Long-term View of the Reliability of Archival Storage Systems

Yan Li, Ethan L. Miller, Darrell D. E. Long yanli@ucs.edu, \{elm,darrell@cs.ucs.edu

The Problem
Storage systems evolve over time. No company would use only a single storage system to store its business data, instead, people use storage systems from many vendors and these systems tend to change over time.

Figure 1 A Modern Storage Solution
Do you know the reliability of your data in this always changing storage solution?

Three Tenets of This Research

The idea in this poster is based on these three key observations

- Reliability of Data \neq Reliability of Storage System
- Devices and systems age and their reliabilities decline, which is a very important factor for the reliability of archival storage systems
- Some large scale events can affect several or all storage systems simultaneously

Aging of Devices Affects Data Object's Reliability (DOR)

Definition of DOR: the probability that a data object will survive during a specified period of time under stated conditions

S.M.A.R.T. Event's Affect on Reliability

Pinheiro et al. ${ }^{[1]}$ presented the correlation between some SMART events and the failure of hard drives. For example, the group of drivers with "Scan Error" is ten times more likely to fail than the group with no error. This effect is shown in Figure 3 at the right.
${ }^{[1]}$ Eduardo Pinheiro, Wolf-Dietrich Weber, Luiz André Barroso, Failure Trends in a Large Disk Drive Population

Modeling Large Scale Events
Large events such as earthquake can affect more than one systems at the same time. We assume one earthquake can destroy all storage systems.

Left graph shows how earthquake affects reliability. In a geodistributed system (green dash-dot line), two HDs are stored at two locations that won't be affected by one earthquake.

Mean time between earthquake is 88 yr of
San Andreas faut in California source San Ancreas fautit in Califoriaia, source:
Akgiz et al Centur-long average time interalas between earthauake ruptures of
the San Andreas faut it in the Carizo the San Andreas fault in the Carrizo Plain
California

Getting System's Reliability from Devices' Reliability

- Many commercial storage systems use proprietary algorithms, which is hard to analysis
- Some algorithm's reliability can't be calculated without using simulation BUT
They all depends on the reliability of the underlying Storage Devices. We propose to use Reliability Transition Function (RTF) to reflect this relationship.

Figure 2 How the Reliability is calculated
A Feedback System that Decides the Impact of Age of Devices and Frequency of Large Scale Events

Devices' error pattern is similar among the same vintage of devices. Therefore a failure observed from one device affects the reliability of devices from the same shipment.

This graph shows how the data's reliability changes in one simulation

A data object was generated at time 0 , and stored in one HD. The beginning reliability was not because the HD was old.
t_{1} : made an extra copy to another old HD
t_{2} : a SMART Scan Error event was observed in one HD
t_{3}. the failing HD was replaced by a new one

Reliability-aware Storage Manager

Layout of data affects its reliability

- Prioritizing data objects according to their importance
- High priority objects should be stored on new systems/devices We propose a storage solution manager that tracks events, reports the reliability of data objects and arranges layout accordingly. It can be part of a larger storage system manager, and a foundation for future works.

Ongoing Work

- Building reliability-aware archival storage systems
- Integrate events tracking and reliability-aware data layout algorithm into Ceph ${ }^{[2]}$
- Provide future reliability prediction to help choosing between new devices
- Smart scrubbing based on event history
${ }^{[2]}$ Ceph is a distributed file system with high scalability: http://ceph.newdream.net/

Conclusion

- Understanding the reliability of data is more important than understanding the reliability of systems or devices
- Reliability of data is always changing and must be tracked systematically
- A large amount of device information, which should be useful in
understanding the storage systems is lost everyday because there is no systematic effort on gathering and processing them

