CAPES: Unsupervised Storage Performance Tuning Using Neural Network-Based Deep Reinforcement Learning

Yan Li¹, Kenneth Chang¹, Oceane Bel¹, Ethan Miller^{1,2}, Darrell Long¹

¹University of California, Santa Cruz

² Pure Storage

What is parameter tuning?

Find the parameter values to achieve optimal performance for a certain workload running on a certain device.

Sample parameters:

- I/O queue depth
- RPC rate limit
- worker thread count
- Buffer sizes

Parameter tuning doesn't change:

- Hardware
- System design
- Source code
- Application
- Settings that destroy data

The Problem

Parameter tuning is important:

• Parameter tuning can greatly affect a system's performance.

Parameter tuning is challenging and costly:

- Every system, every workload is different.
 - Hardware/software bugs and quirks. Device aging.

 - Slow shifting workloads.
- Need to hire domain experts.
- Finding the optimal setting is a lengthy trial-and-error process.
- Few can afford 24x7 parameter tuning.

Automatic parameter tuning is hard

Model-based methods are usually impractical:

- Different models are required for different hardware/software.
- Nobody has resource to maintain these models.

Fundamental challenges:

- Correlating parameter changes with performance change is hard.
- Huge parameter spaces to scan.

An ideal automatic parameter tuning system

Goal:

- Customizable optimization goal.
- Online training.

Features:

- Tune a wide range of parameters.
- Requires no prior knowledge of system or workload.
- Work on many kinds of systems.
- Short training time.
- Stable.
- Works 24x7.

Who can benefit from automatic parameter tuning

Large Installations:

- Public cloud providers.
- Supercomputers.
- Services for a large enterprise.

Small Installations:

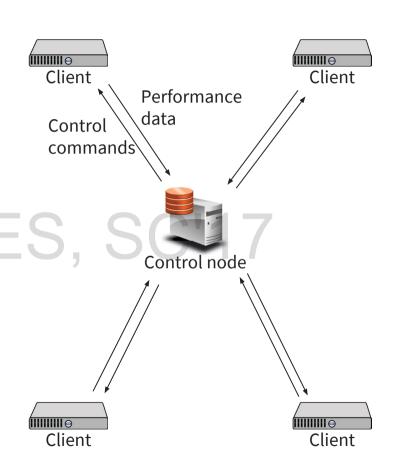
- Private on-site clouds.
- Prototype systems.
- Evaluating emerging technologies.

Usually these systems are poorly tuned because small installations have no expertise or resource to tune at all.

CAPES high-level architecture

CAPES: Computer Automated Performance Enhancement System

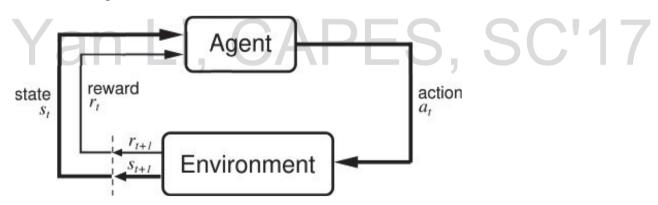
- Control node collects
 performance data and tweaks
 parameter values.
- Requires (small size)
 communications between client
 and control node.



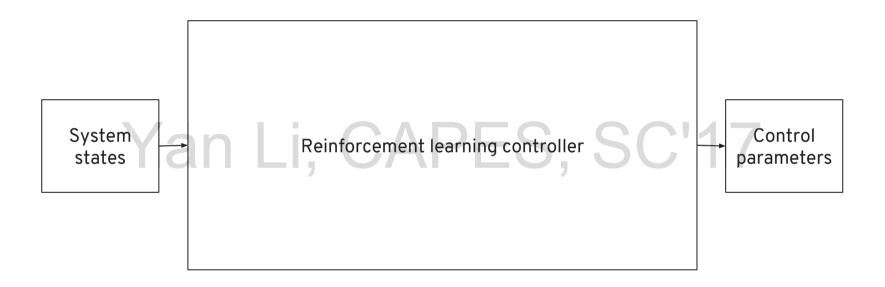
Constructing it as a Reinforcement Learning problem

Reinforcement learning is about:

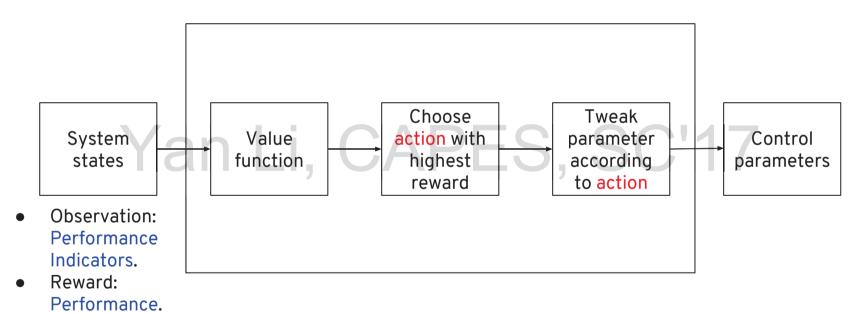
How an agent behaves in an environment to maximize reward.



Applying reinforcement learning to parameter tuning

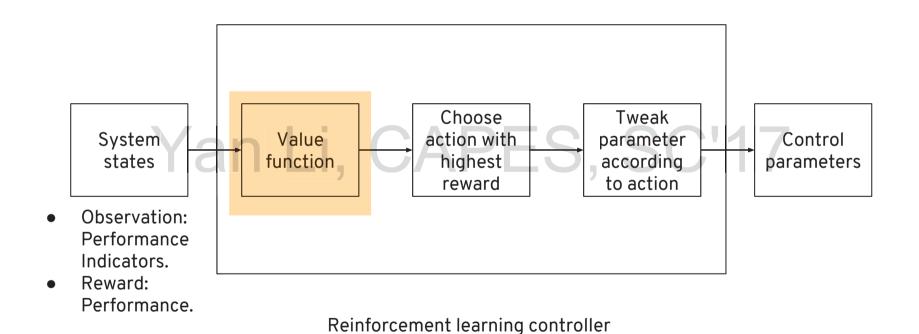


Applying reinforcement learning to parameter tuning



Reinforcement learning controller

Finding the value function is critical



Challenges of reinforcement learning

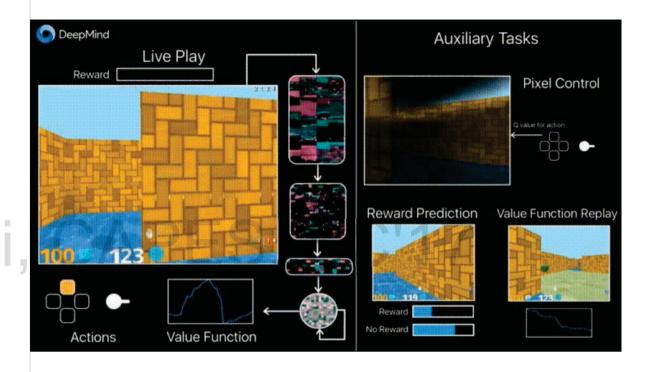
- Long and non-uniform delay between action and reward.
- 2. Need huge amount of data for training.
- 3. Unpredictable performance during training.

Challenges for using neural networks as the value function:

- 1. Instability.
- 2. Slow to converge.
- 3. Overfitting.

Deep Reinforcement Learning outperforms human in many games

Google DeepMind, "Human-level control through deep reinforcement learning", *Nature* 518, 529–533 (26 February 2015)



https://deepmind.com/blog/reinforcement-learning-unsupervised-auxiliary-tasks/

Deep Q-Learning (DQL)

Deep Reinforcement Learning using Q-function

• *Q*-function: the maximum discounted future reward when performs perfectly.

$$Q(s_t, a_t) = \sum_{i=t}^n \gamma^{i-t} r_t$$

(s_t is system state at time t, a_t is action at time t, r_t is reward at time t, γ is reward discount.)

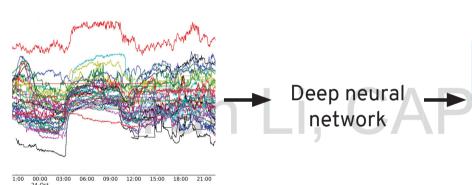
• Q can be solved iteratively (Bellman's equation)

$$Q(s, a) = r + \gamma \max_{a'} Q(s', a')$$

Deep Q-Learning (DQL)

- Works with multi-dimensional nonlinear systems.
- Can take noisy raw data as input.
- Can handle long, non-uniform delays between action and reward.
- Doesn't require a predefined model (model-free).
- Training is online, unsupervised, and off-policy.
 Off-policy training is based on using minibatch.

Applying reinforcement learning to parameter tuning



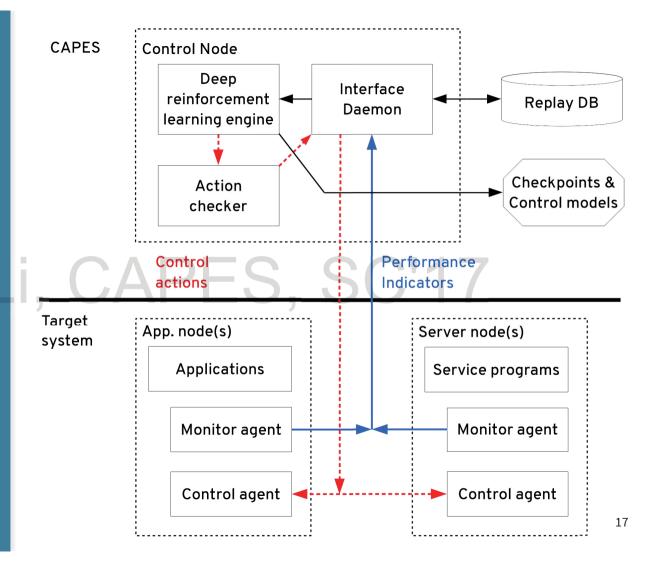
Unfiltered raw performance indicators (system state)

Candidate action	Predicted reward
Action 0: Do nothing	0.382
Action 1: Increase Parameter A	0.741
Action 2: Decrease Parameter A	0.127
Action 3: Increase Parameter B	0.547
Action 4: Decrease Parameter B	0.123
Action 5: Increase Parameter C	0.372
Action 6: Decrease Parameter C	0.457

Action table (possible actions)

CAPES Prototype for Lustre

Computer Automated Performance Enhancement System



Performance Indicators used in CAPES/Lustre Prototype

Performance indicators	Definition
write throughput	the write throughput of the past second
read throughput	the read throughput of the past second
ack_ewma	exponentially weighted moving average (EWMA) of gaps between RPC acks
send_ewma	EWMA of gaps between sender timestamp embedded in RPC acks

Performance indicators	Definition
pt	the time needed for server to finish reading/writing 1 MB data request
pt_ratio	current pt / min(pt) seen so far
dirty bytes in write cache	the dirty bytes on the client write cache

Parameters to be tuned in CAPES/Lustre Prototype

- 1. Client I/O Rate limit
- Client I/O queue depth limit (congestion window size)

Yan Li, CAPES, SC'17

Also a bag of tricks

- Use two networks for training: One fast moving, the other slow moving. More stable and faster to converge.
- Mini-batch training: Each training step uses a 32-sample minibatch randomly sampled from historical training data. Reduces overfitting and faster to converge.
 - Action checker: Check candidate action against preset rules to prevent bad parameter values. Avoids bad performance during training.

Evaluation of CAPES on Lustre

Test setup

- Lustre 2.9
- 4 servers and 5 clients
- 1 GB ethernet

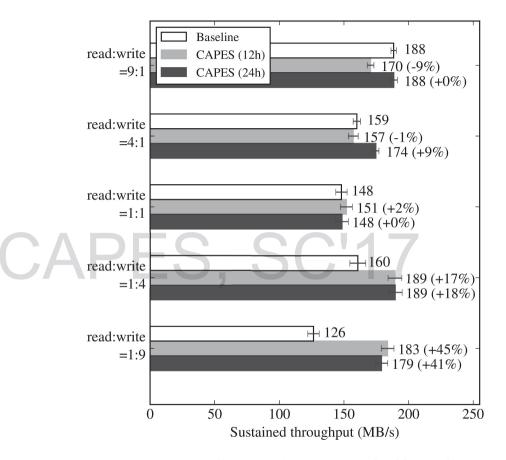
CAPES Control Node

- - nVIDIA GTX 1080 GPU
 - TensorFlow

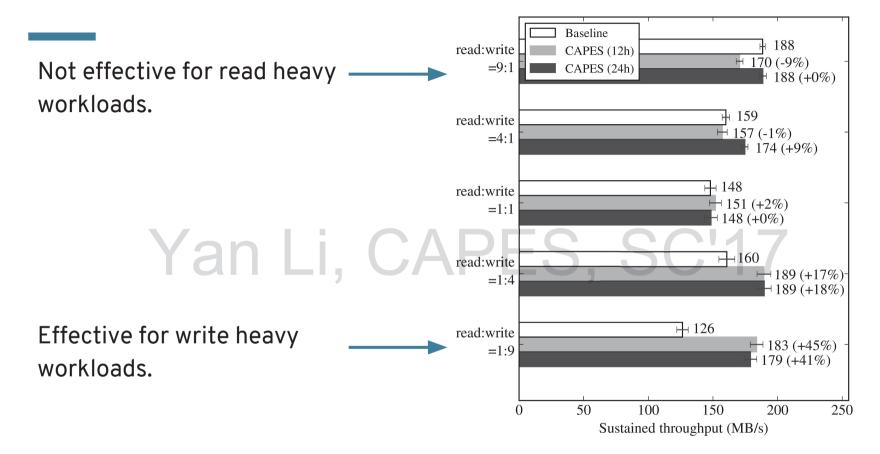
Random read/write workload

Four threads on each client. Continual 1 MB random read/write.

All evaluation workloads generate enough I/O to saturate the servers.



Error bars show the confidence interval at 95% confidence level.



Error bars show the confidence interval at 95% confidence level.

Filebench fileserver workload

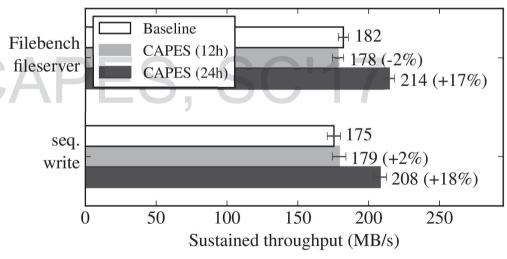
Workload includes read, write, and metadata operations:

- 1. Create a file and write the file to 100 MB.
- Open another file and append random sized data (mean at 100 MB).
- 3. Open a randomly picked file and read 100 MB.
- 4. Delete a random file.
- 5. Stat a random file.

All evaluation workloads generate enough I/O to saturate the servers.

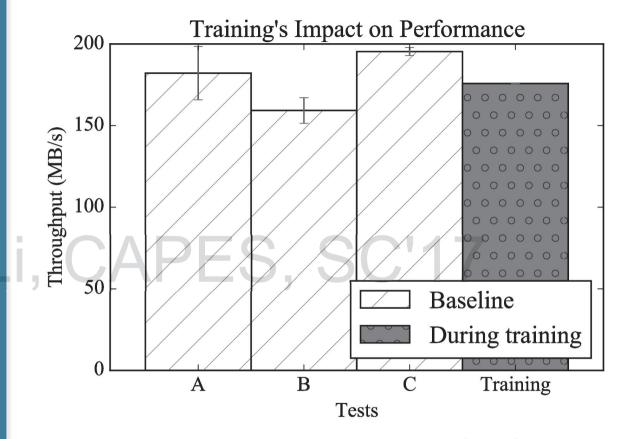
Sequential write workload

Five threads on each client. Continual 1 MB sequential write.



Error bars show the confidence interval at 95% confidence level.

Training has little impact on system performance



Fileserver workload throughput with and without CAPES training. Error bars show the confidence interval at 95% confidence level.

Conclusion

- Worked well for a complex system like Lustre.
- Doesn't require human supervision.
- Can be turned on 24x7 to handle changing workloads.
- Caused little impact during training.
- Doesn't require a special training step.
 - Worked best when changing parameters has a great impact on performance.

Future work

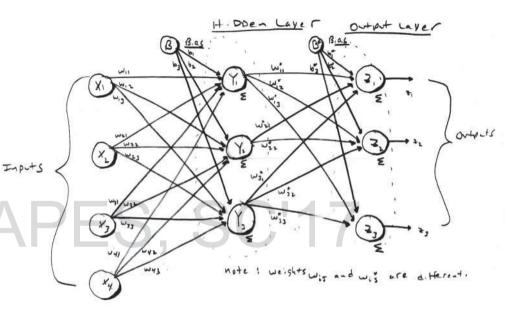
- Looking for collaborators:
 https://github.com/tuneupai/capes-oss
- Evaluation on larger systems.
- Evaluation on other storage systems, like Ceph, OpenStack, Apache Cassandra, etc.
- Tuning more parameters.
- Fine tuning the training algorithm.

Any comments or ideas, please let us know!

Yan Li yanli@tuneup.ai

https://github.com/tuneupai/capes-oss

Acknowledgments: this research was supported in part by the National Science Foundation under awards IIP-1266400, CCF-1219163, CNS-1018928, CNS-1528179, by the Department of Energy under award DE-FC02-10ER26017/DESC0005417, by a Symantec Graduate Fellowship, by a grant from Intel Corporation, and by industrial members of the Center for Research in Storage Systems (http://www.ssrc.ucsc.edu/sponsorlist.html).



https://www.gamedev.net/uploads/monthly_06_2011/ccs-8549-0-74375900-1307091491.jpg