
Making Real Games Virtual: Tracking Board Game Pieces

Steven Scher, Ryan Crabb, and James Davis

University of California at Santa Cruz

{sscher, rcrabb, davis}@ucsc.edu

Abstract

The same game is often played in real and virtual

worlds. We integrate in-person and on-line playing of

board games such as Go, bringing the real world into

the virtual world. A player may record an in-person

game by placing their camera on the table next to the

game board, taking photos of the game. After

automatically detecting the board and playing pieces,

we perform inference on the time series of detections

to eliminate errors and accurately estimate long

sequences of moves. The game transcript may be

studied afterwards, shared with friends and teachers,

or added to online compilations, bringing the

attendant benefits of online game play to an in-person

game.

1. Introduction

1.1. Motivation

Aficionados of many board games, such as the

classics Chess and Go, often follow games by

discussing particularly good and bad moves with each

other, with friends, and with teachers. This

commentary is a large part of the social scene and

central to skill level improvement. These games are

often played both in-person and online. While the

events of virtualized games are easily transcribed, the

real-world game does not so easily lend itself to review

and archival.

Robustly transcribing the moves of a game from

photos in a real world environment is made

challenging by changing lighting, transient shadows,

and occlusion by players’ hands. Prior work has

identified playing pieces in a single photo when none

of these obstacles are present, but no method has yet

addressed the transcription of an entire game in a

natural environment.

We present a method to transcribe the moves of a

board game in the real world, automatically and

unobtrusively. A player simply places a camera on the

table next to the board, recording a series of photos;

our algorithm automatically finds the board and detects

moves, creating a complete transcription of the game.

Figure 1. A game of Go is played in a cafe, recorded

by a digital camera on an adjacent table.

1.2. Our approach

In games of perfect knowledge, the entire state of

the game is known to all players. Board games

represent this state visually on the board. Typically,

with limited sets of distinct playing locations and types

of pieces, a single complete picture of the game is

sufficient to determine nearly the entire state of the

game.

The playing board is automatically detected in the

photos without user input, and the positions where

game pieces may appear are found. The game pieces

present are detected, and misclassifications are

eliminated by finding the most likely sequence of legal

moves.

Our contribution is a method to transcribe a real

world board game from photos, combining computer

vision techniques with inference to create a robust

system. This approach is applicable to many games, as

demonstrates by its application to the game of Go.

This paper is organized as follows. Section 2

summarizes related research. Section 3 describes the

algorithm in detail, and section 4 presents empirical

tests. Section 5 provides further discussion and

directions for future work.

2. Related work

The task of recording Go games with a camera

requires two major elements. First, the board must be

automatically identified. Second, each possible

location of a stone must be classified as a black stone,

white stone, or an empty intersection.

The Go board is a 19x19 rectangular grid of black

lines on a wooden board. Camera calibration

techniques, such as [5], provide a framework for

developing a board detection algorithm. The Hough

accumulator representation of the detected lines may

be directly used to detect the grid, as in [1] and [6]. In

another method [1], line intersections are detected by

classifying SIFT features, and another performs a

genetic algorithm search [3].

Classifying image patches into a small set of

possible objects is a well studied problem [8]. To

detect Go stones in single photos, the neighborhood

brightness is thresholded in [2] and [4], and a cascade

of three classifiers, is applied in [1]. Reported results

are insufficiently reliable for an automatic whole-game

recording system.

3. Methods

3.1. Detecting the board

The board is found automatically by detecting

edges, then lines, then a subgrid, and finally the full-

size grid. First, edges of all orientations are found

with a radially-symmetric laplacian filter. Lines found

with a Hough transform line detector are clustered into

two groups according to their orientations using K-

means. For each cluster, edges at the dominant

orientation of the cluster are found with an oriented 1D

Laplacian filters, and lines are found with a Hough

transform and maximum-likelihood refinement.

RANSAC is applied to find a confidently-identified

subgrid of the whole grid. Two lines of each

orientation form a rectangle; a rectangle and a guess at

grid spacing define a homography. Each guessed

homography is scored by how well the implied

gridlines match detected edges.

The best-scoring subgrid is chosen and greedily

grown by hypothesizing new grid lines in each

direction and accepting the best match until reaching

the full 19x19 size. Once the board is found in the first

image, all images are warped to an overhead

orthographic view and cropped. A median filter in the

time dimension is applied to the image sequence to

remove most of the players’ hands.

Figure 2. Lines are detected (horizontal lines shown in

green) and a subgrid is found using RANSAC (blue).

The subgrid is greedily grown to full size to detect the

board.

3.2. Detecting stones

With the board detected and image rectified, the

19x19 grid of 361 locations where a stone might

appear are known. A template of the expected stone

shape and color is correlated with the image, and the

maximum response to each template in the

neighborhood of the candidate location provide

classification probabilities.

This classifier, and any classifier operating

independently on each time step, is prone to errors in

the presence of shadows, occluding hands, and similar

artifacts. Rather than adopting a more sophisticated

classifier, we reduce errors by performing inference

over time. Any imperfect classifier will benefit from

the inference method described below.

3.3. Inference model and notation

In this section, we construct a hidden Markov

model relating the true state of the board to the

classification probabilities from 3.2. The HMM

constrains the true sequence of states to be a legal

sequence of moves according to the rules of the game.

For a general board game, consider variables L1, L2,

…, LN corresponding to each of the N locations on the

board where a playing piece might be placed, and

photoi(t) be the image patch of location i at time t.

Each variable L takes on one of a small number of

values to indicate what type of playing piece (if any) is

present. Let the state of the entire board at time t be

denoted B(t), an assignment of a value to each variable

Li(t), i=1…N. Let a sequence S be an ordered set of T

board states {B(1), B(2), …, B(T)}.

In the game of Go, we have N = 361 playing

locations each with 3 possible values (black-, white-,

or no-stone). The board state B specifies a value for

each of the 361 locations, as well as extra variables to

note the time and which player’s turn is next. In

transcribing a game, the sequence S corresponds to the

state of the board in each picture 1…T. A sequence S

={B(1), B(2), …, B(T)} is a “legal sequence” if B(1)

is the empty board, and B(t) is the result of a legal

move from state B(t-1) for t=2…N.

3.4. Probabilistic formulation

We find a maximum a posteriori solution of the

most likely sequence given the evidence (photos),

maximizing p(S|photos), out of all legal sequences.

With each photo independent, this is the product:

(1) p(S|photos) = Πt=1…T p(B(t) | photo(t))

We can use Bayes rule to instead maximize:

(2) Πt=1…T p(photo(t) | B(t)) ×p(B(t))

Here, the prior p(B(t)) encodes only the distinction

between legal and illegal board state sequences. The

rules of this game obey the Markov property:

(3) p(B(t)) = p(B(t) | B(t-1).

Maximizing (2) is thus equivalent to maximizing:

(4) Πt=1…T p(photo(t) | B(t)) × p(B(t) | B(t-1))

To evaluate this function, p(photo(t) | B(t)) is

factorized over the N independent locations, as the

likelihood of stone detection, p(photoi(t) | Li(t)), at

each Li determined by the image patch classifier:

(5) p(photo(t) | B(t)) = Πi=1…N p(photoi(t) | Li(t))

Now we have the final form to maximize:

(6) Πt { [Πi p(photoi(t)|Li(t))]×p(B(t)|B(t-1)) }.

3.5. The likely sequence is the shortest path

Consider the graph G whose nodes are all possible

states at all times, B(t)
k
 with k={all board states},

t=1…T. Include a node representing the empty board

at time t=0. Allow a directed edge from state B(t)
j
 to

B(t+1)
k
 if B

j
 is the result of a legal move from B

k
. An

edge is always added from B(t)
k
 to B (t+1))

k
, the

unchanged board at the next time step. The weight of

an edge is the negative log of the likelihood of its

destination:

(7) weight= -log[p(photo(t)|B(t)) ×p(B(t)|B(t-1)]

Add a zero-weight edge from all nodes at time T to

a single terminal node. Any path from the start node

(the empty board at time zero) to the terminal node

represents a sequence of board states S. The shortest

such path maximizes (6).

Figure 3. This Hidden Markov Model consists of

many states at each time step (only a few shown),

corresponding to all possible board configurations at

that time step. Nonzero transition probabilities

between states are sparse, corresponding to legal

moves in the game (represented as arrows). One legal

transition is always “no change.” The most likely

sequence of states is the shortest path.

3.6. Application of the A* search algorithm

The graph described above is exponentially large.

For the game of Go, there are 3
361

 board states in total

at each time step. Approximately 361
T
 of these states

are reachable from the start state in T time steps. The

Viterbi dynamic programming algorithm is thus

inapplicable due to memory limitations. The graph

must be searched implicitly, generating nodes on the

fly.

The graph is searched using an augmented A*

algorithm [7]. The A* algorithm requires an

admissible heuristic to give a lower bound on the

shortest path., which we provide by relaxing the legal-

move restriction and simply taking the most likely

board configuration by photo alone. We augment the

standard A* algorithm by using a transposition table

with Zobrist hashing [9] to avoid considering a path

through a node B if a better path through that node has

already been found.

The best estimate of the first move will likely be

clear after only a short time. A good approximation to

the single T-step problem is obtained by solving (T-D)

smaller problems of D steps. For each problem, the

Start

node

t=1 t=2 t=3

Terminal

node

first node of this path is greedily assumed correct. A

new D-step search may then be conducted starting at

that node. The results presented are achieved with

D=20, corresponding to 40 seconds of real time. State

transition probabilities are assumed to be a uniform

distribution over legal moves and zero otherwise.

4. Results

The algorithm was tested empirically by recording

several games and manually marking the true sequence

of moves. The parameters are tuned to have zero or

few false negatives (undetected stones). We evaluate

our algorithm based on the number of corrections a

user would need to make to obtain the true move

sequence. A mistake is counted when the algorithm

detects a nonexistent stone. The algorithm is not

penalized for timing errors, only actual false positives.

Game Mistakes in

Simple

classifier

Mistakes

after A*

correction

Number

of

moves

in game

1 65 0 31

2 414 0 70

3 110 14 115

4 61 11 49

5. Discussion and future work

Parsing a real world scene into objects is

challenging, but possible when a sufficient model of

the scene is available. Board games provide well-

defined scenes on the limit of recognizability, which

our algorithm transcribes into semantic events.

A simple classifier operating independently at each

time step produces many errors, but constraining the

global time sequence of events to conform to known

rules eliminates many of these mistakes.

6. References

[1] Seewald, A.K., Automatic Extraction of Go Game

Positions from Images: An Application of Machine

Learning to Image Mining, tech. report, Seewald

Solutions, Vienna, 2007.

[2] T. Hirsimäki, GoCam: Extracting Go Game

Positions from Photographs, tech. report, Teemu

Hirsimäki, Helsinki University of Technology,

Helsinki, 2005.

[3] K. Shiba and K. Mori, “Detection of Go-board

contour in real image using genetic algorithm”, Proc

Society of Instrument and Control Engineers 2004,

vol. 3, Issue , 4-6 Aug. 2004, pp. 2754 -– 2759.

[4] Ball, C, Programmer, Image2SGF: Cambridge,

UK: University of Cambridge, 2004.

http://www.inference.phy.cam.ac.uk/cjb/image2sgf.ht

ml

 [5] Hartley R., A. Zisserman, Multiple View

Geometry in Computer Vision, 2nd Edition,

Cambridge University Press, Cambridge, 2004.Multi

View Geometry, Hartley & Zisserman

[6] W.A. Barrett and K.D. Petersen, "Houghing the

Hough: Peak Collection for Detection of Corners,

Junctions and Line Intersections," Proc IEEE CVPR,

vol. 2, 2001, pp. 302.

[7] S.J. Russell and P. Norvig. Artificial Intelligence:

A Modern Approach, pp. 97-104. Prentice Hall, Upper

Saddle River, NJ, 2003.

[8] Duda, R., Hart, P., and Stork, D., Pattern

Classification. John Wiley and Sons, Inc, Hoboken,

NJ, 2001.

[9] Zobrist, A.” A Hashing Method with Applications

for Game Playing”, Tech. Rep. 88, Computer Sciences

Department, University of Wisconsin, Madison,

Wisconsin, (1969)

