: if CPU2>>CPU1 && network is not congested then
11: the computation task should be sent to client for

processing
12: else
13: the computation task should be done in OSD
14: end if
15: end if

.
1. If CPU2 is lower than LOW, this means theworkload on the OSD

side is lightweight, in order to make full use of the computing
resources in OSD, the computation task should be put on the
OSD side for processing.

2. If CPU2 is higher than HIGH, this means the workload on the
OSD side is very heavy. If CPU2 does not exceed HIGH toomuch
(e.g., (CPU2 − HIGH)/HIGH < 0.1), OSD does not lose the
processing capacity. If the network is congested at this time, we
still put the computation task on the OSD side, otherwise, we
send the computation task to client for processing. But if CPU2
far exceeds HIGH (e.g., (CPU2−HIGH)/HIGH > 0.1), even if we
put theworkload in OSD, the OSD cannot process it properly. So
we send the computation task to client.

3. If CPU2 is between LOW and HIGH, we compare CPU2 with
CPU1. If CPU2 is lower than CPU1, i.e., the workload on the
OSD side is lighter than the client side, we put the computation
task in OSD for processing. If CPU2 is higher than CPU1, but
they are very close in number (e.g., (CPU2 − CPU1)/CPU1 <
0.1), we still put the computation task on the OSD side. This
is because sending the computation task to client can occupy
network bandwidth. If CPU2 far exceeds CPU1 (e.g., (CPU2 −

CPU1)/CPU1 > 0.1), we judge whether the task is processed
in OSD or not according to the network congestion status.
If the network is congested, we put the task on the OSD
side, otherwise, we transfer the computation task to client for
processing.
3.6. Implementation details

We prototyped Oasis on the Intel OSD reference implementa-
tion (REFv20) [42], which includes an initiator on the host side and
a target on theOSD side (for oneOSD). The initiator contains anOSD
file system (OSDFS), an upper level OSD driver and an iSCSI device
driver. It communicates with the targets on the OSDs through OSD
commands. All the files and directories are stored as objects in the
OSDs.

We implemented the function object in C and Java program-
ming language. Both the C and Java code are compiled first before
they are downloaded to theOSD. Upon receiving a piece of C or Java
code, the OSD automatically converts them to function objects, and
then assigns a function object ID for each function object. In accor-
dance with the association approach outlined in Section 3.3, they
will be scheduled during the read or write process. In our system,
we apply a Java virtualmachine in the Linux operating systemplat-
form. Once the function object is scheduled, the Java byte codewill
be interpreted to run. In Section 5.3,wewill specifically explore the
execution efficiency of these two kinds of code by running tests on
a variety of applications to test Java’s performance overhead when
compared to C.

The Adaptive Computation Partition algorithm is also written
as a function object. The Function Scheduler module (see Fig. 1)
passes the system resource information (e.g., CPU utilization) to
it and invokes its execution. It also executes in user space like
any other function objects. However, its execution result will be
returned to the Function Scheduler module, which then schedules
other function objects to process the computation task in OSD or
sends the computation task to client.

4. Comparison with other frameworks

This section compares and contrasts Oasis with the implemen-
tation of a fewOSD-based active storage frameworks. Because each
framework is built on different hardware and software platform,
it is unfair to directly compare the performance of Oasis to these
frameworks. The Oasis work has many similarities with the work
such as RPC-based approach [36]. For instance, they both allow
code to be downloaded from the client side and support both C
and Java execution engines. However, there exist some essential
differences, particularly with respect to the programmemodel and
system design.

Execution mode: The RPC-based approach triggers a method
(i.e., application function) to execute by explicitly specifying the
method ID and passing the arguments to the execution code.
It requires users to have a full knowledge of the methods and
their IDs. The Oasis frees users from remembering the details on
this. It associates a function object with an OSD object by saving
the function object’s ID and its parameters in the OSD object’s
attributes. This makes it possible to invoke the function object to
execute during reading or writing the OSD object, thus making the
data processing in the OSD device completely transparent to the
user.

Code integrity and security: The RPC-based approach has
ensured the security of code execution by employing the
sandbox approach which limits the resource (e.g., a particular
file directory and system library) that the code can access. In
addition, the approach can also enable themulti-process execution
simultaneously.

Oasis further strengthens the code by checking the integrity
of the code using the digital signature. Only the function objects
that have been signed by the administrator can be executed on the
OSD. In addition, Oasis provides the access control for the function
objects by extending the OSD capabilities.
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Table 2
Characteristics of data analysis applications.

Name Description Input data Ratio of data filtering

Database selection Non-index select operation that applies to the entire dataset
and returns the records that match a given search condition.

1.77 GB(33 million line records, each of which is a
double.)

87.4%

Edge detection This application employs Sobel edge detection algorithm [43]
to perform convolution operation on entire images and extract
the key features (i.e., edge) of them.

584.0 MB(10000 images, each of which is a 8-bit
map of 59.8 k)

96.7%

Blowfish decryption This application employs the blowfish algorithm developed by
Bruce Schneier [44] to decrypt an 8-byte record each time.

800 MB(100 million line records) 0
Functionality: The RPC-based approach has focused on the
execution engine and code security. Oasis has provided more
functionalities such as multi-granularity processing and load-
balance management. The multi-granularity process property
allows Oasis to process any set of OSD objects at a time, and the
load-balance management property makes it easy to eliminate
traffic when OSDs are heavily loaded. These functionalities make
Oasis more practically used.

5. Evaluation

In this section, we will first evaluate the performance of Oa-
sis through three kinds of widely used data analysis applications,
i.e., Database Selection, Edge Detection and Blowfish Decryption
respectively, then we evaluate how adaptive computation parti-
tion between OSD and client can further improve the Oasis perfor-
mance. Lastly, we analyze the overhead in building anOasis system
from the aspects of system implementation and management.

5.1. Experimental setup

Our experiment test bed consisted of a host (or client) and 1, 2
or 4 OSDs. All of these nodes have the same hardware components,
each with one Intel 604-pin EM64T Xeon 3.0 GHz processor,
512 MB PC2700 DDR-SDRAM physical memory and a 250 GB disk.
The host and OSDs are connected via 1 Gbps Ethernet. All of
these machines run Red Hat Linux 2.4.20. We use the low version
operating system to emulate the limited software environment in
OSDs where function objects execute.

5.2. Methodology and workload

We evaluate the performance of Oasis by running three
applications shown in Table 2. We choose these applications
because they are representative of the data analysis applications
in the real world and are widely used in various fields. For
example, Database Selection is one of the most important query
operations in the database system that apply to the entire dataset
and return only the records that match a given search condition.
Edge Detection is an image processing algorithm that detects the
edges or corners of ‘‘objects’’ in a scene (e.g., this application can
detect the facial features of individuals in an image). Blowfish
Decryption is an encryption algorithm that decrypts data in 8-byte
blocks and is widely used in software such as SSH and in operating
systems such as OpenBSD. We briefly describe these applications
in the second column of Table 2. It should be noted that, we do
not currently employ a real database in the OSD system. Instead,
we have developed a filter applet that filters the records according
to a certain degree of selectivity (e.g., applying a filter applet with
a selectivity factor of ten to the dataset will return 1/10 of the
total amount of data) to simulate the non-index operation that
applies to the entire dataset. The third column shows the specified
dataset used in each application. In the last column, we give how
much percent of the input dataset would be filtered in the OSD-
side. For example, Edge Detection shows the maximum amount of
data filtering of 96.7%, while Blowfish Decryption does not filter
any data.
In an OSD, all of these three data analysis algorithms are
encapsulated into function objects and have their object IDs
for reference. For the dataset, both the database records and
encryption items are contained in a file that is striped into OSD
objects across all the OSDs. All the images to be processed are
also evenly distributed across all the OSDs and each image in the
OSDs is taken as an OSD object. We begin our test by running
several processes on the host at the same time, and each process
is responsible for reading or writing the OSD objects in an OSD.
The function objects will be invoked to execute if they are already
associated with the OSD objects that are being read or written.
They acquire the execution parameters (e.g., encryption keys and
selection conditions) from the attributes of the OSD objects and are
executed in the user space to avoid disturbing the system kernel.

5.3. Application performance

We evaluate the performance of Oasis by first analyzing the
improvement on overall execution time, and then we look at the
sensitivity analysis results, including the number of OSDs, the
programming language of function objects, and the number of
function objects that are associated with the same OSD object. We
will mainly analyze two cases: Traditional Storage (TS) and Active
Storage (AS). The former means that the data stored in an OSD
should be shipped to the host to process, while the latter means
that the data should be processed in the OSD using the function
object. It should be noted that, in the following experiments, all the
executed function objects are implemented in C language unless
otherwise indicated (e.g., in Fig. 7).
(a) Performance improvement.

Fig. 5 shows the execution time breakdown for different
applications using one host and one OSD. We simply divide the
execution time into a process part and a transfer part. The process
part indicates the execution time of the application function,
including the overhead of copying data from kernel space to
user space, while the transfer part measures the communication
overhead on the interconnect network between host and OSD.
As the figure shows, the AS scheme improves performance
significantly on both Database Selection and Edge Detection
applications, 83.8% and 70.4% respectively. One can see that these
improvements can be attributed to the dramatic time reduction
on the Transfer part, from 292.6 s to 3.9 s in Database Selection
and from 198.0 s to 0.74 s in Edge Detection application. This
is because most of the data has been filtered on the OSD-side,
which results in less data transferred from the OSD to the host.
While, the performance of the AS scheme and the TS scheme
in Blowfish Decryption are almost the same, the reason is that
Blowfish Decryption algorithm does not filter data on the OSD-side
(see Table 2).

We then look at the scalability of Oasis when the number of
OSDs is increased. Fig. 6 shows the performance of three applica-
tions in Oasis for the 1-OSD, 2-OSD and 4-OSD configurations, re-
spectively. One can see that the performance of TS is scalable with
the increase in the number of OSDs for all of the three applications.
This is because the parallelism in the OSDs results in a great de-
crease in the transmission time over the interconnect network.We
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Fig. 5. Execution time breakdown for different applications with one OSD.
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Fig. 6. Execution time for different applications with different number of OSDs.
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Fig. 7. Execution time for all three kinds of applications in the C and
Java programming language. AS(C) means that the executed function object is
implemented in C language, while AS(Java)means that the executed function object
is implemented in Java language. In this experiment for all three applications, we
use four OSDs for execution.

also observe that, in Fig. 6(a) and (b), the AS scheme outperforms
the TS scheme significantly due to the reduction in data transfer,
even with a single active storage node. We see that these improve-
ments are consistent with the increase in the number of OSDs. For
Blowfish Decryption application (see Fig. 6(c)), as there exists no
data reduction in the data transfer, AS scheme achieves compara-
ble performance with the TS scheme even though the number of
OSDs increases.
(b) Impact of language of function object.

The C-powered function object may perform well in execution
efficiency, but not well in portability when compared to a Java-
powered function object. To analyze the impact of language
of function object, we repeated the experiments with all three
kinds of applications in three cases: processing data in host (TS),
executing function objects written in C language in OSD (AS(C))
and executing function objects written in Java language in OSD
(AS(Java)).

As illustrated in Fig. 7, AS(C) and AS(Java) achieve comparable
performance for both the Database Selection and Blowfish
Decryption applications, while for Edge Detection, AS(C) far
outperforms AS(Java) by a factor of 6.12. It should be noted that TS
in the Edge Detection implementation also outperforms AS(Java)
by a factor of 0.84. The reason for this is that, since a large number
of I/O operations are required for the Edge Detection algorithm to
generate the output image, the algorithm implementation using
the Java language is significantly slower than the implementation
using theC language. And even suchperformancedegradationwith
the Java implementation may compromise the benefits of data
reduction in the Edge Detection application achieved by the active
storage technology.

However, for the application such as Blowfish Decryption, the
algorithm is basically composed of the ADD and XOR instruction
(not I/O bound), so the algorithms using C language and using Java
language will result in a comparable speed, implying that for non-
I/O intensive applications, both the C and Java implementations of
function objects can achieve comparable performance, while for
I/O intensive applications, achieving a cross-platform implemen-
tationwith the Java programming languagemeans a potential per-
formance bottleneck in the active storage system.
(c) Impact of multiple function objects.

The above evaluation focuses on applying one application
function on user data each time. However, sometimes, users may
want to perform multiple operations on user data at a time. For
example, users may need to first decrypt a large piece of data
and then select the data that they want. Oasis supports function
composition by associating multiple function objects with a single
OSD object using object attributes (see Fig. 3).

Fig. 8 shows the execution time on a hybrid application that
stacks a Database Selection service on a Blowfish Decryption
service with different number of OSDs. We evaluate the impact of
multiple function objects by partitioning this hybrid application
between the host and OSDs, namely, processing this hybrid
application on host (TS), first decryption on OSD and then selection
on host (AS(one)) and processing this hybrid application on OSDs
(AS(two)). The results show that AS(one) does not improve the
system performance, as a matter of fact, decreases slightly by
0.7%–3.9% when compared to TS. The reason is that, offloading the
Blowfish Decryption application to the OSDs does not bring data
reduction across I/O interconnect, but incurs a small overhead over
the traditional object storage system. However, the performance
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Fig. 8. Execution time on a hybrid application that stacks a Database Selection
service on a BlowfishDecryption servicewith different number of OSDs.We analyze
three cases: processing this hybrid application on host (TS), first decryption on OSD
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(AS(two)).

of AS(two) significantly outperforms TS by a factor of 0.41
to 2.63, and also outperforms AS(one) by a factor of 0.45 to
2.66. This shows that offloading Database Selection to the OSDs
can significantly improve the system performance. Again, this
is because the Database Selection application reduces the data
needing to transmit over the interconnect network by filtering data
on the OSD side. This indicates that, for a hybrid application that
is composed of multiply applications, only applications that can
make data reduction across the I/O interconnect can really benefit
system performance.

5.4. Performance with adaptive computation partition

The previous experiments show that active storage technology
can improve the whole system performance by filtering the data
on the OSD side. However, it is not efficient to process all the data
inside the OSD especially when OSD is heavily loaded.

Fig. 9 shows the execution time of processing different sizes
of data when an extra process is already running in the OSD and
has occupied a certain ratio of CPU. We compare the performance
of three cases: Traditional Storage (TS), Active Storage (AS),
and Adaptive Active Storage (AAS). AAS employs the Adaptive
Computation Partition algorithm that can judge whether the
computation workload is suited to be processed in OSD or sent to
the client for processing according to the status of workload.

In Fig. 9(a), AS performs better than TS when processing the
same size of data. This is because AS can filter much of the data on
the OSD side, thus greatly reducing the amount of data transferred
over the network, resulting in the whole execution time smaller
than TS. AAS has a comparable performance with AS. This is
because the CPU resource in OSD is idle (i.e., no other process
is running). The adaptive computation partition algorithm judges
that the computation task can be processed in OSD. In this case,
the whole processing flow in ASS is nearly the same as AS, so their
performance are almost the same.

In Fig. 9(b), the tests run in a system where an extra load
has already taken up 25% of CPU on the OSD side. In this case,
TS still performs the worst, AS and AAS have a comparable
performance. However, the execution time in both AS and AAS
cases has increased a lot compared to those in Fig. 9(a). This change
occurs because the extra load in OSD consumes a certain amount
of CPU, thus resulting in insufficient CPU resource to process all
the computation tasks, leading to an increase in processing time.
However, AAS still processes a large number of the tasks in OSD as
the workload in OSD is still in a lightweight level (only 25% of CPU
is occupied). So the performance of AAS is close to the AS.

In Fig. 9(c), the tests run when half of the CPU is occupied by
an extra task. We can see that the execution time has a significant
increase in both AS and AASwhen compared to the case in Fig. 9(a).
Their performance even drops to the same level as TS. For AS,
though filtering data in OSD can reduce the transfer time over the
network, the lack of CPU resource in OSD can drag down the whole
performance. For AAS, as the performance of AS is close to TS, the
performance of AAS is comparable with both AS and TS regardless
of processing data in OSD or client. The measurement shows that
for AAS, up to 65.2% of the computation task is processed in OSD,
and the rest is sent to client for processing.

In Fig. 9(d), the tests run when a majority of CPU is occupied by
an extra task. The performance of TS is the best, AS is theworst, and
AAS is in between them. This is because the lack of CPU resource
has severely restricted the performance of AS. As TS processes data
in client, the CPU resource shortage in OSD has nearly no impact
on TS. For AAS, as the workload of OSD is very heavy, most of the
data are processed in client, so its performance is between TS and
AS. The statistic shows that only 10.9% of the computation task is
processed in OSD in the AAS case.

From Fig. 9, we can see that AAS has a comparable performance
with ASwhen OSD CPU has been occupied from 0% to 50%, and AAS
outperforms AS when OSD CPU has been occupied up to 75%. We
further aggravate the workload by initiating two processes in the
client simultaneously as shown in Fig. 10. AAS outperforms AS and
TS in nearly all the cases. This is due to the resource contention
that has degraded the whole system performance in both of the TS
and AS cases. For instance, two processes have to compete for the
network bandwidth and the client CPU resource in the TS case, and
compete for the OSD CPU resource in the AS case. In contrast, AAS
can achieve the best performance by adaptively choosing where
to process the computation task. For instance, AAS can alleviate
the resource contention to the maximum extent by putting one
computation task in the client and another in the OSD.

5.5. Overhead analysis

(a) Implementation overhead.
As depicted in Fig. 1, in an Oasis system, the Association Check

module has to check whether there exists any function object
associated with the OSD object that is being read or written by
accessing the attributes of the OSD object during every read or
write call even when no function object is associated with the OSD
object. We evaluate this implementation overhead by comparing
the completion time of reading and writing a file with different
file sizes in the Oasis implementation when no function object
is associated to the user object with the Intel OSD reference
implementation under 1 Gbps interconnect network. As shown in
Fig. 11, the implementation overhead of Oasis is minimal, between
1.2% to 5.9% for the read operation and 0.6% to 9.9% for the write
operation, with the Intel OSD reference implementation as the
baseline.
(b) Management overhead.

Oasis manages the function object by cleverly employing the
object commands defined in the current T10 OSD standard [39].
Table 3 shows the completion time of various object commands
for the management of function objects in Oasis under 100 Mbps
interconnect network. For example, it takes 13.6 ms to create a
function object with 1 kB size by using the CREATE AND WRITE
command, while only 7.8ms to delete this function object by using
the REMOVE command. In summary, it incurs an overhead as little
as 2.8 ms to 13.6 ms for managing function objects, implying that
Oasis provides an effective and time-saving way to manage the
function objects by using the existing object commands.

6. Deployment on the Kinetic object storage platform

This section first describes how Oasis can be integrated with
the Kinetic object storage platform, then makes the performance
analysis of the Kinetic platform with the Oasis software layer.
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(a) OSD CPU occupied:0%. (b) OSD CPU occupied:25%.

(c) OSD CPU occupied:50%. (d) OSD CPU occupied:75%.

Fig. 9. Execution time of processing different sizes of data when an extra process is already running in the OSD and has occupied a certain ratio of CPU (0%–75%). The
application used in this experiment is Database Selection. The size of the data produced after processing is 20% of the original data. To avoid memory becomes bottleneck,
we increase the physical memory of both client and OSD to 1GB in this experiment. All the tests run with one client process and one OSD. For the Adaptive Computation
Partition algorithm in AAS, the value of LOW is 0.5, and the value of HIGH is 0.7.
(a) OSD CPU occupied:0%. (b) OSD CPU occupied:25%.

(c) OSD CPU occupied:50%. (d) OSD CPU occupied:75%.

Fig. 10. Execution time of processing different sizes of data when an extra process is already running in the OSD and has occupied a certain ratio of CPU (0%–75%). The
application used in this experiment is Database Selection. The size of the data produced after processing is 20% of the original data. To avoid memory becomes bottleneck,
we increase the physical memory of both client and OSD to 1GB in this experiment. All the tests run with two client processes and one OSD. For the Adaptive Computation
Partition algorithm in AAS, the value of LOW is 0.5, and the value of HIGH is 0.7.
6.1. Integration with the Kinetic

The Oasis object commands can be integrated with the
Kinetic key/value API. The traditional CREATE, READ and REMOVE
commands used to access the OSD objects or function objects
correspond to the PUT, GET and DELETE commands in Kinetic
respectively. For example, similar to the CREATE command, when
we use PUT command to access the Kinetic device, we can specify
the object ID in the key, and the data to write in the value field. The
function execution method in Oasis can be also applied to Kinetic
device. When we use PUT or GET API to access the OSD objects in
Kinetic device, the function objects associatedwith theOSDobjects
will be scheduled to execute.
The security scheme on Oasis can be also applied to Kinetic
device. For instance, the Kinetic system administrator can use
signature technology to sign each function object that can be
executed in Kinetic device. In addition, the Access Control List in
Kinetic can authorize the legal users to execute the function object.

Fig. 12 shows the enforced Kinetic object storage platform that
can process data intensive computation inside Kinetic OSDdevices.
The Oasis software layer interacts with the Kinetic client using
the normal object commands, so it has no impact on the original
Kinetic framework. As we have stated, the object command,
function execution, and security scheme can be all integrated
into the Kinetic framework which has been designed for the
cloud storage platform.We believe the classical parallel computing
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Fig. 11. Implementation overhead of Oasis over the Intel OSD reference implementation.
Fig. 12. Enforced Kinetic object storage platform that can process data intensive computation inside Kinetic OSD devices.
Table 3
Commands overhead for managing function object.

Number Management description Object commands Completion time (ms)

1 Create a 1 kB function object CREATE ANDWRITE 13.6
2 Associate a function object SET ATTRIBUTES 2.8
3 retrieve a 1 kB association information GET ATTRIBUTES 12.1
4 List 512 bytes function objects LIST 4.5
5 Delete a 1 kB function object REMOVE 7.8
paradigm (e.g., Map/Reduce) can be applied to this platform. This
will be our future work.

6.2. Performance analysis

As Kinetic cloud platform is composed of different types
of OSD devices with different processing power, and different
interconnectswith different transfer bandwidth between theOSDs
and the Kinetic clients, the performance measurement in Kinetic
OSD platform is much more complicated than what we usually
do in a local distributed file system where we assume all the
OSDs have the same processing power and the transfer bandwidth
between each OSD and the client is the same. However, we
make a preliminary performance analysis, hoping to give a basic
understanding of how Oasis can impact the performance of the
Kinetic cloud platform.

To simplify the analysis, we only consider the one client case.
Assume the size of the data to be processed in the whole system
is D, the number of OSDs in Kinetic platform is m, the processing
power (i.e., the size of the data processed per second) of these OSDs
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is p1, p2, . . . , pm, the data transfer bandwidth between these OSDs
and the client is T1, T2, . . . , Tm, and the processing power of the
client is P . For the traditional case (without Oasis), the data in OSDs
are first transferred to the clientwhich thenprocesses them locally.
For the active storage case, the data are first processed in OSDs,
then the process results are transferred to the client.

For the traditional case, the size of the data transferred from
each OSD to the client is D/m. Assume the data in the client can
be processed only after all the data have been transferred from the
OSDs side. So the whole execution time depends on the smallest
transfer bandwidth. The whole execution time is described as the
following formula (2).

Time(traditional) = MAX

D/m
T1

,
D/m
T2

, . . . ,
D/m
Tm


+

D
P

. (2)

For the active storage case, assume the size of the processing
result generated in each OSD side is d. As the data processing and
transfer are in parallel for all the OSDs, the whole execution time
depends on the one that the combination of OSD processing and
transfer is the slowest. It can be described as the following formula
(3).

Time(active storage) = MAX


D/m
p1

+
d
T1


,


D/m
p2

+
d
T2


,

. . . ,


D/m
pm

+
d
Tm


. (3)

So whether to use Oasis in Kinetic can be judged through
comparing the performance numbers of these two cases.

7. Discussion

It is a trend that NVMe (Non-volatile Memory Extension)
interfacewill become prevalent in the next decade.We adopt iSCSI
in this paper for two reasons. On one hand, the SCSI interface is still
widely used in toady’s PC and cloud infrastructures. On the other
hand, the iSCSI interface can be a choice for the ethernet-based
Kinetic cloud platform. The implementation in this paper also
provides a reference for NVMe interface, i.e., how data intensive
computation can be offloaded to and executed on the underlying
device through the utilization of an existing interface.

Another important issue in Oasis-based distributed storage
system is data consistency. As we put function objects in each
OSD and do not update them unless we have to remove them,
the data consistency is not a problem for function object. For
other OSD objects, we would like to keep three copies for
each object across different OSDs and employ the eventually
consistency technologies (e.g., read-your-writes consistency and
session consistency) in Oasis-based systems.

8. Conclusions

Oasis, as an object-based active storage framework, plays a sig-
nificant part in addressing the network bottleneck incurred by big
data process and transfer. By exploring and exploiting the advan-
tages of both the scalable object storage architecture and intelli-
gent active storage technology, Oasis addressed the three critical
challenges when designing active storage systems as follows:
(1) supporting transparently and variable-granularity processing
by using object attributes. (2) Ensuring the integrity of execution
code via signature scheme and supporting capability-based access
control by extending the object storage security model. (3) Sup-
porting adaptive computation workload partition between host
and OSD. In addition, Oasis design can be seamlessly integrated
with the Seagate Kinetic object storage platform. Experiments us-
ing the extensive datasets demonstrate the performance and effi-
ciency of Oasis.
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