
Horus: Fine-Grained Encryption-Based Security
for High Performance Petascale Storage

Conclusion
• With Horus, each client can only access the parts of large

files that they are allowed to access
• Using KHT for key management is well understood and the

performance penalty is reasonable

Yan Li, Nakul Dhotre, Yasuhiro Ohara,
Ethan L. Miller, Darrell D. E. Long
{yanli,nakul,yasu,elm,darrell}@cs.ucsc.edu

KHT Hashes need per MB

Mar 14, 2012

The Problem
•Large files contain potentially sensitive data
•File data can be leaked by many HPC elements (disk,
client, metadata server)

•Ensure data confidentiality in the face of physical and
software attacks

Read / Write Throughput (block size = 4096)

branching_factorround HorusWriteAvg HorusReadAvg NonHorusWriteAvg
2 write_2gb 53.266824872 133.22858038 88.683256516
4 write_2gb 53.931459563 138.31432141 88.683256516
6 write_2gb 54.426138952 139.64145331 88.683256516
8 write_2gb 54.888498645 140.19053196 88.683256516
2 read_2gb
4 read_2gb
6 read_2gb
8 read_2gb
0 no_horus_write_2gb1.5464381048
0 no_horus_read_2gb0.4578688532

0

37.5

75

112.5

150

2 4 6 8

KHT Depth = 4

Th
ro

ug
hp

ut
 (M

B/
s)

Branching factor
Horus write Horus read Non-Horus write

Time Cost Breakdown
Time for one keyed hash: 1.986 µs.
Time for one 4096-byte block AES (using Intel AESNI
instructions): 27.265 µs.
Disk I/O: 44.047 µs

Key Calculation Overhead (for 2GB data, block size = 4096)

Acknowledgement
We would like to thank the faculty and students of the Storage Systems
Research Center (SSRC), Center for Research in Intelligent Storage (CRIS), and
Zhichao Hu from NLDS Lab, UCSC for their help and guidance. This research
was supported in part by the NSF under awards IIP-0934401 and
CCF-0937938, the Dept. of Energy under Award number DE-FC02-10ER26017/
DE-SC0005417, and by the Dept. of Energy’s Petascale Data Storage Institute
under award DE- FC02-06ER25768. We also thank the industrial sponsors of
the Storage Systems Research Center and the Center for Research in
Intelligent Storage for their generous support.

round kht_depth branching_factortime_avg_20expstdev_20exp
key_calc_2gb_first_round 2 2 1.7227433051 0.020493657
key_calc_2gb_first_round 3 2 1.8362036488 0.0201718125
key_calc_2gb_first_round 4 2 1.9520102822 0.0314950731
key_calc_2gb_first_round 5 2 2.1148566114 0.06429378
key_calc_2gb_first_round 6 2 2.0846719725 0.0647229917
key_calc_2gb_first_round 7 2 2.0502934085 0.024748814
key_calc_2gb_first_round 8 2 2.061347318 0.0249775796
key_calc_2gb_first_round 9 2 2.0822890657 0.0476769886
key_calc_2gb_first_round 10 2 2.188854979 0.076155114
key_calc_2gb_first_round 4 3 1.5617260946 0.0533064495
key_calc_2gb_first_round 4 4 1.3776741481 0.017136003
key_calc_2gb_first_round 4 5 1.2953294129 0.0159740864
key_calc_2gb_first_round 4 6 1.2454212287 0.0158138464
key_calc_2gb_first_round 4 7 1.2138303793 0.016621123
key_calc_2gb_first_round 4 8 1.2194119959 0.0512670592
key_calc_2gb_first_round 4 9 1.2518835775 0.0486880005
key_calc_2gb_first_round 4 10 1.2111467022 0.0472093946
key_calc_2gb_first_round 4 11 1.1542649598 0.0360562094
key_calc_2gb_second_round 2 2 0.0221480028 0.0003252244
key_calc_2gb_second_round 3 2 0.0201345186 0.0007415277
key_calc_2gb_second_round 4 2 0.0204339107 0.0008749713
key_calc_2gb_second_round 5 2 0.0213154608 0.0010360443
key_calc_2gb_second_round 6 2 0.0202578636 0.000795301
key_calc_2gb_second_round 7 2 0.0200369269 4.42E-05
key_calc_2gb_second_round 8 2 0.0200986674 0.0002782681
key_calc_2gb_second_round 9 2 0.0204721113 0.0008680248
key_calc_2gb_second_round10 2 0.0210093295 0.0010717699
key_calc_2gb_second_round 4 3 0.0198402814 0.0002997694
key_calc_2gb_second_round 4 4 0.0196807418 5.53E-05
key_calc_2gb_second_round 4 5 0.0198428912 0.0007445373
key_calc_2gb_second_round 4 6 0.0196499688 2.25E-05
key_calc_2gb_second_round 4 7 0.0200053569 0.0009607327
key_calc_2gb_second_round 4 8 0.0204718549 0.001054959
key_calc_2gb_second_round 4 9 0.0209259521 0.0010672907
key_calc_2gb_second_round 4 10 0.0199332798 0.000756845
key_calc_2gb_second_round 4 11 0.0196003362 2.10E-05

0

0.575

1.15

1.725

2.3

2 3 4 5 6 7 8 9 10

Branching factor = 2

Ti
m

e
(s

ec
on

ds
)

KHT Depth

0

0.425

0.85

1.275

1.7

3 4 5 6 7 8 9 10 11

KHT Depth = 4

Ti
m

e
(s

ec
on

ds
)

Branching factor

round kht_depth branching_factortime_avg_20expstdev_20exp
key_calc_2gb_first_round 2 2 1.7227433051 0.020493657
key_calc_2gb_first_round 3 2 1.8362036488 0.0201718125
key_calc_2gb_first_round 4 2 1.9520102822 0.0314950731
key_calc_2gb_first_round 5 2 2.1148566114 0.06429378
key_calc_2gb_first_round 6 2 2.0846719725 0.0647229917
key_calc_2gb_first_round 7 2 2.0502934085 0.024748814
key_calc_2gb_first_round 8 2 2.061347318 0.0249775796
key_calc_2gb_first_round 9 2 2.0822890657 0.0476769886
key_calc_2gb_first_round 10 2 2.188854979 0.076155114
key_calc_2gb_first_round 4 3 1.5617260946 0.0533064495
key_calc_2gb_first_round 4 4 1.3776741481 0.017136003
key_calc_2gb_first_round 4 5 1.2953294129 0.0159740864
key_calc_2gb_first_round 4 6 1.2454212287 0.0158138464
key_calc_2gb_first_round 4 7 1.2138303793 0.016621123
key_calc_2gb_first_round 4 8 1.2194119959 0.0512670592
key_calc_2gb_first_round 4 9 1.2518835775 0.0486880005
key_calc_2gb_first_round 4 10 1.2111467022 0.0472093946
key_calc_2gb_first_round 4 11 1.1542649598 0.0360562094
key_calc_2gb_second_round 2 2 0.0221480028 0.0003252244
key_calc_2gb_second_round 3 2 0.0201345186 0.0007415277
key_calc_2gb_second_round 4 2 0.0204339107 0.0008749713
key_calc_2gb_second_round 5 2 0.0213154608 0.0010360443
key_calc_2gb_second_round 6 2 0.0202578636 0.000795301
key_calc_2gb_second_round 7 2 0.0200369269 4.42E-05
key_calc_2gb_second_round 8 2 0.0200986674 0.0002782681
key_calc_2gb_second_round 9 2 0.0204721113 0.0008680248
key_calc_2gb_second_round10 2 0.0210093295 0.0010717699
key_calc_2gb_second_round 4 3 0.0198402814 0.0002997694
key_calc_2gb_second_round 4 4 0.0196807418 5.53E-05
key_calc_2gb_second_round 4 5 0.0198428912 0.0007445373
key_calc_2gb_second_round 4 6 0.0196499688 2.25E-05
key_calc_2gb_second_round 4 7 0.0200053569 0.0009607327
key_calc_2gb_second_round 4 8 0.0204718549 0.001054959
key_calc_2gb_second_round 4 9 0.0209259521 0.0010672907
key_calc_2gb_second_round 4 10 0.0199332798 0.000756845
key_calc_2gb_second_round 4 11 0.0196003362 2.10E-05

0

0.575

1.15

1.725

2.3

2 3 4 5 6 7 8 9 10

Branching factor = 2

Ti
m

e
(s

ec
on

ds
)

KHT Depth

0

0.425

0.85

1.275

1.7

3 4 5 6 7 8 9 10 11

KHT Depth = 4

Ti
m

e
(s

ec
on

ds
)

Branching factor

Design Principles
Prevent compromise by metadata server and
storage nodes
- Encrypt / decrypt all data at the client
Restrict client leaks to only parts of the file to which
the client has access - Most clients don't need
access to the whole file
Provide a small, stateless trusted computing base

Reference
Ranjana Rajendran, Ethan L. Miller, Darrell D. E. Long, Horus:
Fine-Grained Encryption-Based Security for High Performance
Petascale, PDSW’11

Ongoing Work
• Implementation in Linux file systems (using FUSE)
• Integration with Ceph
• Open source the prototype

Evaluation
Machine setup: Intel(R) Xeon(R) CPU E5620 2.40GHz,
Mem 24GB, Seagate® Constellation.2™ SATA. Running
Fedora 16 Linux in x86-64 mode. Implemented as user-
space library. Using Intel AESNI acceleration
instructions.

Requesting Keys from KDS via RPC

Hierarchical Keyed Hash Tree (KHT)
Single file root key can encrypt / decrypt the entire file
Successively lower keys in the tree are based on a
keyed hash depending on
- Parent key
- Level in the tree
- Position in the level
Deriving keys lower in the tree is fast and simple
Deriving keys higher in the key or at the same level is
"difficult"

Key Distribution
• Client only receives range keys for blocks it's allowed to access

- Client can derive a block key from any range key "above" it in the tree
• Different clients can receive the same (or different) keys for a given block
• Key distribution cluster can be run on MDS, on one or more clients, or separately

- Can leverage application work distribution program logic to decide which clients access which ranges

Hierarchical Keyed Hash Tree
• Single file root key can encrypt / decrypt the entire file
• Successively lower keys in the tree are based on a keyed hash depending on

- Parent key
- Level in the tree
- Position in the level

• Deriving keys lower in the tree is fast and simple
• Deriving keys higher in the key or at the same level is "difficult"

Problem
• Large files contain potentially sensitive data
• File data can be leaked by many HPC elements (disk, client, metadata server)
➨ Ensure data confidentiality in the face of physical and software attacks

Conclusions
• Security is an increasingly important problem for large-scale HPC storage
• Data can be protected against disclosure by disks and metadata servers
• A small number of compromised clients can only leak a small amount of data
• Horus can be implemented natively or as a client library
➨ Horus is ideally suited to provide confidentiality for HPC data

Horus: Fine-Grained Encryption-Based Security
for High Performance Petascale Storage

Ranjana Rajendran • Ethan L. Miller • Darrell D. E. Long
Storage Systems Research Center
University of California, Santa Cruz

C DA B

KR Root key

Range keys

File blocks

Clients

KR (root key)

K1,0 K1,1

K2,0 K2,1 K2,2 K2,3 K2,4 K2,5

K3,0 K3,1 K3,2 K3,3 K3,4 K3,5 K3,6 K3,7 K3,8 K3,9 K3,10 K3,11

MDS1: open()

2: Protected KR
7: I/O request

8: I/O response

MDS

DiskDiskDiskDiskDisk

DiskDiskDiskDiskDisk

ClientClientClientClientClientClient

Design Principles
• Prevent compromise by metadata server and storage nodes

- Encrypt / decrypt all data at the client
• Restrict client leaks to only parts of the file to which the client has access

- Most clients don't need access to the whole file
• Provide a small, stateless trusted computing base

- Less vulnerable to compromise
- Easier to erase between computations

• Work as a "filter" layer
- Implement natively in the operating system
- Implement as a client-level layer above existing file system calls

Block key calculation

Require: 0 ≤ start < end < d
for x = start + 1 to end do

k ← keyed_hash (k, x ||�b/Bx)
end for
return k

Storing the key on the metadata server

• Encrypt file root key with user's public key
• Store result on the MDS

- Separate key file
- Extended attribute
- In-file metadata (e. g., HDF5)

x ||�b/Bx = 3 || 9
d = 4

Key
Distribution

Cluster

3:
Pr

ote
cte

d K
R

5:
Ra

ng
e k

ey
(s)

9: Decrypt data

4: Calculate permitted
range key(s)

6: Calculate
block key

Security Analysis
• Data only exists in the clear on a client and keys only in the clear on client and KDC

- Compromise of a disk cannot reveal data
- Compromise of a metadata server cannot reveal data

• Clients only receive range keys for blocks they need for the computation
- Thousands of clients, each of which only needs to access a small fraction of the file
- Individual compromised client can only reveal a small fraction of the file

• Range keys cannot be used to access data outside the range
- Keyed hash is "one-way": cannot derive parent key from the child

Risks
• Fabricated data: encrypt cryptographic checksum along with data
• Access control for writing: use Maat
• Key revocation: use Plutus-like approach
• Access control for reading: no need (client can't read without key)

Any opinions, findings, and conclusions or recommendations expressed in this
material are those of the researchers and do not necessarily reflect the views
of the National Science Foundation or the Department of Energy.

Ongoing Work
• Implementation of a user-level client library interposed above system calls
• Development of the protocol between the KDC and clients
• Performance testing
• Integration into Ceph?

Figure 1: KHT

Key Distribution
• Client only receives range keys for blocks it's allowed to access

- Client can derive a block key from any range key "above" it in the tree
• Different clients can receive the same (or different) keys for a given block
• Key distribution cluster can be run on MDS, on one or more clients, or separately

- Can leverage application work distribution program logic to decide which clients access which ranges

Hierarchical Keyed Hash Tree
• Single file root key can encrypt / decrypt the entire file
• Successively lower keys in the tree are based on a keyed hash depending on

- Parent key
- Level in the tree
- Position in the level

• Deriving keys lower in the tree is fast and simple
• Deriving keys higher in the key or at the same level is "difficult"

Problem
• Large files contain potentially sensitive data
• File data can be leaked by many HPC elements (disk, client, metadata server)
➨ Ensure data confidentiality in the face of physical and software attacks

Conclusions
• Security is an increasingly important problem for large-scale HPC storage
• Data can be protected against disclosure by disks and metadata servers
• A small number of compromised clients can only leak a small amount of data
• Horus can be implemented natively or as a client library
➨ Horus is ideally suited to provide confidentiality for HPC data

Horus: Fine-Grained Encryption-Based Security
for High Performance Petascale Storage

Ranjana Rajendran • Ethan L. Miller • Darrell D. E. Long
Storage Systems Research Center
University of California, Santa Cruz

C DA B

KR Root key

Range keys

File blocks

Clients

KR (root key)

K1,0 K1,1

K2,0 K2,1 K2,2 K2,3 K2,4 K2,5

K3,0 K3,1 K3,2 K3,3 K3,4 K3,5 K3,6 K3,7 K3,8 K3,9 K3,10 K3,11

MDS1: open()

2: Protected KR
7: I/O request

8: I/O response

MDS

DiskDiskDiskDiskDisk

DiskDiskDiskDiskDisk

ClientClientClientClientClientClient

Design Principles
• Prevent compromise by metadata server and storage nodes

- Encrypt / decrypt all data at the client
• Restrict client leaks to only parts of the file to which the client has access

- Most clients don't need access to the whole file
• Provide a small, stateless trusted computing base

- Less vulnerable to compromise
- Easier to erase between computations

• Work as a "filter" layer
- Implement natively in the operating system
- Implement as a client-level layer above existing file system calls

Block key calculation

Require: 0 ≤ start < end < d
for x = start + 1 to end do

k ← keyed_hash (k, x ||�b/Bx)
end for
return k

Storing the key on the metadata server

• Encrypt file root key with user's public key
• Store result on the MDS

- Separate key file
- Extended attribute
- In-file metadata (e. g., HDF5)

x ||�b/Bx = 3 || 9
d = 4

Key
Distribution

Cluster

3:
Pr

ote
cte

d K
R

5:
Ra

ng
e k

ey
(s)

9: Decrypt data

4: Calculate permitted
range key(s)

6: Calculate
block key

Security Analysis
• Data only exists in the clear on a client and keys only in the clear on client and KDC

- Compromise of a disk cannot reveal data
- Compromise of a metadata server cannot reveal data

• Clients only receive range keys for blocks they need for the computation
- Thousands of clients, each of which only needs to access a small fraction of the file
- Individual compromised client can only reveal a small fraction of the file

• Range keys cannot be used to access data outside the range
- Keyed hash is "one-way": cannot derive parent key from the child

Risks
• Fabricated data: encrypt cryptographic checksum along with data
• Access control for writing: use Maat
• Key revocation: use Plutus-like approach
• Access control for reading: no need (client can't read without key)

Any opinions, findings, and conclusions or recommendations expressed in this
material are those of the researchers and do not necessarily reflect the views
of the National Science Foundation or the Department of Energy.

Ongoing Work
• Implementation of a user-level client library interposed above system calls
• Development of the protocol between the KDC and clients
• Performance testing
• Integration into Ceph?

Key Distribution
• Client only receives range keys for blocks it's allowed to access

- Client can derive a block key from any range key "above" it in the tree
• Different clients can receive the same (or different) keys for a given block
• Key distribution cluster can be run on MDS, on one or more clients, or separately

- Can leverage application work distribution program logic to decide which clients access which ranges

Hierarchical Keyed Hash Tree
• Single file root key can encrypt / decrypt the entire file
• Successively lower keys in the tree are based on a keyed hash depending on

- Parent key
- Level in the tree
- Position in the level

• Deriving keys lower in the tree is fast and simple
• Deriving keys higher in the key or at the same level is "difficult"

Problem
• Large files contain potentially sensitive data
• File data can be leaked by many HPC elements (disk, client, metadata server)
➨ Ensure data confidentiality in the face of physical and software attacks

Conclusions
• Security is an increasingly important problem for large-scale HPC storage
• Data can be protected against disclosure by disks and metadata servers
• A small number of compromised clients can only leak a small amount of data
• Horus can be implemented natively or as a client library
➨ Horus is ideally suited to provide confidentiality for HPC data

Horus: Fine-Grained Encryption-Based Security
for High Performance Petascale Storage

Ranjana Rajendran • Ethan L. Miller • Darrell D. E. Long
Storage Systems Research Center
University of California, Santa Cruz

C DA B

KR Root key

Range keys

File blocks

Clients

KR (root key)

K1,0 K1,1

K2,0 K2,1 K2,2 K2,3 K2,4 K2,5

K3,0 K3,1 K3,2 K3,3 K3,4 K3,5 K3,6 K3,7 K3,8 K3,9 K3,10 K3,11

MDS1: open()

2: Protected KR
7: I/O request

8: I/O response

MDS

DiskDiskDiskDiskDisk

DiskDiskDiskDiskDisk

ClientClientClientClientClientClient

Design Principles
• Prevent compromise by metadata server and storage nodes

- Encrypt / decrypt all data at the client
• Restrict client leaks to only parts of the file to which the client has access

- Most clients don't need access to the whole file
• Provide a small, stateless trusted computing base

- Less vulnerable to compromise
- Easier to erase between computations

• Work as a "filter" layer
- Implement natively in the operating system
- Implement as a client-level layer above existing file system calls

Block key calculation

Require: 0 ≤ start < end < d
for x = start + 1 to end do

k ← keyed_hash (k, x ||�b/Bx)
end for
return k

Storing the key on the metadata server

• Encrypt file root key with user's public key
• Store result on the MDS

- Separate key file
- Extended attribute
- In-file metadata (e. g., HDF5)

x ||�b/Bx = 3 || 9
d = 4

Key
Distribution

Cluster

3:
Pr

ote
cte

d K
R

5:
Ra

ng
e k

ey
(s)

9: Decrypt data

4: Calculate permitted
range key(s)

6: Calculate
block key

Security Analysis
• Data only exists in the clear on a client and keys only in the clear on client and KDC

- Compromise of a disk cannot reveal data
- Compromise of a metadata server cannot reveal data

• Clients only receive range keys for blocks they need for the computation
- Thousands of clients, each of which only needs to access a small fraction of the file
- Individual compromised client can only reveal a small fraction of the file

• Range keys cannot be used to access data outside the range
- Keyed hash is "one-way": cannot derive parent key from the child

Risks
• Fabricated data: encrypt cryptographic checksum along with data
• Access control for writing: use Maat
• Key revocation: use Plutus-like approach
• Access control for reading: no need (client can't read without key)

Any opinions, findings, and conclusions or recommendations expressed in this
material are those of the researchers and do not necessarily reflect the views
of the National Science Foundation or the Department of Energy.

Ongoing Work
• Implementation of a user-level client library interposed above system calls
• Development of the protocol between the KDC and clients
• Performance testing
• Integration into Ceph?

Key Distribution
• Client only receives range keys for blocks it's allowed to access

- Client can derive a block key from any range key "above" it in the tree
• Different clients can receive the same (or different) keys for a given block
• Key distribution cluster can be run on MDS, on one or more clients, or separately

- Can leverage application work distribution program logic to decide which clients access which ranges

Hierarchical Keyed Hash Tree
• Single file root key can encrypt / decrypt the entire file
• Successively lower keys in the tree are based on a keyed hash depending on

- Parent key
- Level in the tree
- Position in the level

• Deriving keys lower in the tree is fast and simple
• Deriving keys higher in the key or at the same level is "difficult"

Problem
• Large files contain potentially sensitive data
• File data can be leaked by many HPC elements (disk, client, metadata server)
➨ Ensure data confidentiality in the face of physical and software attacks

Conclusions
• Security is an increasingly important problem for large-scale HPC storage
• Data can be protected against disclosure by disks and metadata servers
• A small number of compromised clients can only leak a small amount of data
• Horus can be implemented natively or as a client library
➨ Horus is ideally suited to provide confidentiality for HPC data

Horus: Fine-Grained Encryption-Based Security
for High Performance Petascale Storage

Ranjana Rajendran • Ethan L. Miller • Darrell D. E. Long
Storage Systems Research Center
University of California, Santa Cruz

C DA B

KR Root key

Range keys

File blocks

Clients

KR (root key)

K1,0 K1,1

K2,0 K2,1 K2,2 K2,3 K2,4 K2,5

K3,0 K3,1 K3,2 K3,3 K3,4 K3,5 K3,6 K3,7 K3,8 K3,9 K3,10 K3,11

MDS1: open()

2: Protected KR
7: I/O request

8: I/O response

MDS

DiskDiskDiskDiskDisk

DiskDiskDiskDiskDisk

ClientClientClientClientClientClient

Design Principles
• Prevent compromise by metadata server and storage nodes

- Encrypt / decrypt all data at the client
• Restrict client leaks to only parts of the file to which the client has access

- Most clients don't need access to the whole file
• Provide a small, stateless trusted computing base

- Less vulnerable to compromise
- Easier to erase between computations

• Work as a "filter" layer
- Implement natively in the operating system
- Implement as a client-level layer above existing file system calls

Block key calculation

Require: 0 ≤ start < end < d
for x = start + 1 to end do

k ← keyed_hash (k, x ||�b/Bx)
end for
return k

Storing the key on the metadata server

• Encrypt file root key with user's public key
• Store result on the MDS

- Separate key file
- Extended attribute
- In-file metadata (e. g., HDF5)

x ||�b/Bx = 3 || 9
d = 4

Key
Distribution

Cluster

3:
Pr

ote
cte

d K
R

5:
Ra

ng
e k

ey
(s)

9: Decrypt data

4: Calculate permitted
range key(s)

6: Calculate
block key

Security Analysis
• Data only exists in the clear on a client and keys only in the clear on client and KDC

- Compromise of a disk cannot reveal data
- Compromise of a metadata server cannot reveal data

• Clients only receive range keys for blocks they need for the computation
- Thousands of clients, each of which only needs to access a small fraction of the file
- Individual compromised client can only reveal a small fraction of the file

• Range keys cannot be used to access data outside the range
- Keyed hash is "one-way": cannot derive parent key from the child

Risks
• Fabricated data: encrypt cryptographic checksum along with data
• Access control for writing: use Maat
• Key revocation: use Plutus-like approach
• Access control for reading: no need (client can't read without key)

Any opinions, findings, and conclusions or recommendations expressed in this
material are those of the researchers and do not necessarily reflect the views
of the National Science Foundation or the Department of Energy.

Ongoing Work
• Implementation of a user-level client library interposed above system calls
• Development of the protocol between the KDC and clients
• Performance testing
• Integration into Ceph?

Key Distribution
• Client only receives range keys for blocks it's allowed to access

- Client can derive a block key from any range key "above" it in the tree
• Different clients can receive the same (or different) keys for a given block
• Key distribution cluster can be run on MDS, on one or more clients, or separately

- Can leverage application work distribution program logic to decide which clients access which ranges

Hierarchical Keyed Hash Tree
• Single file root key can encrypt / decrypt the entire file
• Successively lower keys in the tree are based on a keyed hash depending on

- Parent key
- Level in the tree
- Position in the level

• Deriving keys lower in the tree is fast and simple
• Deriving keys higher in the key or at the same level is "difficult"

Problem
• Large files contain potentially sensitive data
• File data can be leaked by many HPC elements (disk, client, metadata server)
➨ Ensure data confidentiality in the face of physical and software attacks

Conclusions
• Security is an increasingly important problem for large-scale HPC storage
• Data can be protected against disclosure by disks and metadata servers
• A small number of compromised clients can only leak a small amount of data
• Horus can be implemented natively or as a client library
➨ Horus is ideally suited to provide confidentiality for HPC data

Horus: Fine-Grained Encryption-Based Security
for High Performance Petascale Storage

Ranjana Rajendran • Ethan L. Miller • Darrell D. E. Long
Storage Systems Research Center
University of California, Santa Cruz

C DA B

KR Root key

Range keys

File blocks

Clients

KR (root key)

K1,0 K1,1

K2,0 K2,1 K2,2 K2,3 K2,4 K2,5

K3,0 K3,1 K3,2 K3,3 K3,4 K3,5 K3,6 K3,7 K3,8 K3,9 K3,10 K3,11

MDS1: open()

2: Protected KR
7: I/O request

8: I/O response

MDS

DiskDiskDiskDiskDisk

DiskDiskDiskDiskDisk

ClientClientClientClientClientClient

Design Principles
• Prevent compromise by metadata server and storage nodes

- Encrypt / decrypt all data at the client
• Restrict client leaks to only parts of the file to which the client has access

- Most clients don't need access to the whole file
• Provide a small, stateless trusted computing base

- Less vulnerable to compromise
- Easier to erase between computations

• Work as a "filter" layer
- Implement natively in the operating system
- Implement as a client-level layer above existing file system calls

Block key calculation

Require: 0 ≤ start < end < d
for x = start + 1 to end do

k ← keyed_hash (k, x ||�b/Bx)
end for
return k

Storing the key on the metadata server

• Encrypt file root key with user's public key
• Store result on the MDS

- Separate key file
- Extended attribute
- In-file metadata (e. g., HDF5)

x ||�b/Bx = 3 || 9
d = 4

Key
Distribution

Cluster

3:
Pr

ote
cte

d K
R

5:
Ra

ng
e k

ey
(s)

9: Decrypt data

4: Calculate permitted
range key(s)

6: Calculate
block key

Security Analysis
• Data only exists in the clear on a client and keys only in the clear on client and KDC

- Compromise of a disk cannot reveal data
- Compromise of a metadata server cannot reveal data

• Clients only receive range keys for blocks they need for the computation
- Thousands of clients, each of which only needs to access a small fraction of the file
- Individual compromised client can only reveal a small fraction of the file

• Range keys cannot be used to access data outside the range
- Keyed hash is "one-way": cannot derive parent key from the child

Risks
• Fabricated data: encrypt cryptographic checksum along with data
• Access control for writing: use Maat
• Key revocation: use Plutus-like approach
• Access control for reading: no need (client can't read without key)

Any opinions, findings, and conclusions or recommendations expressed in this
material are those of the researchers and do not necessarily reflect the views
of the National Science Foundation or the Department of Energy.

Ongoing Work
• Implementation of a user-level client library interposed above system calls
• Development of the protocol between the KDC and clients
• Performance testing
• Integration into Ceph?

Figure 2 Figure 3

Figure 4 Figure 5

Total Time (ms) RPC Time Key Cal Time no_of_keys_requested
1.25 1.153 0.097 1

1.302 1.153 0.149 2
1.350 1.153 0.197 3
1.409 1.153 0.256 4

0

0.375

0.75

1.125

1.5

1 2 3 4

Key Request Time

Ti
m

e
ne

ed
ed

 (m
s)

Number of Keys per Requests

RPC Time Key Calculation Time

Figure 6

KHT Depth HorusWriteAv
g

HorusReadAv
g

NonHorusWrit
eAvg

2
4
6
8

54.781682083 140.19923013 88.683256516
54.149144604 139.83691333 88.683256516
54.240427147 139.92392909 88.683256516
54.776943841 139.75840379 88.683256516

0

37.5

75

112.5

150

2 4 6 8

Branching factor = 7

Th
ro

ug
hp

ut
 (M

B/
s)

KHT Depth
Horus write Horus read Non-Horus write

Figure 7

Key
Calculation
AES
I/O

1.986

27.265
44.047

0

20

40

60

80

µs

Time Cost Breakdown

Key Calculation AES I/O

