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What is parameter tuning?

Find the parameter values to Sample parameters:

achieve optimal performance °
for a certain workload

o
running on a certain device. *
o

/0O queue depth
RPC rate limit
worker thread count
Buffer sizes

Parameter tuning doesn’t change:

Hardware

System design

Source code

Application

Settings that destroy data



The Problem

Parameter tuning is important:
e Parameter tuning can greatly affect a system’s
performance.

Parameter tuning is challenging and costly:

e Everysystem, every workload is different.
o Hardware/software bugs and quirks.

o Device aging.
o  Slow shifting workloads.
e Need to hire domain experts.
e Finding the optimal setting is a lengthy
trial-and-error process.

e Few can afford 24x7 parameter tuning.



Automatic
parameter

tuning is
hard

Model-based methods are usually impractical:
e Different models are required for different
hardware/software.
e Nobody has resource to maintain these
models.

Fundamental challenges:
e Correlating parameter changes with
performance change is hard.
e Huge parameter spaces to scan.



An ideal
automatic
parameter
tuning system

Goal:
e (Customizable optimization goal.
e Online training.
Features:
e Tune a wide range of parameters.
e Model-less.
e Requires no prior knowledge of system or
workload.
e Work on many kinds of systems.
e Short training time.
e Stable.
e Works 24xT.



Who can benefit from automatic parameter tuning

Large Installations:

Public cloud providers.
Supercomputers.
Services for a large enterprise.

Small Installations:
e Private on-site clouds.
e Prototype systems.
e Evaluating emerging
technologies.

Usually these systems are poorly
tuned because small installations
have no expertise or resource to
tune at all.



CAPES high-level architecture

CAPES: Computer Automated
Performance Enhancement System

e Control node collects
performance data and tweaks
parameter values.

e Requires (small size)
communications between client
and control node.
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Constructing it as a Reinforcement Learning problem

Reinforcement learning is about:
How an agent behaves in an environment to maximize reward.

"'"[ Agent

 EEEEEE——

state reward action

5
5 ! a,

:_= ‘r.r+|I [
: s | Environment ]<7

Image: https://webdocs.cs.ualberta.ca/~sutton/book/ebook/node28.html



Applying reinforcement learning to parameter tuning

System
states

Reinforcement learning controller

Control
parameters




System

states

Observation:
Performance
Indicators.
Reward:
Performance.

Value
function

Choose
action with
highest
reward

Tweak
parameter
according

to action

Applying reinforcement learning to parameter tuning

Control
parameters

Reinforcement learning controller
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Finding the value function is critical

System

states

e Observation:
Performance
Indicators.

e Reward:
Performance.

Value
function

Choose
action with
highest
reward

Tweak
parameter
according

to action

Control
parameters

Reinforcement learning controller
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Challenges of
reinforcement
learning

1. Long and non-uniform delay between action
and reward.

2. Need huge amount of data for training.

3. Unpredictable performance during training.

Challenges for using neural networks as the value
function:
1. Instability.
2. Slow to converge.
3. Overfitting.
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™) DeepMind Auxiliary Tasks
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Reinforcement oSy
Learning oy et |
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human in many ' L e (-
games

Actions Value Function

Google DeepMind,
“Human-level control through
deep reinforcement learning”,
Nature 518, 529-533 (26
February 2015)
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Deep
Q-Learning
(DQL)

Deep Reinforcement Learning using Q-function

Q-function: the maximum discounted future
reward when performs perfectly.

n
Q(Sl‘9 at) = Z ’)/i_trt
i=t

(St isisystem-state at time ¢, a is action at time ¢,
I, isreward at time ¢, yis reward discount.)

QO can be solved iteratively (Bellman’s
equation)
O(s,a) =r + ymax Q(s’,a’)

14



Deep
Q-Learning
(DQL)

Works with multi-dimensional nonlinear
systems.

Can take noisy raw data as input.

Can handle long, non-uniform delays between
action and reward.

Doesn’t require a predefined model
(model-free).

Training is online, unsupervised, and off-policy.
Off-policy training is based on using minibatch.
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Applying reinforcement learning to parameter tuning

1:00 00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00
24-Oct

Unfiltered raw
performance indicators
(system state)

—3p Deepneural

network

Candidate action Predicted

reward
Action 0: Do nothing 0.382
Action 1: Increase Parameter A 0.741
Action 2: Decrease Parameter A 0.127
Action 3: Increase Parameter B 0.547
Action 4: Decrease Parameter B 0.123
Action 5: Increase Parameter C 0.372
Action 6: Decrease Parameter C 0.457

Action table
(possible actions)
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CAPES
Prototype
for Lustre

Computer Automated
Performance
Enhancement System

CAPES
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Performance Indicators used in CAPES/Lustre Prototype

Performance | Definition Performance | Definition
indicators indicators

write
throughput

read
throughput

ack_ewma

send_ewma

the write throughput of the
past second

the read throughput of the past
second

exponentially weighted moving
average (EWMA) of gaps
between RPC acks

EWMA of gaps between sender
timestamp embedded in RPC
acks

pt_ratio

dirty bytesin
write cache

the time needed for server to
finish reading/writing 1 MB
data request

current pt / min(pt) seen so far

the dirty bytes on the client
write cache
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Parameters to be tuned in CAPES/Lustre Prototype

1. Client I/0 Rate limit
2. Client 1/0 queue depth limit
(congestion window size)
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Also a bag of
tricks

Use two networks for training:
One fast moving, the other slow moving. More
stable and faster to converge.

Mini-batch training:
Each training step uses a 32-sample minibatch

randomly sampled from historical training data.

Reduces overfitting and faster to converge.

Action checker:

Check candidate action against preset rules to
prevent bad parameter values. Avoids bad
performance during training.

20



Test setup

Evaluation of o
CAPES on °
Lustre *

Lustre 2.9
4 servers and 5 clients
1 GB ethernet

CAPES Control Node

Xeon E5-2637

128 GB RAM

nVIDIA GTX1080 GPU
TensorFlow
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Random read/write workload

Four threads on each client.
Continual 1 MB random
read/write.

All evaluation workloads
generate enough I/0 to
saturate the servers.

read:write
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read:write
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read:write

Not effective for read heavy ——» =

workloads.

Effective for write heavy
workloads.

read:write
=4:1

read:write
=1:1

read:write
=1:4

read:write
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Filebench fileserver workload
Workload includes read, write, and
metadata operations:
1. Create a file and write the file to
100 MB.
2. Open another file and append
random sized data (mean at 100
MB).
3. Openarandomly picked file 'and
read 100 MB.
4. Delete arandom file.
5. Stat arandom file.

All evaluation workloads generate
enough I/0 to saturate the servers.

Sequential write workload

Five threads on each client. Continual 1 MB sequential
write.

1 Baseline
. 182
Filebench CAPES (12h) )—I-‘ 1
fileserver )
I CAPES (24h) 214 (+17%)
seq. H+ 175
write | =179 (+2%) T
— 208 (+18%)
0 50 10 150 200 250

Sustained throughput (MB/s)

Error bars show the confidence interval at 95%
confidence level.
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Training has
little impact
on system

performance

200 Training's Impact on Performance

150

N\

Throughput (MB/s)
o
S

n
o
T

[~ 1 Baseline
EE During training

A B C Training
Tests

Fileserver workload throughput with and without CAPES training.
Error bars show the confidence interval at 95% confidence level.
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Conclusion

CAPES ...

Worked well for a complex system like Lustre.
Doesn’t require human supervision.

Can be turned on 24x7 to handle changing
workloads.

Caused little impact during training.

Doesn’t require a special training step.
Worked best when changing parameters has a
great impact on performance.
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Future work

Looking for collaborators:
https://qithub.com/tuneupai/capes-o0ss

Evaluation on larger systems.

Evaluation on other storage systems, like

Ceph, OpenStack, Apache Cassandra, etc.

Tuning more parameters.

Fine tuning the training algorithm.
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Any comments or ideas, please let us
know!

Yan Li vanli@tuneup.ai

https://qithub.com/tuneupai/capes-oss
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