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Abstract—Efficient and accurate tracking of device-free ob-
jects is critical for anti-intrusion systems. Prior solutions for
device-free object tracking are mainly based on costly sensing
infrastructures, resulting in barriers to practical applications. In
this paper, we propose an accurate and efficient motion detection
system, named EMoD, to track device-free objects based on cheap
passive RFID tags. EMoD is the first RFID system that can
estimate the moving direction as well as the current location
of a device-free object by measuring critical power variation
sequences of passive tags. Compared with previous solutions,
the unique advantage of EMoD, i.e., the capability to estimate
moving directions, enables object tracking using a much sparser
tag deployment. We contribute to both theory and practice of this
phenomenon by presenting the interference model that precisely
explains it and using extensive experiments to validate it. We
design a practical EMoD based intrusion detection system and
implement a prototype by commercial off-the-shelf (COTS) RFID
reader and tags. The real-world experiments results show that
EMoD is effective in tracking the trajectory of moving object
various environments.
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I. INTRODUCTION

Wireless sensing systems have been serving as a core com-
ponent of critical infrastructures and industrial control systems
recently. Typically, they are built upon sensors and control
units for control and protection of a physical infrastructure.
Real-time sensing plays an important role in combining the
computational and physical worlds together for these industrial
applications.

One of the fundamental tasks of a wireless sensing system
is to detect and track intruders to ensure the safety of lives
and properties. Since intruders are uncooperative objects, they
are impossible to be bound with specific devices. Therefore
detection of device-free intruders is a core requirement of
an automatic anti-intrusion system. Specific sensing devices,
such as the passive infrared (PIR) sensors, sonic sensors,
and video camera sensors have been used for device-free
motion detection and tracking. However, these solutions incur
significant cost concerns.

Recently, Radio Frequency IDentification (RFID) has be-
come a promising technique for device-free intrusion detec-
tion. An RFID reader may observe and analyze signal changes
of pre-deployed tags to infer the motion of an intruder. RFID-
based motion detection is an attractive solution due to the con-
venient and cost-efficient deployment of RFID tags in physical

environments. In fact, RFID tags have been widely applied
to identification and monitoring tasks in industrial control
systems for applications already, including logistics, inventory,
and retailing. Reusing the existing RFID infrastructure further
saves the cost of a real-time motion detection system.

However, existing RFID-based motion detection methods
in the literature [1], [2], [3] are mostly based on active
tags, which are less ubiquitous and much more expensive
than passive tags. Existing passive tag based motion detection
methods are device-based and not suitable for intrusion detec-
tion [4], [5], [6]. Meanwhile, many of them require customized
devices [7], [8], [9], [10] or specialized signals [11], [15].
To the best of our knowledge, the most recent device-free
object tracking system using passive tags is Twins [16]. The
idea of Twins are derived from the following observation. The
mutual interference between two physical immediate readable
tags caused by coupling effect will make one or both of them
unreadable, which is called the critical state. The two coupled
tags are named twins1. If one object moves around the twins,
it will cause extra RF wave reflection to the tags such that
unreadable tags may accumulate sufficient power, and thus
be able to backscatter their responses. In this way, the Twins
system can report a nearby motion via the state shift from
unreadable to readable.

In this work, we present an accurate and Efficient Motion
Detection System for device-free objects using an infras-
tructure constructed by passive tags, named EMoD. EMoD
significantly improves Twins in the two following aspects.
First, Twins can only tell the location of an object but does
not provide the moving direction. EMoD is first method to
report both location and direction information of a device-free
object with passive RFID tags. With the direction information,
the accuracy of inferred moving trajectory can be significantly
improved. More specifically, since EMoD can infer trajectory
through direction information, EMoD can draw the complete
trajectory employing much fewer devices (including readers
and antennas) than Twins’, which can dramatically reduce the
deployment overheads. Second, the Twins system depends on
a grid of passive tag pairs (twins) that fully cover the area of
interest to localize device-free objects. In practice, the layout

1We use “Twins” to refer to the overall motion detection system in [16]
and “twins” to refer to the specific tag pair used in Twins.



of inventory or warehouse areas is usually arranged as several
pick aisles that have racks on both sides. Perpendicular to the
pick aisles, several cross aisles separate the area, as shown in
Fig. 1. In this typical layout, EMoD only requires a few twins
pairs deployed at the critical points, including the entrance,
exit, and intersections. Such deployment is much sparser
than the requirement of the original Twins system. Therefore,
the communication collision between tags and reader can be
instantly relieved.

Our contribution are summarized as follows.
• We are the first to achieve direction indication of device-

free objects using passive RFID tags. EMoD is built upon
both the observations from experiments and theoretical
modeling of backscatter communication. To the best of
our knowledge, there is no prior solution in the literature
that can achieve motion detection of device-free objects
with a sparse deployment of passive tags.

• Based on the device-free motion detection method using
passive RFID tags, EMoD can accurately and efficiently
track the trajectory of moving object without taking any
extra device. Comparing the existing methods such as
Twins, the most advantage of EMoD, i.e., the capability
to estimate moving directions, enables EMoD to achieve
higher tracking accuracy with fewer tags and readers.

• We have implemented the EMoD system using COTS
RFID devices. According to our real world experiments,
EMoD has high detection accuracy of moving direction,
and the average accuracy is more than 90%.

The rest of paper is organized as follows. In Section II,
we present the related work. In Section III, we describe the
fundamentals of direction indication of moving objects. In
Section IV, we present the design of the EMoD system. In
Section V, we discuss some related topics of the proposed
system. We show the experimental results in Section VI and
conclude this work in Section VII.

II. RELATED WORK

Tracking device-free moving objects, such as intruders, is a
big challenge for wireless control and monitoring systems. The
current approaches usually actively track the stolen properties
or passively detect the moving object by deploying surveil-
lance devices in the area of interest. Existing solutions can be
categorized into device-based and device-free approaches.

Device-based approaches. Most RFID tracking methods
require binding objects or persons with tags [4], [5], [6],
[15], [17], [18], [19]. Although device-based solutions can
achieve high localization accuracy (sub-centimeter level [15]),
attaching a tag to a moving object or person is infeasible for
anti-intrusion applications.

Device-free approaches. Device-free approaches are more
suitable for localizing and tracking uncooperative targets [1],
[9], [12], [13], [14], [21], [22], [23]. The basic idea is to
detect the signal changes of pre-deployed tags caused by the
moving objects. Most existing works rely on active RFID
tags. LANDMARC [1] is a pioneer work which uses active

RFID tag array to cover the area of interest. The position
of a target is determined by comparing the RSS reported
by the deployed tags to the fingerprint database constructed
in advance. [2] and [24] are two improvement works that
also use an active tag grid to achieve advanced device-free
human trajectories tracking and classification. AutoWitness
[25] is a property-tracking system based on a customized
tracking device. Such a tracker can log the readings of its
motion sensors and the IDs of nearby cellular towers. Once
having detected available network access, the tracker sends
the logged records to the tracking center. Its trajectory is
thereby recovered using a Viterbi Decoding algorithm. The
tracking delay of AutoWitness is about 5 minutes, which does
not satisfy many application requirements. PassiveLoc [26]
is another active RFID based indoor localization system. It
monitors the RSS variance caused by human movements. A
person’s position could be estimated by fingerprinting the
monitoring field. One of its following works, SCPL [27],
achieves human tracking based on radio linking quality.

For active tag based systems, the concerns of device and
deployment cost form the largest barrier to real large-scale
systems. Therefore, researchers have started the investigation
of passive tag based solutions. TASA [3] employs both the
active and passive tags in a device-free localization system,
in which the active tags serve to improve the localization
accuracy in the hybrid RFID tag array. The most recent
and relevant work is Twins [16]. As aforementioned, the
Twins system leverages a deliberately generated state between
two adjacent tags to detect nearby moving objects. Different
from Twins, EMoD is a new motion detection system using
sparse deployment of tags to achieve real-time and accuracy
requirements.

Besides RFID tags, other devices are also utilized for
device-free motion detection and object tracking. By synchro-
nizing the camera network with a wireless sensor network,
TelosCam[28] enables the surveillance camera to “see” the
stolen properties behind the wall. Tracking human or objects
based on Wi-Fi is intuitive, for Wi-Fi signals are ubiquitous.
Omni-PHD [29] provides a Channel State Information (CSI)
based omni-directional human detection leveraging the multi-
path effect. Pilot [30] is a device-free system to locate individ-
ual target. However, it requires a dense site-survey. FCC [31]
presents a device-free human crowd estimation system with
little training overhead. The popularity of Software Defined
Radio (SDR) empowers the researches on passive sensing. Wi-
Vi [7] and WiTrack [8] enable passive motion sensing in the
through-the-wall and 3D modes, respectively. Gesture recog-
nition is achieved by Wi-See [9] while Wi-Track2.0 [11] can
accomplish multi-person localization. However, the expensive
hardware and relatively short sensing range still prohibit SDR-
based approaches from practical use.

III. FUNDAMENTALS OF DIRECTION INDICATION

The main challenge (and contribution) of our passive RFID
based system is to accurately predict the direction of a moving



Fig. 1. Deployment scenario

object in real-time. Addressing this issue significantly reduces
the deployment cost and increases detection efficiency.

The fundamentals of the proposed direction indication algo-
rithm is based upon both the observations from experiments
and theoretical modeling of backscatter communication. We
summarize our findings as follows.

• We define the critical power (CP) of a tag as the power of
the transmission (reader) with which the tag can be turned
into its critical state. For per-location of an intruder,
monotonic relationship between the CP of deployed tags
and the position of the object does not hold.

• However, for whole-trajectory in each monitoring inter-
section, a unique correspondence between the features of
CP sequence and trajectory holds well, i.e., the distribu-
tion of the CP matrix can be used as an indicator for
plotting an intruder’s trajectory.

In the following subsections, we detail the theoretical anal-
ysis supporting the above claims, and present the verification
result of indoor experiments.

A. Impact of object location to received power

Utilizing the electric field intensity, we establish the func-
tional relationship between the average power density and the
object’s location.

A tag’s average power density is determined by the electric
field intensity. According to the Poynting theorem [32], the
time-average power density 〈S〉 at position z can be calculated
as:

〈S〉 =
1

2η
E2
z (1)

where Ez is the norm of electric filed intensity at z, and
η =

√
µ
ε ≈ 120πΩ is the intrinsic impedance of free space.

Furthermore, the electric filed intensity is determined by the
location of moving object’s in a stationary environment.

The wireless channel between the transmitter antenna and
receiver antenna can be modeled as a linear time-varying
(LTV) system [32]. In a stationary environment, i.e., the an-
tenna and tags are fixed, the electric intensity can be separated
into two parts: the stable environmental effect and the moving
object’s effect. We describe the stable (non-person) scenario
at first, and then superimpose the moving object’s influence.

1) Environmental effect: Assuming the reader’s transmit
intensity is ER, the received intensity of the tag in a stable

scenario ES
T can be denoted as

ES
T = ER

m∑
i=0

ΓiLRTi cos(ωt− ϕi)

where m, Γi, LRTi
, ϕi are the number of distinguishable paths,

the reflections of obstacles’ surface along the ith path, the
path loss of the ith path from the reader to the tag, and the
corresponding phase delay, respectively.

According to the phasor formula [33], we have

ES
T = ERART cos(ωt− ϕRT ) (2)

and

ART =

(
m∑
i=0

ΓiLRTi
cosϕi

)2

+

(
m∑
i=0

ΓiLRTi
sinϕi

)2

ϕRT = arctan

m∑
i=0

ΓiLRTi
sinϕi

m∑
i=0

ΓiLRTi
cosϕi

where ART and ϕRT denote the path loss and phase delay
contributed by all multipath components, respectively.

2) Moving object effect: When an object P enters into
this area, it changes the electromagnetic field distribution. The
intensity contributed by the moving object [32] is

EP
T = ERAP cos(ωt− ϕP )

where AP and ϕP denote the path loss and phase delay
contributed by the intrusive object.

Due to the linearity of LTV, the joint intensity ET can be
calculated as

ET = ES
T + EP

T (3)

= ER(ART cos(ωt− ϕRT ) + AP cos(ωt− ϕP ))

Using the phasor formula again and substituting (3) into (1),
we have

〈S〉 =
1

2η
E2
T

=
1

2η
E2
R

(
A2
P + 2APART

· cos(ϕP − ϕRT ) + A2
RT

)
(4)

Assuming the coordinates of the reader, tag and object are
R = (XR, YR), T = (XT , YT ) and P = (XP , YP ), respec-
tively, the length of trajectory RPT from the reader to the tag
via the object is dRPT =

√
(XP −XR)2 + (YP − YR)2 +√

(XT −XP )2 + (YT − YP )2.
The path loss on PRT can be modeled as

AP =
αΓP
dRPT

(5)

where α is a proportionality constant [33]. Due to the half-
wave loss phenomenon [32], the equivalent phase delay is

ϕP = 2π
dRPT
λ
− π (6)



Therefore, we can see that the average power density of tag
〈S〉 is determined by the transmitting power density E2

R

2η ,
environmental parameters ART and ϕRT , and the location
based parameters AP and ϕP . The last two parameters are
correlated with the moving object’s position, as shown in (5)
and (6). In other words, if the environment remains unchanged,
the received power of the tag is only determined by the object’s
location, i.e.,

〈S〉 = f(AP , ϕP ) = f(P )

It is worth to note that a power density 〈S〉 is not one-to-one
correlated to a unique location P , due to the non-monotonic
relationship shown in (4). Thus, we are aiming to extract
a power sequence uniquely mapping to the moving target’s
trajectory.

B. Weak correlation between trajectory and power sequence

Denote the moving target’s trajectory and the correspond-
ing power sequence as T = 〈t1, t2, · · · , tm〉 and S =
〈s1, s2, · · · , sm〉 = 〈f(t1), f(t2), · · · , f(tm)〉, respectively.
Theoretically, same trajectories should have same power se-
quences. Due to the fading and noise, the measured power
sequences, however, are not always the same, when the object
moves along the same trajectory. There are two main reasons
incurring this phenomenon:

1) Training samples cannot exactly follow the same po-
sition ti of the trajectory, so there is an error at each
trajectory position. We name such an error as a position
based error (PBE), and exploit the discretization and
morphological opening operation to solve this problem.

2) When an intruder enters an area under surveillance, the
first trajectory position might be t2 or t3, but not t1. In
other words, the trajectory sequences are mismatched,
and need to be aligned. We name this kind of errors
as the initial bias (IB), and exploit the morphological
dilation to solve this problem.

These two problems make it difficult to directly estimate
the trajectory according to the power sequence. We solve them
using the mathematical morphology, which will be detailed in
Section IV.

C. Experimental validation for theoretic analysis

We conduct indoor experiments to verify the properties
derived from the theoretical analysis. Fig. 2 shows an example
of CP sequences with different trajectories. There are three
twins deployed in the intersection as shown in Fig. 1. The
colored map denotes the time sequence from the first sample
to 200th sample. Three axes denote the CP values of three
twins. Subfigures (a) and (d) with circles show the CP dis-
tributions of two turning-left experiments. Subfigure (b) with
lower-triangular shows the CP distribution of going-straight
while subfigure (c) with upper-triangular shows the results
of turning-right, respectively. Obviously, different trajectories
have different CP distributions, while the same trajectories
have similar CP distributions with some inconsistent values.

22
24

26
24

26
22

24

26

22
24

26
24

26

22

24

26

24
26

22
24

26

22

24

26

22
24

26
24

26
22

24

26

 

 

20

40

60

80

100

120

140

160

180

200

Fig. 2. CP variance with different moving trajectories

Hence, collecting such sequences and extracting their fea-
tures is possible to identify the motion direction of objects.
This heuristic correlation has not been disclosed by prior
works, because they merely provide a “0/1” judgment to
indicate whether the object is detected or not, resulting in a
degradation in both the accuracy and efficiency.

IV. SYSTEM DESIGN

Based on the theoretical analysis and experimental results
presented in Section III, we propose a device-free method to
recognize and predict an intruder’s movement direction. As
shown in Fig. 3, our algorithm consists of three phases, 1) data
preprocessing, 2) motion profile extraction, and 3) trajectory
recognition.

A. Data preprocessing

The data preprocessing phase achieves three functions: PBE
elimination, intrusion detection, and sequence normalization.

1) PBE Elimination: As stated in Section III-B, in the PBE
elimination step, we need to remove the impacts of PBE. If the
object moves along the same trajectory, the variance of power
sequence caused by PBE is ∆si ≈ ∆ti

df
dt |t=ti . It can be

deduced by casting the 1st order Taylor formula to (4). Since
∆ti is much less than the length of the trajectory, ∆si is much
less than the power variation. Therefore, by setting reasonable
threshold parameters, we can discretize the power into a
trichotomous number c (i.e., 1, 0,−1), which represents the
increase, stableness, and decrease of the tag’s CP, respectively.
As mentioned in Section III, objects at different locations will
have different effects on the tag’s CP. In some locations, the
object reflects RF signals, which will inject more RF waves
to the tag such that it can be read with a smaller CP, where
c = 1. In some locations, the object blocks the transmission
from the reader to tag, weakening the power received by the
tag such that it should be read with a larger CP, where c = −1.
In the other locations, the object has little impact on the tag’s
CP, where c = 0.
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2) Intrusion Detection: The reader continuously scans the
CP of each tag and obtains a sequence of its trinary c. In
order to react to intrusions efficiently, the reader should filter
abundant runs of “0”s out, because there is no intrusion in
those runs. Note that we only filter outer “0”s but not inner
“0”s which are between “1”s or “-1”s.

3) Sequence Normalization: Additionally, the length of
trinary sequence varies when the object moves in different
speeds. In order to obtain the same length of sequence N
in the training step and monitoring step, we normalize the
sequence using linear mapping. The impact of linear mapping
will be discussed in Subsection IV-B.

The above three sub-procedures are described in Algorithm
1. The input of this algorithm is the raw CP Sequence and the
standard power sequence length N . The output is an N -length
sequence of CP state {−1, 0, 1}N . The “ZeroFilter” function
cuts off the abundant runs of “0”s.

B. Motion profile extraction

As mentioned in Section III, the feature of CP sequence can
be uniquely mapped to the trajectory of a moving target. Mo-
tion profile extraction intends to answer the follow question:
what is the unique feature in a CP sequence that can be used
to characterize the motion direction?

As aforementioned in Section III-B, due to the two issues
(PBE and IB), we cannot directly match a CP sequence to
the trajectory of an object. In order to solve this problem,

Algorithm 1: Data preprocessing
Input: CPSequence;N
Output: CPState

1 L=length(CPSequence);
2 for i = 1 : L do
3 if CPSequence(i) ↑ then
4 temp(i) = 1;
5 end
6 else
7 if CPSequence(i) ↓ then
8 temp(i) = −1;
9 end

10 end
11 else
12 temp(i) = 0;
13 end
14 end
15 ZeroFilter(temp);
16 K=length(temp);
17 for j = 1 : K do
18 CPState(

[
N−1
K−1j + K−N

K−1

]
) = temp(j);

19 end

we repeat this set of experiments by n times and combine the
trichotomous sequences of CPs into an m×n matrix M . Using
it as a training data set, we leverage morphological operator
to extract a unique motion feature.

In Subsection IV-A, we utilize trichotomous discretization
to weaken PBE. However, there are still several PBEs that
cannot be eliminated by trichotomy. As a consequence, the
CP will be close to the threshold, and a disturbance (e.g.,
PBE or noise) will force the trichotomous number c flip to
another state. Fortunately, this kind of phenomenon neither
occurs frequently at the same position, nor lasts during several
positions in a row. Therefore, these misclassification errors
appear sporadically in matrix M . We can leverage an opening
operator to handle this situation and erase these isolated
noise. Opening operator is a basic morphological mechanism.
We briefly illustrate its operating principle. Let E be a
Euclidean space or an integer gird, and A be a binary image of
E. The erosion of the binary image A by a simple per-defined
shape image B is called structuring element. It is defined
as

A ◦B =
⋃
{Bz | Bz ⊆ A}

where Bz is the translation of B by the vector z, i.e., Bz =
{c | c = b + z, b ∈ B, z ∈ E}. The geometric interpretation
of opening operator is to remove all connected components
that is fewer than B from a binary image A. In this way, we
can eliminate these isolated points from the power matrix. We
use OPENING(A) to express opening operation of A by
a proper element B. In practice, we leverage the function of
opening operator provided by the OpenCV or Matlab library.



In this way, we solve the PBE problem by discretization and
the opening operation.

To solve the IB problem, we exploit the dilation, which
is another fundamental morphological operator defined as
following:

A⊕B = {z | z ∈ E, (Bs)z ∩A 6= ∅}

where Bs denotes the symmetric of B, i.e., Bs = {b | −b ∈
B}. The dilation operation probes and expands the shapes
contained in the input image A using a structuring element B.
The function of dilation operator can also be found in existing
scientific computing tools. We use DILATE(A) to express
dilating operation of A by a proper element B.

Consider the CP state matrix M , whose element sji = c
means the CP of the ith site in the jth experiment is c. Since
the dilation has shift invariance, if we dilate two row vectors
si and sj , the more overlapping areas we have, the better
compatibility between these two vectors can be achieved, or
vice versa. Therefore, we propose a metric PEM, i.e., the
percentage of nonzero elements in the dilated CP state Matrix
M , and use the difference of PEM (DPEM) to detect the most
consistence vectors of the CP state vectors. It has three main
steps: 1) calculating the PEM of initial CP state matrix M
and saving it as PEM ; 2) replacing the ith row of M by
each test vector in turn, calculating the new PEM of replaced
matrix M ′, and saving it as Pem(i) ; and 3) calculating the
minimum DPEM by DPEM = ||Pem(i) − PEM ||. We
propose Theorem 1 as follows to show that test vectors have
no impact on the dilation result of those non-replaced parts.
That can also explain that why we can test the PEM row by
row.

Theorem 1: if A =
⋃
Ai, A⊕B =

⋃
(Ai ⊕B)

Proof:

A⊕B = {z | z ∈ E, (Bs)z ∩A 6= ∅}
= {z | z ∈ E, (Bs)z ∩ (

⋃
Ai) 6= ∅}

= {z | z ∈ E,
⋃

((Bs)z ∩Ai) 6= ∅}

=
⋃

({z | z ∈ E, (Bs)z ∩Ai 6= ∅})

=
⋃

(Ai ⊕B)

Fig. 4 leverages both bars and polar graphs to show the
distribution of PEM values for three movement trajectories.
It is very clear that PEM values of different movement
trajectories are clustered, implying that PEM is a good metric
for trajectory classification and recognition.

C. Trajectory recognition

In the training step, we repeat the measurement of the
trichotomous sequence Sij for each kind of the movement
trajectory Tj by N times, and then extract PEM P(j) for
trajectory Tj by performing dilations (see Algorithm 2).

In the monitoring step, we can obtain a trichotomous
sequence St. In order to identify the actual movement tra-
jectory, we replace each Sij with St to obtain the motion
profile P (i, j), and then calculate the DPEM between P(j)
and P (i, j). For each Tj , we can get a motion profile
DPEM(j) =| P(j) − P (i, j) |. The trajectory Tj with the
smallest DPEM is the actual movement trace.

Algorithm 2: Profiling extraction and path identification
Input: S, testV ector
Output: path

1 [U, V,N ] = size(S);
2 if in Training Phase then
3 for j = 1 : U do
4 OPENING(S(j, :, :));
5 P(j) = DILATE(S(j, :, :));
6 end
7 end
8 else
9 for i = 1 : V do

10 S(:, i, :) = testV ector;
11 for j = 1 : U do
12 OPENING(S(j, :, :));
13 P (i, j) = DILATE(S(j, :, :));
14 end
15 end
16 path = arg

j
min{| P(j)− P (i, j) |};

17 end

V. IMPLEMENTATION AND DEPLOYMENT ISSUES

A. Detection rate and deployment density

In this subsection, we discuss the efficiency of our method
compared with the conventional method that is not supporting
the direction recognition.

For the ease of presentation, direction recognition can be
converted to a problem: how to capture a message over
a percolation modeled graph [34]. Suppose a packet K is
propagated in an undirected graph G(V,E). In each time
period, the packet can move from one vertex Va to one of
its neighboring vertices Vb. During the packet’s probing, the
vertices that can report whether they receive the packet are
called probe vertices, while the rest vertices are defined as the
ordinary vertices.

Suppose the percentage of intersections (vertices) that an
intruder (packet) passes is s and the deployment density, i.e.,
the percentage of probe vertices, is α. We present our empirical
results on the relationship between α and the detection ratio γ
in Fig. 12. We find that if s > 10%, more than 90% of events
can be detected with only 20% deployments.

Furthermore, if we deploy EMod at more intersections such
that if the α → 100%, the probability that we can track the
complete trajectory of a given packet tends to 1. On the other
hand, if the number of “twins” is inadequate, i.e., a small α



that cannot guarantee to capture any given packet in the graph,
it is impossible to track the complete trajectory. Therefore, we
pursue the optimal setting of α.

There are two conclusions which are useful for solving this
problem, guaranteed by percolation theory [34]. Denote the
θ(α) as the probability that we can obtain the whole trajectory
of an intruder from the entrance to the exit in graph G, then
we have

1) θ(α) = 0 if α < 1/3;
2) If G is a 2D square grid, α = 0.5927 is the inflection

point of θ, i.e., d2θ
dα2 |α=0.5927 = 0.

The above conclusions indicate that, if α < 1/3, the intruder
is almost impossible to be completely tracked. In other words,
if we attempt to identify the entire trajectory of the intruder,
the deployment density should not be less than 1/3.

If α is around 0.5927, the θ(α) grows most rapidly. In fact,
when α is around 0.5927, the growth rate of θ is proportional
to (α − 0.5927)−1. As a result, more than 80% trajectories
can be completely detected when α ≥ 0.7.

For the motion detection approach with direction recogni-
tion, the detection rate (the probability of detecting the moving
object at least once) in one intersection is related to the
previous intersection whether the motion has been detected,
which can be formulated as:

Pr{neighbor(v)t+1 = T |vt = T}

Assume that the percentage of probe vertices is β. For the
first movement from the start vertex, the detection rate of K
is β, and the missing rate is 1 − β. For each vertex at the
trajectory of K, if K in the current vertex is detected with
a probability β, it will be detected in the successor vertex
with 100% probability. If the previous vertex along the K’s
trajectory does not detect K, which is with a probability 1−β,
its detection rate in the successor vertex is β. The detection rate
of K in the vertex along the trajectory is β× 1 + (1− β)β =
2β − β2 except for the first vertex, and the missing rate is
1− (2β − β2) = (1− β)2.

In order to obtain the same detection rate using a motion de-
tection approach without direction recognition, e.g., Twins[16],
we set 2β − β2 = α. Then we have β = 0.362. Compared to
the value of α = 0.7, we can find that the number of “twins”
like detectors required for completely detecting the intruder’s
trajectory, i.e., the deployment overhead, is cut in half if using
EMoD. In other words, EMoD is able to significantly reduce
the deployment overhead compared with the non-direction-
recognition method.

Note that both Twins and EMoD can be applied to intrusion
detection. Twins focuses on checking whether an intrusion
occurs in the area of interests, while EMoD can further sketch
the intruder’s trajectory by leveraging physical layout of the
area. As such, EMoD is more suitable for the warehouse
or retailing scenarios, which usually contain multiple-row
shelves. We detail the performance comparison of these two
approach at tracking scenario in Section VI-H.

B. Multipath effects

As aforementioned, most existing device-free approaches
utilize the Radio Signal Strength (RSS) variation to detec-
t intruders. In RFID systems, RSS is measured using the
received power of RF waves backscattered from a tag. For
passive RFID tags, the RSS value varies sharply upon the
ambient changes in the backscatter communications, including
the disturbance caused by intruders. However, the received
wave is the one overlapped by the waves coming from all
directions, due to the refection, diffraction, and scattering
caused by the furniture, people, and other obstacles. This effect
is known as multipath propagation. Upon this effect, the RSS
variation cannot accurately reflect the intrusion, because even
if there is no any intruder, the RSS value may still change
arbitrarily, incurring false alarms or missing reports to the
detection result.

EMoD leverages the critical state to eliminate the impact
from multipath effects. In Twins [16], the authors propose
to use the critical state for intrusion detection, which is also
utilized by EMoD. Instead of the RSS variation, critical state is
able to suppress noise interference. The key insight of critical
state can be presented as follows. If two tags are placed within
a certain distance, one or both of them become unreadable
due to their mutual interference. Keeping the pair of tags in
such a state, if an object or human being moves around the
tags, some RF waves will be reflected or refracted to the tags,
similar to the multipath effect. In this case, the unreadable
tag(s) can receive sufficient energy to break the critical state
and then become readable, which is called as a state jumping.
Clearly, such a “0/1” judgment mechanism will reliably report
the motion nearby, avoiding the impact from ambient noises.

C. Real-time requirement

The strict real-time requirement for intruder detection poses
another challenge to EMoD. When forcing the tags into critical
state for checking whether tags experiences a state shift,
a reader should switch the power setting to the predefined
CP of each tag. It is very time-consuming for commercial
readers to switch their powers among multiple CPs of different
tags. For example, switching to a specific power setting takes
0.02s to 0.08s for Impinj reader R220. In the real world,
CPs of tags distribute diversely within a wide range, due to
the manufacture variation. Note that different locations yield
different transmission paths, also leading variant CPs to tags.
Hence, it is common that the reader switches its power over
a big gap of CPs. As a result, scanning all tags with their
CPs will continue several seconds, which can hardly meet the
real-time requirement of intrusion detection, considering the
intruder may quickly pass the intersections.

EMoD achieves a prompt scanning on the CP samples by
adjusting the critical power of tags within a small range. This
can be achieved by changing the distance between two tags in
a pair of twins [16]. We can probe proper distance between
two tags in the twins such that the CPs of all tag pairs (twins)
are within a small range, which allows the reader to poll the



scanning on the twins in a very short time duration, e.g. merely
< 50 ms in our experiments.

Furthermore, we can promote the real-time performance
by significantly decreasing the number of tags. According to
Slotted ALOHA protocol, which is the mainstream industrial
standard for passive RFID tags, the average packet delay

D̄ = 0.5 + eG + (eG − 1)B̄ (7)

where G is the offered load (packets per unit time) and B̄ is the
average collision delay, respectively. Since EMoD uses much
fewer tags than Twins does, the flux of EMoD is much smaller
than that of Twins, i.e., GEMoD � GTwins. Substituting to
(7), D̄EMoD � D̄Twins, i.e., the packet delay of EMoD is
much smaller than that of Twins. In this way, we can promote
the real-time performance by decreasing transmitting delay.

D. Particle filter based Realtime Tracking

Once capturing the motion direction at each monitored
intersection, it is easy to track the trajectory of the object
as time varies. Here we introduce an improved particle filter
to track the object. The overview of the algorithm is shown
as following:

Initially, the object is located in the intersection (x0, y0)
where he is detected at the first time. At each time step,
the location set is updated based on possible movements and
new observations. In our experiments, we assume locations
are (x, y) positions in two dimensional Cartesian space.

In the prediction step, we start from the set of possible
locations computed in the previous step, Lt−1, and apply
the mobility model to each sample for getting a set of new
samples, Lt. If in previous step lit−1 is one possible position
of an object, the possible current positions are contained
in the circular region whose origin is lit−1 and radius is
vmax. We use d(l1, l2) to denote the Manhattan distance
d(lt−1, lt) = ||lt−1 − lt||1 between two points l1 and l2.

p(lt|lt−1) =

{
1

d(lt−1,lt)
if d(lt, lt−1) < vmax

0 if d(lt, lt−1) ≥ vmax
(8)

In the cases where the object is detected again at the
monitored intersection, the probability distribution can be
adjusted for achieving better predictions.

In the filtering step, we filter those impossible locations out
based on new observations. We only rely on direct information
retrieved from monitored intersections. Let S denote the set
of all monitored intersections, r denote the detection range.
The filter condition of location l is
filter(l) = ∀s ∈ S, d(l, s) < r

After filtering, the number of possible locations may be
smaller than N . In this case, the prediction and filtering
processes repeat and union the possible points found, until
at least N possible locations can be acquired. After this step,
the tracking accuracy will be significantly improved.

Fig. 5. Three experimental environments: Library, Office, and Exhibition
hall

VI. EXPERIMENTAL EVALUATIONS

A. Experimental setup

We conduct real experiments in a 28 m × 15 m indoor area
to evaluate the performance of EMoD. We implement EMoD
using three types of commodity passive tags, i.e., Impinj E41-
b, E41-c, and Alien 964x, a number of commercial passive R-
FID readers model Impinj SPEEDWAY 220, and off-the-shelf
circularly polarized antenna model Laird A9028R30NF. These
passive tags have been widely employed in existing logistics
and inventory systems. The reader and antenna operate within
a spectrum of transmission power from 10 dBm to 32.5 dBm,
and a frequency ranging from 920 MHz to 928 MHz. The gain
of the antenna is 8 dBi.

The EMoD system operates in three phases, the deploying
phase, the learning phase and the monitoring phase. In the
deploying phase, we deploy EMoD as shown in Fig. 1. The
reader is deployed at one corner of the intersection, e.g., at the
point R. Three groups of twins are tightly attached to shelves
at other three corners. Hence, slight vibrations will not change
the critical power and influence the detection results of EMoD.
On the other hand the tags are displaced, e.g., the tags move
a short distance due to the shelf displacement, their critical
power will change to a new level. However, EMoD identifies
the direction of moving objects based on the sequence of tags’
critical power changes instead of tags’ critical power readings.
Thus, the slight displacement of twins will not influence the
direction detection.

In the learning phase, we invite 10 volunteers with different
genders and body shapes to participate our experiments. Each
volunteer moves 10 times from the start point A to each of
three destination points, i.e., B, C, and D, to act as turning-
left, going-straight, and turning-right, respectively. Volunteers
are required to pass through the intersection with normal speed
(about 1.5m/s). Therefore, we can obtain the corresponding CP
sequences. We set the standard sequence length N as the mode
(the most common value among this group) of sequence length
and resize other sequences length into N by linear mapping.
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We extract the jth trajectory profile as P(j). In the monitoring
phase, we resize the length of test CP sequence as N by linear
mapping, and calculate the variance of trajectory profile. The
trajectory corresponding to the minimum variance of profiles
is the actual moving trace.

We verify three typical scenarios for deploying EMoD in
real logistic environments, namely the library, office, and
exhibition hall, as shown in Fig.5. We examine the overall
performance of EMoD in these three scenarios. We also check
the performance of EMoD in terms of tag heterogeneity.
Finally, we compare the EMoD with Twins [16], which is
a most recent device-free motion detection approach using
passive tags, to evaluate their detection accuracy.

B. Impact of different angles

The first parameter needed to determine is the deploying
angle of the reader’s antenna. We use the connecting line
between the center of reader’s antenna and twins 2 as the
baseline. The deploying angle is the horizontal angle between
the baseline and the antenna’s axis. We then horizontally turn
the antenna by ± 5 degree and ± 10 degree from the baseline,
respectively. Note that if the angle is larger than above setting,
i.e., >15 degree or <-15 degree, one tag may be out of the
interrogation range of the reader. As shown in Fig. 6, we find
that the smaller the angle is, the higher the detection accuracy
can be achieved by EMoD. The highest detection accuracy is
achieved in the case of 0 degree. In this case, the detection
accuracy is nearly 92.5% in average, and 96% for 80% test
cases. When the degree of the angle increases, the detection
accuracy is degraded. The average detection accuracy is about
87% and 83% for the ± 5 degree and ± 10 degree cases,
respectively. The feature of reader’s beam propagation can
explain this phenomenon. The passive RFID reader usually
uses the directional antenna, as the one used in our experiment.
The pseudo-3D radiation pattern of the reader’s main beam
propagating in the direction along its antenna’s axis is like a
spindle. Such a pattern acquires full rotational symmetry along
the axis of the directional antenna. If the deploying angle is
0 degree, the twins1 and twins2 will receive approximately
equal power density radiated by the antenna. Meanwhile,
the two separated areas on both sides of the baseline has
a nearly symmetric radiation distribution. These two factors
facilitate the two twins functioning equally in the detection,

considering their positions are line symmetric to the baseline.
If increasing the angle, the asymmetric radiation pattern may
degrade the detection effectiveness. Thus, we recommend a 0
degree deploying angle for real implementation.

C. Impact of different heights

We vary the height from 0.8 m to 1.6 m for pursuing the
proper height to deploy the twins in EMoD. The results shown
in Fig. 7 shows that deploying twins at the height ranging from
1.0 m to 1.2 m yields the highest detection accuracy. When the
height is reduced to 0.6 m - 0.8 m, EMoD demonstrates the
lowest detection accuracy, nearly 85%. This result implies that
different deploying height leads a non-trivial impact to EMoD.
From the results, we learn that the discrimination ability of
EMoD is nearly maximum when the deploying height is about
1.0 m - 1.2 m. It is interesting to observe that a deploying
height within the range of 1.4 m - 1.6 m results in a better
performance than that within 0.6 m - 0.8 m. It seems that
the ground absorbs RF signals such that the multipath effect
becomes weaker near the ground. Based on the result, we
adopt a default deploying height as 1.1 m.

D. Impact of moving velocity

We check the effectiveness of EMoD when detecting the
object with different moving velocities. It is known that the
normal pacing speed of people is about 1.5 m/s. We then
conduct the experiments with the default settings proposed
in previous subsections, while using two velocity settings,
namely normal (1.5 m/s) and high (3 m/s). Each volunteer
walks through the intersection 10 times for each velocity.

Fig. 10 depicts the detection accuracy of EMoD upon the
two velocities. The results show that the normal moving veloc-
ity enables a detection accuracy of 93.3%+, while the accuracy
of high moving velocity is around 91%. As the normal moving
speed is used in the training stage, the number of sampling
points in monitoring stage is similar with the training data, and
the detection performance is relatively better. High moving
speed causes the sub-sampling problem, which will affect the
CP distribution matching. Fortunately, we introduce PEM to
represent the trajectory profile, which can adaptively adjust the
coefficient of expansion according to the number of sampling
points. With an increase of moving speed, the coefficient of
expansion will increase and the PEM may keep relatively
stable for the same trajectory.
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E. Impact of object height

The volunteers involved in our experiments can be catego-
rized into three group by their heights, i.e., around 1.6 m, 1.7
m, and 1.8 m. We investigate the detection accuracy in above
heights. The results plotted in Fig. 11 imply that the height of
moving object has a certain impact on the detection accuracy.
The taller the volunteer is, the higher the detection accuracy
EMoD can achieve. In particular, the accuracy of detecting
the group of volunteers with the height of 1.8 m is 93% in
average. As analyzed in [16], a taller person contributes a
larger area that reflects (or blocks) more RF signals to the
twins. In short, the influence to the twins will be augmented
if a taller person moves into the monitoring area. In this way,
the three twins have more opportunities to generate distinct
features corresponding to the specific direction. However, the
accuracy of detecting those volunteers with the height around
1.6 m is 87% in average, indicating that EMoD is still effective
in the direction prediction.

F. Impact of variant scenarios

We simulate three typical scenarios, library, office, and
exhibition hall, by varying the width of the aisles. We choose
their settings of width as 0.8 m, 1.6 m, and 3.2 m, respectively.
We find that if the width is set to 0.8 m, the detection
accuracy can reach 95%. The setting of 1.6 m was relatively
a little worse. In the case of 3.2 m, the accuracy declines
obviously. The results show that the width of the aisles can
influence the discrimination ability of EMoD on the moving
object’s direction. In a narrow aisles, the possible area that a
person moves is limited. Thus, the output of PEM has a small
variance, indicating a high detection accuracy. On the contrary,

a wide aisles gives more space to the person passing through.
The output of PEM suffers from a large variance, resulting in
a lower detection accuracy. In practice, we suggest the width
of aisles is not larger than 3.2 m, which can provide an 87%+
detection accuracy in average.

G. Impact of tag heterogeneity

In above experiment, we mainly use the Impinj E41-c (E41-
c for short). We then repeat the experiments by replacing the
passive tag with Impinj E41-b (E41-b for short) and Alien
964x, with the same experiment settings. Fig. 9 plots the
performance when leveraging different types of tags in EMoD.
We find that the E41c tag produces the best performance,
with a detection accuracy as 91%. The detection accuracy
when using Alien 964x or E41-b tags is relatively lower. But
the lowest one is still 86%+. Such a result demonstrates that
EMoD is resilient to the tag heterogeneity.

H. Comparison with Twins

Twins [16] is the latest work for device-free localization
and tracking using passive RFID tags. We perform a large
scale simulation to evaluate the tracking accuracy between
EMoD and Twins with different coverage. In our simulation,
there are 50 intersections. Fig. 14 compares the tracking
accuracy between Twins and EMoD. The α and β denotes the
coverage of Twins and EMoD in intersections, respectively.
The tracking accuracy is that the ratio of correct estimated
trajectory with real trajectory. Twins can only detect the object
without moving direction, so it can not estimate the location
of object in un-monitoring intersection. It fails to tell us
where the object has come from and where he is going to.



If the coverage area shrinks, the tracking accuracy of Twins
decreases sharply. When α is 70%, the tracking accuracy
drops to 87%. In contrast, with the increase of β, the tracking
accuracy of EMoD increases significantly. When β is 70%,
the tracking accuracy is higher than 98%. It is because that
an accurate detection can exactly estimate the trajectories in
previous intersection and next intersection. In other words,
EMoD can forecast the location of object in next intersection
and infer the orientation of object in prior intersection, once
an intruder is detected in current intersection.

VII. CONCLUSION AND FUTURE WORK

In this paper, we propose a novel method to detect the
motion of device-free objects using sparsely deployed passive
RFID tags. Our solution, namely EMoD, can effectively detect
and track the device-free intruders only with a few of pairs of
passive tags deployed in critical points. In particular, we design
a real-time direction indication algorithm to facilitate efficient
motion detection. We theoretically analyze the feasibility of
EMoD and conduct extensive experiments for performance
evaluation. The results show that EMoD overcomes the draw-
backs of dense or full-coverage deployment and infeasibility of
direction prediction, while achieving high accuracy in device-
free motion detection. Our future work includes extending the
implementation of EMoD to 3D scenario, further improving
the detection accuracy, and introducing the direction prediction
algorithm of EMoD to other RF based systems.
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