

Final Report

for

Interactive Video Art Project

Version 1.0 approved

Prepared by Stephanie Lukin

CS 496 Computer Science Project I

13 December 2010

Project Software Requirements Specification for Interactive Video Art Project Page ii

Table of Contents

Table of Contents .. ii
1. Introduction ..1

1.1 Purpose .. 1
1.2 Document Conventions ... 1
1.3 Intended Audience and Reading Suggestions ... 1
1.4 Product Scope .. 1
1.5 References ... 3

2. Project Estimate, Schedule, and Risks ...3
2.1 Software Development Process Used .. 3
2.2 Project Task Set (Statement of Work or SOW) ... 3
2.3 Estimation Techniques Applied and Results ... 4
2.4 Reconciled Estimates and Project Resources .. 4
2.5 Timeline Chart (e.g., a Gantt Chart)* .. 5
2.6 Project Risks, Risk Impact and Mitigation plan .. 5

3. Overall Description of the Product ..6
3.1 Product Perspective ... 6
3.2 Product Functions .. 6
3.3 User Classes and Characteristics ... 7
3.4 Operating Environment ... 7
3.5 Design and Implementation Constraints .. 7
3.6 User Documentation .. 7

4. External Interface Requirements ...8
4.1 Hardware Interfaces ... 8
4.2 Software Interfaces .. 8
4.3 Communications Interfaces ... 8

5. System Features ...9
5.1 Triggers .. 9
5.2 Effects .. 10

6. Other Nonfunctional Requirements ...11
6.1 Performance Requirements .. 11
6.2 Safety Requirements .. 11
6.3 Security Requirements ... 12
6.4 Software Quality Attributes ... 12
6.5 Business Rules ... 12

7. Data design ...13
7.1 Global data structure .. 13

8. Architectural and component-level design ..14
8.1 Program Structure and Architecture .. 14
8.2 Description for Main ... 16
8.3 Description for Sensor ... 16
8.4 Description for VideoMod... 17
8.5 Software Interface Description .. 17

9. User interface design ...17
9.1 Description of the user interface .. 17

Figure 5: Processing Development Environment ...18
10. Restrictions, limitations, and constraints ..19
11. Test Plan ...19

11.1 Testing strategy ... 19
11.2 Testing tools and environment .. 20
11.3 Test schedule ... 20

12. Test Procedure ...21
12.1 Unit test cases .. 21

Project Software Requirements Specification for Interactive Video Art Project Page iii

12.2 Integration testing .. 22
12.3 High-order testing (System Testing) ... 23

13. Reflections ...23
13.1 Clientele and Requirements Collection ... 23
13.2 Change in Requirements and Time Estimation ... 24
13.3 Design .. 24
13.4 Testing ... 24
13.5 Future Galleries: Guidelines for the Future ... 25

Appendix A: Video Mod Source Code ...26
Appendix B: Source code for Serial Port ...30
Appendix C: Source code for Main Video Handling ..32
Appendix D: Source code for Color Project ..33
Appendix E: Source code for Greenscreen Project ..37
Appendix F: Source code for Pixilation Project ...40
Appendix G: Source code for Music Project ...45

Software Requirements Specification for Interactive Video Art Project Page 1

1. Introduction

1.1 Purpose

The purpose of this product is to create an environment for users to create Interactive Video Art.
This project can be seen as an add-on or an extension to the Processing environment. The
platform and language used are Processing (Java based), which is a free and open source
environment specifically aimed at easily creating images, animations, and interactions. In addition
to the built in functionalities of Processing are dozens of libraries which users have created to
enhance various aspects including but not limited to image processing, video rendering, and full
screen display.

Our project will make use of the built in Processing functionalities as well as some user defined
libraries. It will also implement an Arduino sensor box to collect information from the physical
environment to then interact with the software. This document will provide specifications of the
general processing environment as well as the preexisting libraries used. Our extension has been
developed to handle sensor interactions and integrate them with Processing video interactions.
Rather than develop a full Graphical User Interface for the users, we have created our own library
for the users.

This is the first documentation of the product, Version 1.0. It will cover the product features of the
first iteration in detail as well as time, cost, schedule and risk estimations. It describes the user
interfaces as well as the functional and non-functional requirements of the product. Furthermore, it
will address the design issues and solutions, as well as the testing methodology, final results, and
a reflection.

1.2 Document Conventions

When listing items, their order of priority will be indicated explicitly, although most cases will be
from highest to least of important or priority.

1.3 Intended Audience and Reading Suggestions

This document is intended for users and developers. The most pertinent sections for the users are
Sections 3 and 4 which cover the features and interfaces respectively. This will give them an
indication of the product capabilities and should be read before interacting with the product. It will
also give an overview of the interface and how to use it. Developers can use this document as a
foundation for addition future capabilities. They can see what has been developed and how long it
took, providing an estimate of future development. Developers should begin with Section 3 to see
the existing features and Section 2 with the estimations.

1.4 Product Scope

This product is being designed as a tool for artists to use to express themselves in a video
environment. It will allow users to upload their own videos and the system will react and trigger

Software Requirements Specification for Interactive Video Art Project Page 2

new events based on specified criteria. Users who are unfamiliar with a programming environment
will be exposed to a new medium of expression. It can be seen as a palette, providing the users
with many options that allow them freedom to combine and personalize their expressions.

There are many possible features to incorporate into this product. The first iteration will allow the
more simple functionalities utilizing the built in video camera on the iMac and the Arduino sensors.
After these have been established and approved by the student artists, The video art class with
which we are working was broken into groups. Each group had a unique vision for how to
implement our library and hardware with their videos. The Gallery at the end of this semester will
present four unique video installations that will implement the same software and similar hardware.
A description of the four projects are as follows:

1.4.1 Project 1: Color

This display will be on a computer screen and consist of six different videos. When the display
begins, a still shot of each video will be shows around the edge of the screen. A live feed will be
shown in the center. A small table of uniquely colored objects will sit beside the display. Each
colored object will correspond to a different video, the theme of which is that color. If the viewer
touches an object to the sensor box, the live feed will disappear and the video corresponding to
that color will play. After it finishes, the screen will return to the live feed.

1.4.2 Project 2: Projector

This display will be projected onto a blank wall and a green screen will stand opposite the wall.
Four of the recorded videos will be used as a background into which the viewer will be placed if he
or she steps in front of the screen. The backgrounds will be changeable by the color sensor. The
fifth video will be an interactive drawing board. An object, such as a ping pong paddle, can be used
to erase the current video. Underneath will reveal another video. When reserving the ping pong
paddle to expose the other colored side, the original video will be drawn back.

1.4.3 Project 3: Looping and pixilation

This display will be on a computer screen and show two videos, looping back into each other.
When the viewer approaches the display and claps their hands, the current video will pause and
begin to break up into pixels. The pixels will then grow larger and swirl around the screen. After the
swirling, the pixels will reform into the other video and begin playing. Also, if the viewer moves
within a certain distance from the display screen, the video will change to live feed.

1.4.4 Project 4: Music

The final display will be on a computer screen and have ten videos. The color sensor and uniquely
colored objects will trigger the changing of videos. Each video will play a different song associated
with the video; a pair of headphones will be provided. If there is no motion detected for a certain
amount of time, the screen will stop playing the videos and trigger a neutral screen with
instructions about how to change the video.

Software Requirements Specification for Interactive Video Art Project Page 3

1.5 References

“Processing is an open source programming language and environment for people who want to
create images, animations, and interactions. Initially developed to serve as a software sketchbook
and to teach fundamentals of computer programming within a visual context, Processing also has
evolved into a tool for generating finished professional work. Today, there are tens of thousands of
students, artists, designers, researchers, and hobbyists who use Processing for learning,
prototyping, and production.”
Processing Language: <http://processing.org/>

“A collection of step-by-step lessons covering beginner, intermediate, and advanced topics”
Processing Language tutorials: <http://processing.org/learning/>

“Arduino is an open-source electronics prototyping platform based on flexible, easy-to-use
hardware and software. It's intended for artists, designers, hobbyists, and anyone interested in
creating interactive objects or environments.”
Arduino Programming language: < http://www.arduino.cc/>

2. Project Estimate, Schedule, and Risks

2.1 Software Development Process Used

An iterative and incremental development process model will be used for this project. There are
many different functionalities that can be incorporated in this project and the final vision is flexible.
Therefore, the project will start with more basic and general functionality and increase according to
what the client finds compelling.

Each iteration consists of an inception phase, which defines the requirements at a high level,
schedule, risks, and scope; an elaboration phase which explores the project architecture and
expands upon the functional and non-functional requirements; the construction phase begins the
actual implementation of the project based on the collected requirements and designs; and finally,
the transition phase produces a user friendly product to be released.

The first iteration will produce a prototype containing basic functionalities of the iMac with a built in
video camera and an Arduino sensor interaction. After the initial release, the prototype will be
enhanced by adding more complex features and a more user friendly interface if time allows.

2.2 Project Task Set (Statement of Work or SOW)

The deadline for the video art student’s final project exhibition begins the week of December 3rd,
2010. Therefore, a working prototype must exist well before then as well as allow the students
enough time to play with the product and become familiar with the tools. They must also create
their final video project in this time. Allowing the students about a week to create their project, the
final product must be delivered before the students leave for Thanksgiving break on November
22nd, 2010. Before this time, working prototypes will be introduced to the class so that they can
gain familiarity with the tool before the final product is delivered. After the final delivery date, any

Software Requirements Specification for Interactive Video Art Project Page 4

bugs reported or enhancements requested will be fixed as quickly as they are detected, but this
would best be avoided.

This leaves six weeks before the final product must be delivered in time for the students to
complete their final art assignment. A working prototype should be delivered by the end of week
three (November 5th), to get feedback from the students. After the initial release, feedback will be
collected and the product enhanced accordingly, delivering another prototype at the end of week
four (November 12th). The students will provide further feedback to be studied and enhanced for
the final product. There will be a total of two prototypes and a final working product.

Before the first prototype is delivered, the design and implementation of the program must be
decided. At this point in the development phase, many ideas have been gathered and they must be
worked into a comprehensible product.

2.3 Estimation Techniques Applied and Results

The time estimations were created mainly in order to accommodate the two prototypes to be
developed and tested by the students. There will be three iterations: the first is the planning and
designing of the initial prototype from week 1 to the end of week 3 (November 5th); the second
iteration will take place during week four, working on improving the product after the initial release
and releasing another prototype at the weeks’ end (November 12th); the third iteration will be week
five through the weekend until the beginning of week six (November 22nd) which will release the
final prototype.

2.4 Reconciled Estimates and Project Resources

In the first three weeks, the Dr. Daniel Schlapbach and the video art students will be interviewed in
order to gain a better understanding of what they are expecting. After delivering each prototype,
their input and feedback will again be reviewed and incorporated into the next product delivery. Dr.
Roger Eastman will be consulted for advice about the software aspect of the product. The Arduino
board expert and builder will be Jason McMahon who works as the Technology Support Specialist
for Loyola College of Arts and Sciences. The developing of the first prototype will take place in the
Computer Science department laboratory on the iMac computer.

Software Requirements Specification for Interactive Video Art Project Page 5

2.5 Timeline Chart (e.g., a Gantt Chart)*

October November

Week 1 Week 2 Week 3 Week 4 Week 5

(Mon ‐ Sat) (Sun ‐ Sat) (Sun ‐ Fri) (Sat ‐ Fri) (Sat ‐ Tues)

1st ‐ 17th 18th ‐ 23rd 24th ‐ 30th 31st ‐ 5th 6th ‐ 12th 13th ‐ 22nd

Requirements

Data Collection

Design

Implementation

Testing

Survey

Prototype (at
weeks end)

2.6 Project Risks, Risk Impact and Mitigation plan

There are many potential risks associated with this project. They will be listed in order of their
probability of occurring, from highest to lowest.

- The art students will not be satisfied with the prototype, i.e. not enough flexibility, did not
meet their expectations. Because art is so subjective, some students may not appreciate
the final results of the project. In order to fulfill the needs and interests of as many students
as possible, it will be necessary to interview some students and the class instructor to see
what they have in mind. It will also be vital to present them with a working prototype at
regular intervals to see if they are satisfied or what they would like to see changed. If this
risk is realized, the students will at least be able to complete their final art assignment, but
will not enjoy it.

- The art students will not have a functioning prototype for their final art assignment. This
could occur if the time estimation was not properly calculated. At each iteration the project
must be backed up and properly documented to guarantee that there will at least be a
working version, even if it is an earlier one. Enough time must be allotted to the
development of the project as well as incorporate the real potential for unforeseen
obstacles.

- The art students will have a difficult time interacting with the prototype. This would be the
result of poor planning and documentation. The way to prevent against this risk is by
presenting the students with a working prototype and seeing how easily or difficultly they
interact with it.

Software Requirements Specification for Interactive Video Art Project Page 6

3. Overall Description of the Product

3.1 Product Perspective

This is a new, self-contained product. The idea was proposed by Professor Dan Schlapbach in the
Photography Department of Loyola University Maryland. Inspired by the new and interesting field of
interactive video art, Professor Schlapbach wanted to give his students the opportunity to explore
this field. He requested the help of Dr. Roger Eastman, Computer Science Department at Loyola
University Maryland, who passed on the potential project to the Computer Science Project class.

This project can be seen as an add-on or an extension to the Processing environment. The
platform and language used are Processing (Java based), which is a free and open source
environment specifically aimed at easily creating images, animations, and interactions. In addition
to the built in functionalities of Processing are dozens of libraries which users have created to
enhance various aspects including but not limited to image processing, video rendering, and full
screen display.

Our project will make use of the built in Processing functionalities as well as some user defined
libraries. It will also implement an Arduino sensor box to collect information from the physical
environment to then interact with the software. This document will provide specifications of the
general processing environment as well as the preexisting libraries used. Our extension has been
developed to handle sensor interactions and integrate them with Processing video interactions.
Rather than develop a full Graphical User Interface for the users, we have created our own library
for the users.

3.2 Product Functions

The following interactions and features were implemented and presented to the Video Art class.
The students incorporated these into their final project designs.

Triggers

- Distance of viewer to camera/sensor
- Specific color detection and location
- If motion is detected
- The frequency of noise in the room
- Chroma key filtering

Effects

- Change video speed
- Change display style
- Change video display
- Change video zoom
- Change video size
- Greenscreen

Software Requirements Specification for Interactive Video Art Project Page 7

3.3 User Classes and Characteristics

The main users of this product are Professor Daniel Schlapbach and his Video Art students. While
they were not directly exposed to the source code of the projects at this time, the source code is
made to be easy to understand and use, even for non technical users. In the future, the source code
may be presented to the students so they can explore more options than the programmer could
describe or conceive.

3.4 Operating Environment

This product will be the most compatible using an Apple operating environment because of the
relationship between the Processing environment and the built in video camera. Windows will
support Processing, but the synchronization between the video camera and Processing will need
to be reconciled by downloading the latest Apply QuickTime installation.

3.5 Design and Implementation Constraints

This integration of the computer science department and the video art class in the photography
department is a new relationship. As computer scientists think more in terms of what is
programmably possible, the artists think about what is creative and stretches the boundaries.
Finding and communicating this line is a challenge, especially when the software is being tailored
to the wants of the artists. Through rigorous testing, we are finding the limits of the program and
the artists are working within those lines. Time has been a major constraint on the potential of this
project. Integrating new hardware and unfamiliar software has proven to be very fine-tuned.
Instead of creating a full user interface for the artists, an easy to use and flexible library will be
developed instead.

3.6 User Documentation

The Processing tutorial is referenced in Section 1.5

Software Requirements Specification for Interactive Video Art Project Page 8

4. External Interface Requirements

4.1 Hardware Interfaces

A video camera will need to be connected to the hard drive. An iMac with a built in video camera
will be the most compatible with the Processing Environment. An Arduino board will also be
required to take full advantage of the interactive options. The sensor will be capable of color
recognition and detection, detecting the distance or proximity of a user, if motion has occurred, and
measuring the frequency of noise in the room. This sensor box is shown in figure 1.

Figure 1: Sensor box

4.2 Software Interfaces

The software involved is the basic Processing environment. In addition are the following user
created libraries: OpenCV for face detection and live video processing, GSVideo for displaying and
manipulating videos faster, Serial for interacting with the sensor in the Arduino environment. Our
extension combines these libraries to create a new one that offers interaction between the sensors
and the way videos appear on the screen.

4.3 Communications Interfaces

If the product is going to implement a wireless video camera, a signal must be maintained.
Otherwise, the communications are contained to the previously specified hardware and software
elements.

Software Requirements Specification for Interactive Video Art Project Page 9

5. System Features

5.1 Triggers

5.1.1 Viewer distance from sensor

5.1.1.1 Description and Priority
This trigger will allow the user to execute effects based on the distance of an observer to
the video camera or Arduino sensor. This is a high priority feature of the system and can be
used but not limited to the following effects: video speed, video zoom, video size.

5.1.1.2 Stimulus/Response Sequences
If this trigger is enabled, the program will continually compute the distance from the user to
the video camera or the Arduino board. As the viewer gets closer or further from the
screen, the effect will be executed accordingly.

5.1.1.3 Functional Requirements
To compute the distance with the video camera, the face detection analysis will be utilized.
The face will be found using a built in Processing algorithm, and the result will be the box in
which the face has been detected. The area of this box will be computed and how it varies
in size will determine where the user is from the screen, i.e. smaller area, farther away. The
Arduino board will use its sensors to determine the distance from the screen.

5.1.2 Color detection

5.1.2.1 Description and Priority
This trigger will allow the presence of specified colors to execute an effect. This is a high
priority of the product interactions. This can allow a viewer to hold up different colored
objects to the screen and trigger different response videos based upon the color of each
item. This is a high priority feature to develop for the basic tool palette.

5.1.2.2 Stimulus/Response Sequences
If this trigger is enabled, the program will be searching for a blob of the specified color.
Once that color is found, the effect will take place.

 5.1.2.3 Functional Requirements
The video camera will record all the pixels in the view during a screen capture. The
program will then look through all the pixels, trying to find the specified color in a blob that is
at least as large as a certain threshold to avoid noise.

Software Requirements Specification for Interactive Video Art Project Page 10

5.2 Effects

5.2.1 Video Speed

5.2.1.1 Description and Priority
This effect will change the speed at which a prerecorded video will play. This is a high
priority feature to develop for the basic tool palette.

5.2.1.2 Stimulus/Response Sequences
Based on a specified trigger criteria, such as distance from the screen, the video will speed
up or slow down.

 5.2.1.3 Functional Requirements
This effect will be executed in the Processing environment with a simple command to the
play speed of a video based on the trigger criteria.

5.2.2 Display Style

5.2.2.1 Description and Priority
This effect can alter the size of an individual cell of the video or live feed. In normal display,
the cell size is the size of a single pixel so there is no distortion or alteration. This effect
allows the cell to be scaled larger. This is a high priority feature to develop for the basic tool
palette.

5.2.2.2 Stimulus/Response Sequences
Based on a specified trigger criteria, such as distance from the screen, the cell size will
increase or decrease.

 5.2.2.3 Functional Requirements
This effect will be executed in the Processing environment with a series of commands to
create a cell from a pixel or resize a cell to encompass several pixels.

5.2.3 Video Zoom

5.2.3.1 Description and Priority
This effect will change how much a prerecorded video will be zoomed. This is a high priority
feature to develop for the basic tool palette.

5.2.3.2 Stimulus/Response Sequences
Based on a specified trigger criteria, such as distance of a view from the screen, the video
will zoom in or zoom out accordingly.

 5.2.3.3 Functional Requirements
This effect will be executed in the Processing environment by specifying the amount of the
video displayed on the screen based on the trigger criteria.

Software Requirements Specification for Interactive Video Art Project Page 11

5.2.4 Video Size

5.2.4.1 Description and Priority
This effect will change the size of the video display on the screen, keeping all of the video
intact and with the same dimensions. This is a high priority feature to develop for the basic
tool palette.

5.2.4.2 Stimulus/Response Sequences
Based on a specified trigger criteria, such as distance of a view from the screen, the video
will zoom in or zoom out accordingly.

 5.2.4.3 Functional Requirements
This effect will be executed in the Processing environment by specifying the new dimension
size based on the trigger criteria.

5.2.5 Adjust Video Display

5.2.5.1 Description and Priority
This effect can alter how the screen looks, either by altering a prerecorded video or the
current video feed. Some options include color, black and white, brightness, contrast, and
saturation. This is a high priority feature to develop for the basic tool palette.

5.2.5.2 Stimulus/Response Sequences
Based on a specified trigger criteria, the display will adjust accordingly. For example, if the
trigger is ‘distance from screen’ and the effect is ‘adjust contrast’, as the viewer moves
closer to the screen, the contrast in the picture will increase and decrease as they move
backwards.

 5.2.5.3 Functional Requirements
Depending on how the video display is to be changed will determine how the execution will
take place. For most of the basic effects, color, black and white, brightness, contrast, and
saturation, a simple command to the Processing environment will change the current
display.

6. Other Nonfunctional Requirements

6.1 Performance Requirements

In order to capture live video feed to be used as a trigger, a video camera must be connected to
and activated on the computer. Similarly, the Arduino hardware must be connected to the
computer so that sensors can be read.

6.2 Safety Requirements

This product will involve screen(s) and a hard drive. The screens may be connected to the
computer hardware directly, in the form of a laptop or a screen with a built in hard drive. These

Software Requirements Specification for Interactive Video Art Project Page 12

screens may be mounted on the wall, the ceiling, or on the ground. Also, a projector may be used
to project the scene onto a larger area. The possible danger in this is the safety of the mounted
screens or projectors. They must be securely fastened into the wall as not to provide a danger to
the exhibitors.

6.3 Security Requirements

There may be a violation of privacy involved if a video camera is activated in a public location
without the knowledge of the people in the area. This product is set up to only involve an art
display in a specified, closed location. People may be notified upon their entrance into the display
exhibit that they may be captured on camera, but not recorded, for the exhibition.

6.4 Software Quality Attributes

This product is available to anyone who has access to an iMac with a built in video camera or an
Arduino board. If the product is to be ported to another operating system, the user may have some
trouble synchronizing the Processing environment with the video camera due to the Processing
environment. Because the source code is provided in the earlier versions of the product, it can be
adapted to include more functionalities and more fine tuned interactions by anyone with an
understanding of the Processing language. There is no exact definition of ‘correctness’, but the
program will respond to specified user interactions, such as color and distance, however the user
defines. It will be flexible and robust so that users can choose from a variety of features and layer
them or extract them. The product will be easy for users to use, the sections of source code will be
clearly documented and specifications will be placed where the code should be edited and how it
will respond. If the user wants to gain a better proficiency at the Processing language, they can
visit the processing.org.

6.5 Business Rules

Any person interested in creating interactive video art can use this product; there are no
restrictions, operating principles, or special circumstances involved.

Software Requirements Specification for Interactive Video Art Project Page 13

7. Data design

The data from the various sensors is translated and used by the methods that modify videos. The
sensor data can be classified as global data because it is available to all projects that implement
our library.

7.1 Global data structure

Data that is used as triggers for the various projects are described below.

7.1.1 Color sensor data

Projects 1, 2, and 4 will use the color sensor. When an object is placed in front of the sensor, the
sensor will read color values in red, green, and blue. These values are each three numbers and
are put in the buffer as a 9 valued number. The color sensor is the most reliable sensor at this
time.

7.1.2 Distance sensor data

Project 3 will implement the distance sensor. The sensor sends out waves and determines the time
it took for them to be returned and returns this value. It is not scaled properly in terms of units, so
the conversion is handled separately.

7.1.3 Sound sensor data

Project 3 will implement a sound sensor. However, the sensor built into the Arduino board is not
very reliable. Instead, a library that makes use of the built in microphone in the iMac will be used.

7.1.4 Motion detector data

Project 4 will implement the motion detector. If motion is detected, a value of 9999 will be sent to
the buffer. Otherwise, 0 is returned.

7.1.5 Greenscreen data

Project 2 will make use of the green screen effect. This will be implemented by chroma key filtering
with an external web cam. This process begins by examining every pixel of the live video feed from
the web camera. If the pixel falls within a certain threshold of the predefined green background,
then the pixel is replaced by one of the video playing in the background.

Software Requirements Specification for Interactive Video Art Project Page 14

8. Architectural and component-level design

At present, there are two classes in our project. Ultimately, it would be ideal to separate them
further to create a complete standalone and importable library. The first class is called VideoMod
and consists of modifications to a video or live feed. These functions can be called from the main
class to modify the current video or feed. The main class consists of many calls to the sensor box
to read the output information and format it so that our software can handle it. The draw() contains
the method calls to read the sensor data and then calls to the VideoMod class to modify based on
the sensor output.

8.1 Program Structure and Architecture

Figure 2: Schematic

Figure 2 shows the schematics for the project. It begins with the Arduino board, which Jason
McMahon bought. For each board, he installed a color sensor detector, a distance detector, a

Software Requirements Specification for Interactive Video Art Project Page 15

motion detection, and a sound detector. He wired these to the board and custom built the black
box encapsulating the hardware. The sensor box is then connected to the iMac via USB cable. On
each computer, the sensor box must be told how to read the data output by the sensor and
determine its associations in the Arduino programming language. For our purposes, the raw data is
described as follows: 9 digit integer represents a color detection; a 9999 indicates that motion was
detected and a 0 otherwise; a number between 0 and 1000 is used for distance detection, as well
as sound frequency levels. With this knowledge installed on each machine, the Processing
environment can reference the sensor box as a serial port. On the Processing side, we parse the
data so that it can be handled by the video mod functions. We read the data from the serial port
and, for example, separate the 9 digit color values into 3 integers of red, blue then green.

Figure 3: Main class logic

Software Requirements Specification for Interactive Video Art Project Page 16

Figure 4: Class diagrams of a program

8.2 Description for Main

The blue items in the UML diagram in figure 4 are the only ones the user has to concern
themselves with. In the main class, the user specifies what colors he or she will use, if any, and
what video they will trigger when observed. They will also have the freedom to initialize the display
to whatever they wish in the setup() function and the interactions take place in the draw() method.
The methods that the user can call are the blue methods in VideoMod, which can move, resize, or
trigger new videos based on specifications, such as color observation (colorDifferencing(...)). In the
state diagram, the sensor is initalized in the setup() function and the draw function will continue to
iterate. The typical project has data being read from a sensor during the draw, and when it meets a
certain threshold criteria, an event is triggered within the VideoMod.

8.3 Description for Sensor

Figure 4 also shows the items responsible for managing the sensor output. These are highlighted
in red. The ReadX() methods get the raw data from the sensor. The readX() methods scale the
data so that it can be used for program manipulation. Typically, this sensor data is called in the
draw() function and processed as the user wishes.

Software Requirements Specification for Interactive Video Art Project Page 17

8.4 Description for VideoMod

The VideoMod class is an object which contains the location of the video on the screen as well as
the size. These can be changed in draw() if the user so desires. Other operations to apply change
are changing the speed of the video, overlaying color, pixel manipulation, pausing a video,
switching to a new one, or enabling live feed. The output from the sensors are generally the input
to the video manipulation.

8.5 Software Interface Description

While implementing the code, only the text based editor is used (see section 4.0). On the other
hand, the viewer experiences a variety of different medium during the display and interaction with
the projects.

8.5.1 External machine interfaces

Projects 1, 3, and 4 will be displayed on an iMac computer with built in video camera. Each project
will have their own Arduino sensor box sitting next to the display. Project 2 will be displayed by a
projector on a blank, white wall with a MacMini on top of the wall. The sensor box will be to the side
of the projected display. Alongside the MacMini will sit a video camera to capture the motion in
front of the green screen, which will hang opposite the projected screen.

9. User interface design

The project user interface is a simple text editor in the Processing Development Environment
(PDE).

9.1 Description of the user interface

The Processing Development Environment (PDE), figure 5, consists of a simple text editor for
writing code, a message area, a text console, tabs for managing files, a toolbar with buttons for
common actions, and a series of menus. When programs are run, they open in a new window
called the display window.

Software Requirements Specification for Interactive Video Art Project Page 18

9.1.1 Screen images

Figure 5: Processing Development Environment

9.1.2 Objects and actions

Run. Compiles the code, opens a display window, and runs the program inside.

Stop. Terminates a running program.

New. Creates a new sketch (project) in the current window.

Open. Provides a menu with options to open files from the sketchbook, open an example, or open
a sketch from anywhere on your computer.

Save. Saves the current sketch to its current location.

Export. Saves the current sketch to its current location.

At the beginning of each program run, the setup() method is called once. After this initialization, the
draw() method is called continually. This is where the major function calls to our developed library
take place.

Software Requirements Specification for Interactive Video Art Project Page 19

10. Restrictions, limitations, and constraints

Due to the aforementioned time constrains and the difficulty of creating a library in a new language
with new hardware, a graphical interface could not be developed. To remain true to the Processing
environment, a set of function calls have been developed which implement the new functionalities
and interactions. Also, the software to read in the hardware output is still being developed for
efficiency. Because of this, two or more sensors cannot be used at the same time to collect data
from the physical world. Furthermore, the sensor uses a variable buffer to read data. Ideally, a
fixed length buffer should be used because the data from the color sensor needs more bites than
any other sensor. Because the buffer has not yet been changed, the color sensor cannot be used
in conjunction with any other sensor during program run.

In the future it would be ideal to extract all the sensor and video interaction code and create a true
library. Because of time constraints, the sensor manipulation is in the same location as the main
draw() function in the program.

11. Test Plan

There are three types of tests to be performed: unit testing, integration testing, and full scale
system testing. They are detailed below:

11.1 Testing strategy

Before the four, specific video art projects were conceived, the video manipulation functions were
created and tested on their own. There are five types: video placement, video pause, video
pixilation, video speed, and video tint. There were three kinds of testing for these functions: testing
with static values which were acceptable input, invalid input, or boundary conditions as well as
variable values and then with real input values (unit tests), followed by integration with the project
idea and finally with the system in the gallery.

The unit tests tested acceptable values, the boundary values, as well as invalid values and will
consist of white and black box testing. After the projects were crafted, the functions were written in
the main class to perform accordingly. This integrated the building blocks with the structure of the
each project. Finally, the projects will be tested in the gallery as a full system.

11.1.1 Unit testing

A unit is an instance of a VideoMod, which contains a location, a size, and the string where the
video lives. Video placement can be tested by specifying the x and y locations statically (white box)
or variably (black box). Video pause is a simple boolean toggle statement which can be triggered
statically (white box) or based on certain criteria (black box). Video pixilation and swirling was
tested with static values indicating cell size and how to rotate, as well as variable criterion.
Similarly, video speed was tested by static values indicating the play back speed as well as

Software Requirements Specification for Interactive Video Art Project Page 20

variables. And finally, video tint is tested similarly. After it was confirmed that the functions could
perform as they should, input from the sensor was used.

11.1.2 Integration testing

Once the video manipulation functions were tested for efficiency, the projects were created, each
with its own main class. The setup() and draw() functions were crafted to perform what each
project hoped to achieve, integrating the sensors, video cameras, and green screens. Each project
is tested separately by manually observing if the project is behaving as it is expected.

11.1.3 High-order or System testing

After the projects are working in the lab, each will be ported to their own iMac or MacMini system.
Once installed in the gallery, they will be tested in that setting. Tests to perform will include the
tests to verify the system performance in the integration testing phase.

11.2 Testing tools and environment

The goal for each individual project is ultimately an aesthetically pleasing display with fast video
performance. The Processing library and user libraries have already been tested for bugs and
efficiency. The testing that must be done on this project is mainly the integration between the
sensor data and the existing function calls and achieving a smooth interaction between the
hardware and software.

11.3 Test schedule

Unit tests began as soon as the video manipulation coding began. Unfortunately, the sensor box
wasn’t available as early as we had hoped. Therefore, the real input tests are still being performed.
At the same time, the projects have begun. They began on Tuesday, November 9th after meeting
with the video art students and discussing their project ideas. The sensor box testing began a
week before that on Monday, November 2nd. This coincides with our projected prototype delivery
dates. On Tuesday, November 23rd, the prototype will be displayed again. At this time, all the
projects are well into development and being tested for performance. The gallery installation will
begin on Monday, November 22nd, and the projects will be ported on Monday, November 29th. The
gallery opens on Wednesday, December 1st.

Software Requirements Specification for Interactive Video Art Project Page 21

12. Test Procedure

The functions for the video manipulation were created with the possible sensor input in mind. Static
values and mouse position values were first used to establish the boundaries of acceptable input to
the functions. Then, the sensor data was manipulated and constrained to conform to the expected
acceptable input. In order to determine what kind of output the sensors gave and then how to mold
it to something to the functions can use, the sensor data was rigorously tested by itself.

12.1 Unit test cases

As mentioned in Section 6, there are five video functionalities to test at the unit level. In addition,
the sensor output must be examined in order to be properly formatted for function input.

12.1.1 Unit test input and expected result for video placement

The static test began by simply altering the x and y values which place the video on the screen.
Values on the screen and off the screen were tested. Then, the mouse x and y location was used
to determine the location of the video. In our current development, the sensor data does not
directly determine the location of the video although it may be easily altered and made to do so in
the future.

12.1.2 Unit test input and expected result for video pause

This is a simple boolean which pauses or plays the video. It was statically tested with true or false
statements, followed by meeting criteria from the color sensor which will be discussed in detail in
the color sensor unit test section.

12.1.3 Unit test input and expected result for video pixilation

The static test began by drawing an outline around each individual pixel in the video. The cell size
was changed statically so that the cells could grow larger. The rotation was also hardcoded as a
function of the location of the cell. Next, the mouse position indicated how to increase or decrease
the cell size, as well as how to rotate them. In our current development, the sensor data does not
directly determine the location of the video, although it may be easily altered and made to do so in
the future.

12.1.4 Unit test input and expected result for video speed

Video speed was first tested with static values. The mouse x or y location was then used to
determine the speed at which the video played. A possible option for the video projects was the
have the speed alter with the views distance from the sensor. Careful tresholding and smoothing
needed to take place so that the video would not sporadically change speed if the sensor misread
a value.

Software Requirements Specification for Interactive Video Art Project Page 22

12.1.5 Unit test input and expected result for video tint

The tint or brightness of the video was first altered statically by specifying color values. Then, the
tint could be changed more dynamically with respect to the location of the mouse on the screen.
The sensor input could be distance from the screen or the color the color sensor observes.

12.1.6 Unit test input and expected result for color sensor

The color sensor will only read data when an object is close enough to the screen. Sometimes it
will misread a color as black if the object is removed too slowly from the screen. This caused
problems with the tint overlay, but a check was added to examine the previous color and to ignore
black. To determine the color the sensor thought an object was, we printed the color the sensor
saw. We averaged the values and hardcoded it as a color to check while running the program. If
the currently observed color is within a specified threshold (+- x points for red, green, and blue
each), then the color matches.

12.1.7 Unit test input and expected result for distance sensor

The distance sensor works well up until a certain distance where the range is too wide and it
begins to detect further objects as being close. A smoothing factor was placed on the distance data
before it was taken in as input to the video manipulation functions.

12.1.8 Unit test input and expected result for motion sensor

The motion sensor will return 9999 if motion is detected and 0 otherwise. The sensor is very
sensitive to a very small amount of motion. To test if it was accurately detecting motion or lack
thereof, the sensor was placed behind the computer when the test was run. No motion was
indicated until an object actually moved past the sensor.

12.2 Integration testing

After the video manipulation functions have been tested and the sensor data understood, the
integration can take place. Each project has its own specifications and functions to use.

12.2.1 Test cases for integration testing for Color project

The color values to be used will be determined by the sensor and hardcoded into the program.
When the difference between the observed value and a predetermined value is less than the
threshold, the video will change. All of the performed tests have been successful.

12.2.2 Test cases for integration testing Projector project

The green screen project will also implement the aforementioned color sensor. In addition, a
chroma key filter will be used to subtract the predetermined background color from the display. The
threshold depends upon the lighting in the room and cannot be completely perfected until
installation.

Software Requirements Specification for Interactive Video Art Project Page 23

12.2.3 Test cases for integration testing Loop and Pixilation project

This project will play a video and then play another one in its same location. After successfully
attaining a looping two videos, the pixilation will be hardcoded. After assessing it will work on the
looping videos, the clapping sensor will be the trigger rather than the command to pixelate.

12.2.4 Test cases for integration testing Music project

When the color sensor observes the hardcoded colors, the video will change to the corresponding
video as specified in the Color project. Concerning the motion detector, the sensor is continually
searching for motion. When it is found, a timer is set. With each iteration of the draw() function, the
timer is decreased. Upon reaching 0, the sensor looks again for motion. If found, the timer resets
and begins the countdown. Otherwise, another video is displayed until the colors are detected
again.

12.3 High-order testing (System Testing)

The full system cannot be tested until the hardware is installed in the gallery. But the following will
be taken into consideration when the time comes.

12.3.1 Performance Testing

Once the projects have been installed, the lighting in the gallery will need to be taken into
consideration because it will affect the performance of the video cameras. The projection project is
the most important to test in this aspect. The hardcoded background color tested in the lab must
recognize the same background once we have installed it in the gallery.

12.3.2 Load/Stress testing

These displays will be running continuously in the art gallery. We will need to ensure that the
computers do not become overheated. Once the installation has been complete, the projects will
be run and tested for endurance length.

13. Reflections

13.1 Clientele and Requirements Collection

The decision to step out of my comfort zone and take on a software development project that
included faculty and students in the fine arts department was a good one. This made me realize
that clients really don’t know what they want; at the start of the project it was the idea a vague ‘let’s
do something cool’. After we began searching for more concrete ideas, I very much appreciated
that the faculty and students kept their minds open and continued to bring forth engaging ideas.
However it soon became overwhelming because there were too many possibilities. If we didn’t
start soon, we could have spent the entire semester pondering what could be rather than narrow it

Software Requirements Specification for Interactive Video Art Project Page 24

down to what we will actually do. Once the solid requirements were established, the work could
begin.

13.2 Change in Requirements and Time Estimation

It is difficult to determine if the requirements have changed, because from the start this
project was open to many possibilities. But once we started to figure out what kind of
interactions and features we wanted, these were solid. Some additional features the
students discussed were not implemented due to time restraints, but in future galleries
would be very possible to implement. The time estimation was very accurate. Since the
project was dependent on the video art students for ideas and content, the program
structure and functionality had to be presented to the students early enough to let them
think of ideas, consider what is possible or not, then put the finishing touches on the
projects. The full functioning product was delivered on time, but some additional features
were lacking due to an unforeseen setback.

13.3 Design

Without a proper design process, my project would have been easy to program from a technical
level. Rather than designing a reusable and simple structure, hard coding each project
independent of the others wouldn’t have taken the entirety of the semester. However, I did not
take this simplified approach. I realized that there is potential for this program to be used again,
incorporating new features and project structure. Knowing that my clients were nontechnical, I
designed the program in such a way to make it easy to use and understand with little knowledge
of programming.

13.4 Testing

The testing performed at the unit level was successful. The video playback methods were
tested with small sample video files using OpenCV as the video playback and live feed
capture. During integration testing, the small sample videos were used as placeholders for
the videos the students would provide for each project. The first student videos were
received the Monday of Thanksgiving break, giving us a week and a half to put the
finishing touches on the projects for the gallery opening. The OpenCV player we were
using up until now worked well with low resolution videos, but was not compatible with the
higher resolution videos provided by the students. To change the video player was not a
small feat. Almost the entirely of the program design needed to be restructured because of
the differences between OpenCV and the new video library, GSVideo. If I had known from
the start to use GSVideo, I could have properly structured my program around it, rather
than having to create new methods to be compatible with my current framework.
It would also have been more helpful to have more than 3 days to install the programs on
the computers as well as physically assemble the gallery. Each sensor box seemed to be
slightly different, especially when detecting colors; a color that was calibrated to one
sensor box was not always the same on another. In the future, it would be ideal to have
each iMac and sensor box available for installation and testing before we even enter the
gallery.

Software Requirements Specification for Interactive Video Art Project Page 25

13.5 Future Galleries: Guidelines for the Future

Overall, the gallery was a huge success. Many students and faculty were very impressed
with the concept and the projects featured. The fundamentals have been laid and lessons
have been learned so that a future gallery can implement what we have right from the start
and have the remainder of the semester to build additional features or optimize the current
features. The following is a summary of things to consider at the start of the next
development process:

a. Use GSVideo to process videos from the start
b. Export videos at 1280x720 in HD, only if individual pixel processing is not used. In that

case, use a lower resolution
c. Test the color sensor for bogus input. We developed a pattern matching filter to disregard

invalid input, but this should be stress tested.
d. Test the motion sensor. It worked correctly when it did work, but it sometimes did not detect

motion when there was motion. We tried to read the motion data for an interval of time
rather than just once, but this caused the videos playing to lag.

e. Test the sound sensor. It was not properly implemented and tested in time for it to be used
for the gallery opening

f. Try background subtraction for the greenscreen rather than chroma key filtering. It may be
better for edge detection of an object.

g. Use a web camera that does not implement auto white balance for the greenscreen.
h. Allow users the option of taking screenshots of their interactions with a greenscreen or

other displays that show the viewer interacting on the screen.

