
Code for seasonal marked point processes analysis with example

of US hurricane data

Sai Xiao

2014/09/25

This readme file describes the details of the code, inputs, outputs and post-processing of
the DDP-PBAR model and DDP-AR model with US hurricane data. It helps to replicate the
analysis presented in the paper ”Modeling for Seasonal Marked Point Processes: An Analysis
of Evolving Hurricane Occurrences” by Xiao, Kottas and Sansó.

• Software needed: gcc complier, R

• C++ package needed: GNU Scientific Library

• R packages needed: MCMCpack, MASS

A quick start

Once you have downloaded the zipped file, unzip it and get the directory ”hurricane”.
All the codes are in the folder. Some major files include:

preProcess.R: To pre-process the original data set.

ddpPBARSampler.cc: The main function implementing the MCMC sampler of time-
varying density function in the DDP-PBAR model

ddpARSampler.cc: The main function implementing the MCMC sampler of DDP-AR
model for the marked point process.

timeInference.cc: To get various inference on time from DDP-PBAR model.

markInference.cc: To get various inferences on marks from DDP-AR model.

gamma.R: To obtain the posterior samples of normalizing constants, γ1, . . . , γK .

postProcess.R: All the inference results are written into files. Use this R code to draw
plots from the inference output.

In the data folder:

stormData2013.csv: the original data set including US hurricane from 1900 to 2013.

public data may 2007.xls: the inflation, wealth per capita and affected county popula-
tion size.

After data processing and transformation, the following data files are generated as input
data sets for our model.

1

y correction.txt: the time points of 239 hurricane in the US, scaled to be between (0,
1).

ten year.txt: the number of hurricanes in 11 decades

winds log norm.txt: the log of maximum wind speed, minus the mean

damage std log norm.txt: the log of standardized damage, minus the mean. If the values
equals to 100, that means it is missing.

In the example inference folder: All the output files needed to produce the plots in the
paper in section 4. All these files can be reproduced by following the guideline in next section.

How to use the code

The DDP-PABAR model and DDP-AR model decompose the intensity function to two parts.
One is normalized density function, which is modeled by dependent Dirichlet process mixture
model. The other is the normalizing constant γ, which is modeled by a time series model.

We need to generate posterior samples from two models and then draw various inferences
of our interest by using these posterior samples. Here is the guideline to use the code.

1. Compile. To sure that GNU Scientific Library (GSL) and GCC complier are installed.
Simply run

make

to generate execution file: ddpPBARSampler, ddpARampler, timeInference and markInference.

2. Run the MCMC sampler. The MCMC sampler ddpPBARSampler implements the DDP-
PBAR model for normalized three-dimensional density function in Section 3 of the paper.
If time-varying intensities are only what you are interested, ddpPBARSampler is enough.

The MCMC sampler ddpARSampler implements the DDP-AR model for normalized three-
dimensional density function in Section 4 of the paper.

./ddpPBARampler configuration_filename

./ddpARampler configuration_filename

Example: ./ddpPBARampler PBAR_conf1.txt

./ddpARampler conf15.txt

In the configuration file, several arguments are defined, e.g. the input file, MCMC iteration
number, etc. Two sample configuration files are included in data folder. PBAR conf1.txt

is for ddpPBARSampler and conf15.txt is for ddpARSampler. They share some arguments
but ddpARSampler need more arguments.

Arguments are all included in the configuration file:

M: The number of MCMC iterations after the burn-in period.

B: The number of burn-in iterations.

2

suf: The suffix for the output files.

NN: The number of observations.

KK: The number of decades.

JJ: The truncation level in the stick-breaking definition of DP prior.

NUM GRID: The number of grid points in the time line.

GAP: Only one iteration of samples is saved for every ”GAP” number of iterations.

a alpha, b alpha: They specify the prior for precision parameter alpha in the DP prior.
α ∼ Gamma(a alpha, b alpha).

a rho, b rho: They specify the prior for correlation parameter rho in the PBAR process.
ρ ∼ Beta(a rho, b rho).

a sigma2, b sigma2: They specify the prior for the variance parameter in the Log-normal
kernel for maximum wind speed. See equation (4) in the paper. σ2 ∼ InvGamma(a sigma2,

b sigma2).

a sigma22, b sigma22: They specify the prior for the variance parameter in the Log-
normal kernel for standardized damage. See equation (4) in the paper. ξ2 ∼ InvGamma(a sigma22,

b sigma22).

a epsilon, b epsilon: They specify the prior for the variance parameter in the AR1
process, see equation on page 21. σ21 ∼ InvGamma(a epsilon, b epsilon).

a epsilon2, b epsilon2: They specify the prior for the variance parameter in the AR1
process, see equation on page 21. σ22 ∼ InvGamma(a epsilon, b epsilon).

pdsd rho: The standard deviation of normal proposal distribution for logit(ρ).

pdsd v: The standard deviation of normal proposal distribution for logit(v).

theta initial: The initial value of all atoms {θj,k}, j = 1, . . . , J and k = 1, . . . ,K.

v initial: The initial value of latent variable {vj,k}, j = 1, . . . , J and k = 1, . . . ,K − 1.

alpha initial: The initial value of α.

rho initial: The initial value of ρ.

sigma2 initial: The initial value of σ2.

sigma22 initial: The initial value of ξ2.

beta initial: The initial value of β.

eta initial: The initial value of η.

epsilon1 initial: The initial value of σ21.

epsilon2 initial: The initial value of σ22.

timefile: the data set including all time points. In the sample configuration file, we use
./data/y correction.txt

countfile: the data set including counts. In the sample configuration file, we use
./data/ten year.txt

windfile: the data set including the second mark. In the sample configuration file, we
use ./data/winds log norm.txt

damagefile: the data set including the third mark. In the sample configuration file, we
use ./data/damage std log norm.txt

3

Output: posterior samples of all parameters are yielded in the data folder by default.
Details of some outputted files are as follows.

There are two outputted file including M rows/iterations of samples and have tab-separated
columns. The column information are as follows.

intensity output suf.txt: τ, ρ, α, n∗.

mark output suf.txt: α, n∗, σ2, β, σ21, ξ
2, φ, σ22.

In addition,

parameter1 suf.txt contains all sampled atoms {θj,k}, {νj,k} and {ηj,k}, j = 1, . . . , J
and k = 1, . . . ,K in M iterations.

parameter2 suf.txt contains all sampled weights {wj}, j = 1, . . . , J in M iterations.

intensity acceptance suf.txt: the acceptance rate of ρ, {θj,k} and latent variables
{vj,k}.

3. Generate posterior samples for γ1, . . . , γK . In gamma.R, we specify the value for number
of samples to be 10000. It can be changed as needed.

source("gamma.R")

By default, M runs of posterior samples of γ1, . . . , γK are generated and written to the
file ./data/gammaSamples.txt.

To plot the 95% interval and mean of γ1, . . . , γK , simply run

plot.gamma()

4. Make inference results in Section 3. Make sure that from step 2, the outputted files are
generated in the data folder.

Run the following command :

./timeInference configuration_name function#

Example: ./timeInference PBAR_conf1 1

This example command is to use output results suffixed with ”PBAR conf1” to generate
density function across all decades. For details of functions, see comments in the code.

Output:

mixture interval list suf.txt: for function 1, posterior predictive density across all
decades. Use density.plot() to visualize the results.

5. Make inference results in Section 4.

Make sure that from step 2, the outputted files are generated in the directory.

Run the following command to get various inferences:

./markInference suf function# month1 month2 [argv5]

Example: ./markInference conf15 1 8 11

4

This example command is to use output results suffixed with ”conf15”, to get the condi-
tional density of maximum wind speed given ASO (from Aug to Oct).

Arguments are explained as follows,

suf: the suffix to specify which output files to be used.

function#: from 1 to 8. There are 8 functions implemented in the markInference.cc.
Specify which function to use. Check the comments in the makeInference.cc for details of
these eight functions.

month1 and month2: the values range from 4 to 13. 4 means the beginning of the April
and likewise 5 means the beginning of May and so on. 13 means the end of a year.
”month1” specifies the starting month of a period. ”month2” specifies the last month of
a period.

argv5: optional arguments. It might be needed for some functions. Check the comments
in the makeInference.cc for setting of arguments.

Output:

For each function, inference results are output into different files. For details, see comments
in markInference.cc. Post process the inference results to draw plots and get summary.

6. Post procession

Post-process the inference output, such as drawing plots or do other summary of parameter
estimation in R.

To get plots of each function, corresponding R code is written. Load the code in R, run

source("postProcess.R")

Most of inference results presented in the paper are stored in example inference folder.

To produce all the plots in Section 4 of the paper, run

example1.plot(), ..., example8.plot()

To produce all plots in Section 3 of the paper, run

density.plot()

For other details of functions in postProcess.R, see comments in the R file.

5

