- —— - % - - ;
: -} T : T - L .
e LT ¥ s o v L
i 1 o Qs o o [i el
& i, - MR R P~
£ e . § o e, [5
aghane = = - T T T
. i ot N .

sscher@soe.ucsc.edu
WWW.Ssoe.ucsc.edu/~sscher

Introduction

Many board games are played in person
and online. We bring the real world into
the virtual world.

A player may record an in-person game
by placing their camera on the table next
to the game board, taking photos of the
game. We automatically find the likeliest
legal move sequence

The game transcript may be studied
afterwards, shared with friends and
teachers, or added to online
compilations, bringing the attendant
benefits of online game play to an in-
person game.

Original Photo

Foreground Removal

Hands and other moving objects create many false positive and false negative
detections. A per-pixel median-filter removes most moving foreground objects. We
compute the color analog of the median, minimizing L1-norm in HSV color space.

Line Detection:

Lines are initially detected with a circular Laplacian filter and hough transform, and
the two dominant orientations are estimated with K-means.

Lines at each orientation are then found separately with an oriented 2"-order
Derivative-of-Gausian filter and Hough Transform.

Finding a Rectangular Grid

We apply RANSAC to reliably find a rectangle among the
detected lines. Two lines and a guess at the number of
gridlines between them are selected from each
orientation. The edges at each orientation predicted by
this hypothesis are compared against the detected edges
to score the hypothesis.

The highest scoring rectangle is iteratively grown in the
best of the four possible directions to best match
detected edges.

Once found, the board is rectified and cropped.

Ryan Crabb

rcrabb@soe.ucsc.edu

v g T 4 : ein-ua = e aEpe ®ice=a= °
¥ = =] [t " ¥ 7 i g T E B " L i E | =

erimental Results ;5" 0 0 hee

Making Real Games Virtual: Tracking Board Game Pieces

James Davis

alse Negatives, False Positives

W

The Most Likely Path
In a Hidden Markov Model
Is a Shortest Path

Time=0 Time=1 ... Time=N Time=N+1

-log(P;P;(t))

P,5; Probability of transitioning from state i to state
Pi(t) Probability that state is j at time ¢

Constructing a Tree from a Graph

The graph of states and possible transitions is expanded into a tree with
N discrete steps, including transition from a state to itself. All nodes at
time step N transition to a new terminal node.

The likelihood of sequence S in the original graph is ITi-1 nPsy(HPsqiy>se
The length of a path from the start to end node in the equivalent tree is:

Yi=1..n 108 [Pg1y>s0 Psp], SO that the shortest path in the new graph is the
likeliest sequence. In the original graph

davis@soe.ucsc.edu

Department of Computer Science, University of California, Santa Cruz, CA

& Photo

Detection
Probabilities
(from single
image only)

Final Result
(inferred over
whole
sequence)

N

Game Mistakes in | Mistakes Number

cassifis | comection” | moves Inference Over Sequence: Detection Delayed
1 % 5 ;‘llgame These images represent a time sequence of moves played. The top row shows the original image of the board. The middle row shows the likelihood of detected stones.
2 414 0 70 This is found with a Support Vector Machine operating on each image separately, and may make similar mistakes at many time steps, possibly alternating between
i ;0 }‘1‘ 1;5 correct and incorrect detections. The bottom row shows the best move sequence decided by the inference algorithm. Inference qualitatively changes the kinds of errors

incurred: many fewer mistakes occur, with the most common mistake being stones detected in the wrong order.

Finding The Most Likely Move Sequence
In an Exponentially Large HMM

Efficiently with A

Constructing a Tree

For a Game of Go

The Start node is the empty board.
Each time step corresponds to a photo.

Possible nodes (nonzero transition
probability) at time step 1 are the empty
board, or a single black stone in any

position. Start
Possible nodes at any time step are an node

unchanged board, or the legal addition
of a single stone. All legal transitions are
equally likely.

Following stone capture, the only
possible transitions are removal of
possible stones.

Calculating P;(t)

The Go board is a 19x19 grid of 361 possible stone
locations. Each location is either empty, or occupied by
a black stone or white stone. A Support Vector Machine
Is trained to estimate probabilities for the three possible
values, and is applied independently to each pixel in
each photo.

The board state j of the whole board assigns a value
(black, white, empty) to each of the 361 locations. The
likelihood of a state is the product of the likelihood of
each assignment.

®
. ® e
. . (]
] o _

D o e Terminal

& node
L ®
t=1 t=2 t=3

A Good Heuristic for A*

All graphs that calculate P;(t) as we do admit a very good heuristic for
A*. The state that assigns the most-likely value to each location
(independently and without regard to history or game rules) gives an
upper bound on Pi(t). In practice this bound is quite tight, since the
stone detector typically makes no more than a few mistakes in any
single photo.

A tight bound allows A* to trim large portions of the search tree.
Since the tree is constructed on the fly, and only those nodes in the
fringe are kept in memory, a tree with 0(10%%) nodes may be searched
with only 0(10%) nodes actually evaluated, and only o(10%) in memory
at once.

