
QBox: Guaranteeing I/O Performance on Black Box
Storage Systems

Dimitris Skourtis
skourtis@cs.ucsc.edu

Shinpei Kato
shinpei@cs.ucsc.edu

Scott Brandt
scott@cs.ucsc.edu

Department of Computer Science
University of California, Santa Cruz

ABSTRACT
Many storage systems are shared by multiple clients with
different types of workloads and performance targets. To
achieve performance targets without over-provisioning, a sys-
tem must provide isolation between clients. Throughput-
based reservations are challenging due to the mix of work-
loads and the stateful nature of disk drives, leading to low
reservable throughput, while existing utilization-based solu-
tions require specialized I/O scheduling for each device in
the storage system.

Qbox is a new utilization-based approach for generic black
box storage systems that enforces utilization (and, indirectly,
throughput) requirements and provides isolation between
clients, without specialized low-level I/O scheduling. Our
experimental results show that Qbox provides good isola-
tion and achieves the target utilizations of its clients.

Categories and Subject Descriptors
D.4.2 [Operating Systems]: Storage Management; D.4.8
[Operating Systems]: Performance

Keywords
Storage virtualization, quality of service, resource allocation,
performance

1. INTRODUCTION
During the past decade there has been a significant growth

of data with no signs of slowing. Due to that growth there
is a real need for storage devices to be shared efficiently by
different applications and avoid the extra costs of having
more and more under-utilized devices dedicated to specific
applications. In environments such as cloud systems, where
multiple “clients”, i.e., streams of requests, compete for the
same storage device, it is especially important to manage
the performance of each client. Failure to do so leads to low
performance for some or all clients depending on complex
factors such as the I/O schedulers used, the mix of client

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
HPDC’12, June 18–22, 2012, Delft, The Netherlands.
Copyright 2012 ACM 978-1-4503-0805-2/12/06 ...$10.00.

1

n

...

stream n

e.g. database

e.g. media

stream 1

Clients

Disk 2

Disk m

Disk 1

Closed storage device

...

Controller

Figure 1: Given that we have no access to the stor-
age device, we place a controller between the clients
and the device to provide performance management
to the clients, i.e., the request streams.

workloads, as well as storage-specific characteristics. Un-
fortunately, due to the nature of storage devices, managing
the performance of each client and isolating them from each
other is a non-trivial task. In a shared system, each client
may have a different workload and each workload may af-
fect the performance of the rest in undesirable and possibly
unpredictable ways. A typical example would be a stream
of random requests reducing the performance of a sequential
or semi-sequential stream, mostly due to the storage device
performing unnecessary seeks. The above is the result of
storage devices trying to be equally fair to all requests by
providing similar throughput to every stream. Of course,
not all requests are equally costly, with sequential requests
taking only a small fraction of a millisecond and random re-
quests taking several milliseconds, 2-3 orders of magnitude
longer. Note that a sequential stream does not have to be
perfectly sequential–none ever truly are–and that real work-
loads often exhibit such behavior.

Providing a solution to the above problem may require
using specific I/O schedulers for every disk-drive or node
in a clustered storage system. Moreover, it could require
changes to current infrastructure such as the replacement of
the I/O scheduler of every client. Such changes may create
compatibility issues preventing upgrades or other modifica-
tions to be applied to the storage system. Instead of making
modifications to the infrastructure of an existing system it
is often easier and in practice cheaper to deploy a solution
between the clients and the storage. We call that the black
box approach since it imposes minimal requirements on the

73

clients and storage, and because it is agnostic to the specifi-
cations of either side. Our approach partly fits the grey-box
framework for systems presented in [1], however, QBox re-
quires fewer algorithmic assumptions about the underlying
system. In this paper we take an almost agnostic approach
and target the following problem: given a set of clients and
a storage device, our goal is to manage the performance of
each client’s request stream in terms of disk-time utilization
and provide each client with a pre-specified proportion of the
device’s time, while having no internal control of either the
clients or the storage device, or requiring any modifications
to the infrastructure of either side.

Clients want throughput reservations. However, except
for highly regular workloads, throughput varies by orders of
magnitude depending upon workload (Figure 2) and only
a fixed fraction of the (highly variable) total may be guar-
anteed. By isolating each stream from the rest, utilization
reservations allow a system to indirectly guarantee a spe-
cific throughput (not just a share of the total) based on
direct or inferred knowledge about the workload of an indi-
vidual stream, independent of any other workloads on the
system and can allow much greater total throughput than
throughput-based reservations [17]. Our utilization-based
approach can work with Service Level Agreements (SLA); re-
quirements can be converted to utilization as demonstrated
in [18] and as long as we can guarantee utilization, we can
guarantee throughput provided by an SLA.

To our knowledge there is no prior work on utilization-
based performance guarantees for black box storage devices.
Most work that is close to our scenario such as [15, 11] is
based on throughput and latency requirements, which are
hard to reserve directly without under-utilizing the storage
for a number of reasons such the orders-of-magnitude cost
differences between best- and worst-case requests. More-
over, throughput-based solutions create other challenges such
as admission control. Without very specific knowledge about
the workloads, the system must make worst-case assump-
tions, leading to extremely low reservable throughput. On
the other hand, existing solutions based on disk utiliza-
tion [18, 17, 10] only support single drives and if used in
a clustered storage system they require their scheduler to be
present on every node.

In this paper, we present a novel method for managing the
performance of multiple clients on a storage device in terms
of disk-time utilization. Unlike the management of a single
drive, in the black box scenario it is hard to measure the
service time of each request. Instead, our solution is based
on the periodic estimation of the average cost of sequential
and random requests as well as the observation that their
costs have an orders-of-magnitude difference. We observe
the throughput of each request type in consecutive time win-
dows and maintain separate moving estimates for the cost
of sequential and random requests. By taking into account
the desired utilization of each client we schedule their re-
quests by assigning them deadlines and dispatching them to
the storage device according to the Earliest Deadline First
(EDF) algorithm [13, 21]. Our results show that the de-
sired utilization rates are achieved closely enough, achieving
both good performance guarantees and isolation. Those re-
sults stand over any combination of random, sequential, and
semi-sequential workloads. Moreover, due to our utilization-
based approach, it is easy to decide whether a new client
may be admitted to the storage system, possibly by modify-

250 (C: 0%) 300 350 (C: 50%) 400 450 (C:100%) 500
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

Seconds

T
hr

ou
gh

pu
t [

IO
P

S
]

Throughput achieved with utilization−based scheduling

Stream A (Seq. 50% − 0%)
Stream B (Seq. 50% − 0%)
Stream C (Ran. 0% − 100%)

250 (C: 0%) 300 350 (C: 50%) 400 450 (C:100%) 500
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

Seconds

T
hr

ou
gh

pu
t [

IO
P

S
]

Throughput achieved with throughput−based scheduling

Stream A (Seq. 50% − 0%)
Stream B (Seq. 50% − 0%)
Stream C (Ran. 0% − 100%)

Figure 2: QBox (top) provides isolation, while the
introduction of a random stream makes the through-
put of sequential streams drop dramatically with
throughput-based scheduling (bottom.)

ing the rates of other clients. Finally, all clients may access
any file on the storage device and we make no assumptions
about the location of the data on a per client basis.

2. SYSTEM MODEL
Our basic scenario consists of a set of clients each associ-

ated with a stream of requests and a single storage device
containing multiple disks. Clients send requests to the stor-
age device and each stream uses a proportion of the device’s
execution time. We call that proportion the utilization rate
of a stream and it is either provided by the client or in prac-
tice, by a broker, which is part of our controller and trans-
lates SLAs into throughput and latency requirements as in
[17, 18] or [10]. Briefly, to translate an SLA to utilization,
we measure the aggregate throughput of the system for se-
quential and random requests separately over small amounts
of requests (e.g., 20) and set a confidence level (e.g., 95%)
to avoid treating all requests as outliers. Details about ar-
rival patterns and issues such as head/track switches and
bad layout are presented in [19].

The main characteristic of our scenario is that we treat
the storage device as a black box. In other words, we only
interact with the storage device by passing it client requests

74

...

Disk 1 Disk 2 Disk 3 ...

Statistics

Estimation

Deadline
Queue

FIFO Stream
Queues

deadline
assignment

requests from
multiple clientsQBox

Figure 3: The controller architecture.

and receiving responses. For example, we cannot modify or
replace the device’s scheduler as is the case in [18] and do not
assume it uses a particular scheduler. Moreover, we cannot
control which disk(s) are going to execute each request and
do not restrict clients to specific parts of the storage device.
Due to those requirements the natural choice is to place a
controller between the clients and the storage device. Hence,
all client requests go through the controller, where they are
scheduled and eventually dispatched to the device. As we
will see, this setup allows us to gather little information
regarding the disk execution times, which turns scheduling
and therefore black box management into a challenge.

We manage the performance of the streams in a time-
based manner. After a request reaches our controller, we
assign it a deadline by keeping an estimate of the expected
execution time e for each type of request (sequential or ran-
dom) and by using the stream’s rate r provided by the bro-
ker. Using e and r we compute the request’s deadline by
d = e/r. The absolute deadline of a request coming from
stream s is set to Ds = Ts+d, where Ts is the sum of all the
relative deadlines assigned so far to the requests of stream
s. Although, we are using “deadlines” for scheduling, our
goal is not to strictly satisfy deadlines. Instead, it is the
relative values that matter with regards to the dispatching
order. On the other hand, if we used a stricter dispatching
approach e.g., [18], then the absolute times would be im-
portant for replacing the expected cost with the actual cost
after the request was completed. In this paper we do not fo-
cus on urgent requests, however, it is possible to place such
requests ahead of others in the corresponding stream queue
by simply assigning them earlier deadlines.

Although we do not assume the storage device is using
a specific disk scheduler, it is better to have a scheduler
which tries to avoid starvation and orders the requests in a
reasonable manner (as most do). A stricter dispatching pol-
icy such as [18] can be used on the controller side to avoid
starvation by placing more emphasis on satisfying the as-
signed deadlines instead of overall performance. The next
section presents our method for estimating execution times
and managing the performance of each stream in terms of

500 1000 1500 2000 2500 3000 3500
0

10

20

30

40

50

60

70

80

90

100

Stream rates (disk−time percentage) achieved with no management
when desired rates are (50%, 50%)

Window (150ms) counter

A
ve

ra
ge

 U
til

iz
at

io
n

Sequential stream
Random stream

Figure 4: When our controller sends the requests
in the order they are received from the clients, the
system fails to provide the desired rates.

time. We also discuss practical issues we faced while apply-
ing our method and discuss how we addressed them.

3. PERFORMANCE MANAGEMENT
In QBox we maintain a FIFO queue for each stream and

a deadline queue, which may contain requests from any
stream. The deadline queue is ordered according to the Ear-
liest Deadline First (EDF) scheduler and the deadlines are
computed as described in the previous section. Whenever
we are ready to dispatch a request to the storage device the
request with the smallest absolute deadline out of all the
stream queues is moved to the deadline queue. To find the
earliest-deadline request it suffices to look at the oldest re-
quest from each stream queue, since any other request before
that has either arrived at a later time or is less urgent. Next,
the request with the earliest deadline is removed from the
deadline queue and dispatched to the device.

3.1 Estimating execution times
As mentioned earlier, we aim to provide performance man-

agement through a controller placed between the clients
and the storage device. We wish to achieve this goal with-
out knowledge of how the storage device schedules and dis-
tributes the requests among its disks and without access
to the storage system internals. Most importantly, we are
unaware of the time each request takes on a single disk,
which we could otherwise measure by looking at the time
difference between two consecutive responses, i.e., the inter-
arrival time. In our case, the time between two consecutive
responses does not necessarily reflect the time spent by the
device executing the second request, because those two re-
quests may have been satisfied by different disks.

On the other hand, we know the number of requests ex-
ecuted from each stream on the storage device. If all re-
quests had the same cost, then we could take the average
over a time window T, i.e., e = T/n, where n is the number
of requests completed in T . Clearly, that would not solve

75

(zi/ai,0)

(0, zi/bi)

λi=ai/bi

x

y

(zj/aj,0)

(zj/bj,0)

Figure 5: The intersection of the two lines from (3)
gives us the average cost x of a sequential and y of
a random request in the time windows zi and zj.

the problem since random requests are orders-of-magnitude
more expensive than sequential requests, i.e., the disk has
to spend significantly more time to complete a random re-
quest. Based on that observation, for each stream we classify
its requests into sequential and random while keeping track
of the number of requests completed by type per window.
Assuming the clients saturate the device and the cost x of
the average sequential request and the cost y of the average
random request remain the same across two time windows
zi and zj we are lead to the following system of linear equa-
tions: {

αix+ βiy = zi

αjx+ βjy = zj ,
(1)

where αi is the number of sequential requests completed in
window i, and similarly for the number of random requests
denoted by βi. Often, j will be equal to i + 1. Solving the
above system gives us the sequential and random average
request costs for windows zi and zj :

x =
zjβi − βjzi
αjβi − αiβj

, y =
zi
βi

− αi

βi
x. (2)

The above equations may give us negative solutions due to
system noise and other factors. Since execution costs may
only be positive we restrict the solutions to positive (x,y)
pairs (Figure 5), i.e., satisfying:⎧⎪⎨

⎪⎩
zi/αi < zj/αj

zi/βi > zj/βj

αi/βi > αj/βj

or

⎧⎪⎨
⎪⎩

zi/αi > zj/αj

zi/βi < zj/βj .

αi/βi < αj/βj

(3)

Intuitively, setting zi equal to zj in (3) would require that
if the number of completed sequential requests goes down in
window j, then the number of random requests has to go up
(and vice-versa.) Otherwise, the intersection would contain
a negative component. By focusing on the case where every
time window has the same length we reduce the chances
of getting highly volatile solutions and make the analytical
solution simpler to intuitively understand. In that case the
solution becomes

x =
z

αi + βiλ
, y = λx, (4)

time window zi

time window zj

i

j

ai=15, bi=2

aj=19, bj=1

random cost
sequential cost

y x

Figure 6: Counting sequential and random comple-
tions per window lets us estimate their average cost.

where

λ =
αi − αj

βj − βi
. (5)

From (5) we see that the intersection solutions are ex-
pected to be volatile if the window size is small. On the other
hand, if the window size is large and the throughput does
not change, the intersection will often be negative, i.e., it
will happen on a negative quadrant, since the two lines from
Figure 5 will often have a similar slope. It would be easy
to ignore negative solutions by skipping windows. However,
depending on the window size and workload it is possible to
get negative solutions more often than positive ones. That
leads to fewer updates and therefore a slower convergence
to a stable estimate. To face that issue we looked into two
directions. One direction is to observe that if the window
size is small enough, it is not important whether we take the
intersection of the current window with the previous one or
some other window not too far in the past. Based on that
observation we consider the positive intersections of the cur-
rent window with a number of the previous ones and take
the average. That method increases the chance of getting
a valid solution. In addition, updating more frequently al-
lows the moving estimate to converge more quickly without
giving a large weight on any of the individual estimates.

The other way we propose to face negative solutions is
to compute the projection of the previous estimate on the
current window assuming the x/y ratio remains the same
along those two windows. In particular, we may assume
that αi/βi is close to αj/βj . In that case, we can project the
previous intersection point or estimate on the line describing
the second window. The projection is given by

x =
αjzi

αi(μβj + αj)
, y = μx, (6)

where

μ =
1

βi

(zi
x

− αi

)
. (7)

The idea is that if both the number of completed sequen-
tial and random requests in a window drops (or increases)
proportionally the cost must have shifted accordingly. Al-
though we observed that the projection method works espe-
cially well, its correctness depends on the previous estimate.
It could still be used when some intersection is invalid to
keep updating the estimate but leave it as future work to
determine whether it can enhance our estimates.

3.2 Estimation error and seek times
A key assumption is that the request costs are the same

among windows. Assuming that at some point we have the

76

true (x, y) cost and that the cost in the next window is not
exactly the same due to system noise we expect to have
error. To compute that error we replace zj in the solution
for x in (2) by its definition i.e., αjx+ βjy and denote that
expression by x′. Taking the difference between x and x′

gives ∣∣x− x′∣∣ = βi

|αjβi − αiβj | |(αjx+ βjy)− zj | (8)

and ∣∣y − y′∣∣ = αi

βi

∣∣x′ − x
∣∣ . (9)

So far we have not considered seek times between streams
and how they might affect our estimates. In the typical case
where m random requests are executed by a disk followed by
n sequential requests, the first request out of the sequential
ones will incur a seek. That seek is not fully charged to
either type of request in our model, simply because it is
either hard or impossible in our scenario. Intuitively, the
total seek cost of a window is distributed across both request
types. Firstly, because fewer requests of both types will end
up being executed in that window and secondly due to the
error formula (9) for y. In particular, assuming the delayed
requests in some window i would also follow the αi/βi ratio
we now show that seeks do not affect our scheduling.

Let α′
i = αi − δ

(α)
i and β′

i = βi − δ
(β)
i , where δτi is the

number of requests of type τ that are not executed in win-
dow i due to seek events. From the above assumption,

δ
(β)
i = βi/αiδ

(α)
i . Then α′

i/β
′
i = (αi − δ

(α)
i)/(αi − δ

(β)
i),

which gives αi/βi and similarly, for window j. Using the
original solution (2) for the sequential and random costs,
consider the ratio of y/x as well as y′/x′, which uses α′ in-
stead of α and similarly for β. By substituting, we get that
y/x = y′/x′ = −α′

i/β
′
i, which is independent of the number

of seeks δ and by the above is equal to −αi/βi.
From the above, we conclude that seeks do not affect the

relative estimation costs and consequently our schedule. The
reason the ratios are negative can be seen from Figure 5.
Specifically, fixing every variable in (2), while increasing the
x-cost, reduces the y-cost and vice versa. Therefore, the
slope y/x is negative whether we have seeks or not.

3.3 Write support and estimating in practice
In this work, we only deal with read requests. Since writes

typically respond immediately, it is harder to approximate
the disk throughput over small time intervals. On the other
hand, if a system is busy enough, the write throughput over
large intervals (e.g., 5 seconds) is expected to have a smaller
variance and be closer to the true throughput. Preliminary
results suggest the above holds. There are still some chal-
lenges, such as the effect of writes on reads when there is
significant write activity, which may be addressed by dis-
patching writes in groups. Adding support for writes is a
priority for future work and is expected to lead into a more
general solution supporting SSDs and hybrid systems.

In our implementation we took the approach of having
small windows, e.g. 100ms, to increase the frequency of es-
timates and to give a small weight to each of them. As
we compute intersections we keep a moving average and
weight each estimate depending on its distance from the pre-
vious one. Due to the frequent updates, if there is a shift in
the cost, the moving estimate will reach that value quickly.
Moreover, to improve estimates, for each window we find its

0 500 1000 1500 2000
0

10

20

30

40

50

60

70

80

90

100

Window (150ms) counter

A
ve

ra
ge

 R
at

e

Sequential 50%, Random 50% (Disk 2)

Total Sequential (50%)
Random (50%)
Sequential (20%)
Sequential (20%)
Sequential (10%)

Figure 7: Using one disk and a mixture of sequen-
tial and random streams the rates are achieved and
convergence happens quickly.

intersection with a number of the previous windows (e.g.,
10.) Finally, if the λ cost ratio as defined in (5) is too small
or too large we ignore that pair of costs. We set the bounds
to what we consider safe values in that they will only take
out clearly wrong intersections.

4. EXPERIMENTAL EVALUATION
In this section, we evaluate QBox in terms of utilization

and throughput management. We first verify that the se-
quential and random request cost estimates are accurate
enough and that the desired stream rates are satisfied in
different scenarios. Next, we show that the throughput
achieved is to a large degree in agreement with the target
rates of each stream.

4.1 Prototype
In all our experiments we use up to four disks (different

models) or a software RAID 0 over two disks. We forward
stream requests to the disks asynchronously using Kernel
AIO. We avoided using threads in order to keep a large num-
ber of requests queued up (e.g., 200) and to avoid race condi-
tions leading to inaccurate inter-arrival time measurements.
Up to subsection 4.4 we are interested in evaluating QBox
in a time-based manner. For that purpose we avoid hitting
the filesystem cache by enabling O DIRECT and do not
use Native Command Queuing (NCQ) in any of the disks.
Moreover, we send requests in a RAID 0 fashion rather than
using a true RAID. The above allows us to know the disk
each request targets, which consequently lets us compute
the service times by measuring the inter-arrival times and
compare those with our estimates. The extra information is
not used by our method since it is normally unavailable. It
is used only for evaluation purposes. Starting from subsec-
tion 4.4 we gradually remove all the above restrictions and
evaluate QBox implicitly in a throughput-based manner.

We evaluate QBox both with synthetic and real workloads
depending on the goal of the experiment. All synthetic re-
quests are reads of size 4KB unless we are using a RAID
over two disks in which case they are 8KB. For the synthetic
workload, each disk contains a hundred 1GB files. We use a
subset of the Deasna2 [3] NFS trace with request sizes typ-

77

0 500 1000 1500 2000 2500 3000
0

10

20

30

40

50

60

70

80

90

100

Window (100ms) counter

A
ve

ra
ge

 r
at

e
Sequential 30%, Random 70% (20<L <175)

Sequential (10%)
Sequential (10%)
Sequential (10%)
Total Sequential (30%)
Random (70%)

0 500 1000 1500 2000
0

10

20

30

40

50

60

70

80

90

100

Window (100ms) counter

A
ve

ra
ge

 r
at

e

Sequential 50%, Random 50% (20<L <175)

Sequential (20%)
Sequential (20%)
Sequential (10%)
Total Sequential (50%)
Random (50%)

0 500 1000 1500 2000
0

10

20

30

40

50

60

70

80

90

100

Window (100ms) counter

A
ve

ra
ge

 r
at

e

Sequential 70%, Random 30% (20<L <175)

Sequential (30%)
Sequential (20%)
Sequential (20%)
Total Sequential (70%)
Random (30%)

Figure 8: Using two disks and our scheduling and estimation method we achieve the desired rates most of
the time relatively well. In the above we have three sequential streams and a random one.

0 500 1000 1500 2000 2500 3000
0

0.5

1

1.5

2

2.5
x 10

4

Window (100ms) counter

R
an

do
m

 R
eq

ue
st

s
E

xe
cu

tio
n

C
os

ts

Estimates [Sequential 30%, Random 70%] [20<L<175]

Averages (d1)
Averages (d2)
Moving Estimate

0 500 1000 1500 2000
0

0.5

1

1.5

2

2.5
x 10

4

Window (100ms) counter

R
an

do
m

 R
eq

ue
st

s
E

xe
cu

tio
n

C
os

ts
Estimates [Sequential 50%, Random 50%] [20<L<175]

Averages (d1)
Averages (d2)
Moving Estimate

0 500 1000 1500 2000
0

0.5

1

1.5

2

2.5
x 10

4

Window (100ms) counter

R
an

do
m

 R
eq

ue
st

s
E

xe
cu

tio
n

C
os

ts

Estimates [Sequential 70%, Random 30%] [20<L<175]

Averages (d1)
Averages (d2)
Moving Estimate

Figure 9: Using two disks (d1, d2) and our estimation method we maintain a moving estimate of the average
random execution cost on the storage device.

ically being 32KB or 64KB. Finally, except for a workload
containing idle time, we assume there are always requests
queued up, since that is the most interesting scenario, and
we bound the number of pending requests on the storage by
a constant, e.g., 200. Finally,we do not assume a specific I/O
scheduler is used by the storage device. In our experiments,
the “Deadline Scheduler” was used, however, we have tried
other schedulers and observed similar results.

4.2 Sequential and random streams
Our approach is based on the differentiation between se-

quential and random requests and so the first step in evalu-
ating QBox is to consider a workload of fully sequential and
random streams with the goal of providing isolation between
them. Note that to provide isolation a prerequisite is that
our cost estimates for the average sequential and random
request are close enough to the true values, which are not
known, and it is not possible to explicitly measure them in
our black box scenario. In this set of experiments, the work-
load consists of three sequential streams and one random.
Each sequential stream starts at a different file to ensure
there are inter-stream seeks. Each request of the random
stream targets a file and offset uniformly at random. For
each stream we measure the average utilization provided by
the storage device. We look into three sets of desired utiliza-
tions. Figure 8(a) shows a random stream with a utilization
target of 70%, while each sequential stream has a target of
10% for a total of 30%. As the experiment runs, the cost

estimates take values within a small range and the average
achieved utilization converges. In Figures 8(b) and (c) the
sequential streams are given higher utilizations. In all three
cases, the achieved utilizations are close to the desired ones.
Again in Figures 8(b) and (c) the initial estimate was rela-
tively close to the actual cost, so the moving rates approach
the converging rates more quickly.

From Figure 9 we notice that estimates get above the av-
erage cost when there is many sequential requests even if
the utilization targets are achieved (Figure 8). The main
reason for that is that we keep track and store (in mem-
ory) large amounts of otherwise unnecessary statistics per
request. Therefore, if in a window of e.g., 100ms there is a
very large number of request completions, i.e., when the rate
of sequential streams is high, 10ms (10μs·1000 requests) may
be given to that processing and therefore the estimates are
scaled up. Of course, those operations can be optimized or
eliminated without affecting QBox. As expected, a similar
effect happens with the estimated cost of sequential requests
(not shown), therefore the ratio of the costs stays valid lead-
ing to proper scheduling as shown in Figure 8.

Besides the initial estimates, the convergence rate also
depends on the window size, since a smaller size implies
more frequent updates and faster convergence. However, if
the window size becomes too small the number of completed
requests become too few and the quality of the estimate
may not be accurate enough due to the significant noise.
Note that whether the window size is considered too small

78

0 500 1000 1500 2000 2500 3000
0

10

20

30

40

50

60

70

80

90

100

Window (75ms) counter

S
tr

ea
m

 R
at

e
Achieved Stream rates

A (10%, 25r, 475s)
B (30%, 7r, 693s)
C(20%, All S)
D (40%, All R)

0 500 1000 1500 2000 2500 3000
0

10

20

30

40

50

60

70

80

90

100

Window (75ms) counter

S
tr

ea
m

 R
at

e

Achieved stream rates

A (20%, 25r, 475s)
B (30%, 7r, 693s)
C (20%, All S)
D (30%, All R)

0 500 1000 1500 2000 2500 3000
0

10

20

30

40

50

60

70

80

90

100

Window (75ms) counter

S
tr

ea
m

 R
at

e

Achieved Stream rates

A (10%, 25r, 475s)
B (10%, 7r, 693s)
C (10%, All S)
D (70%, All R)

Figure 10: Using two disks and our scheduling and estimation method we achieve the desired rates most of
the time relatively well. Stream A requires 20% of the disk time and sends 25 random requests every 475
sequential requests. Similarly for the rest of the streams.

0 500 1000 1500 2000 2500 3000
0

0.5

1

1.5

2

2.5
x 10

4

Window (75ms) counter

R
an

do
m

 R
eq

ue
st

s
E

xe
cu

tio
n

C
os

ts

Estimates [20<L<175] (Exp. B)

Averages (d1)
Averages (d2)
Moving Estimate

0 500 1000 1500 2000 2500 3000
0

0.5

1

1.5

2

2.5
x 10

4

Window (75ms) counter

R
an

do
m

 R
eq

ue
st

s
E

xe
cu

tio
n

C
os

ts

Estimates [20<L<175] (Exp. C)

Averages (d1)
Averages (d2)
Moving Estimate

0 500 1000 1500 2000 2500 3000
0

0.5

1

1.5

2

2.5
x 10

4

Window (75ms) counter

R
an

do
m

 R
eq

ue
st

s
E

xe
cu

tio
n

C
os

ts

Estimates [20<L<175] (Exp. D)

Averages (d1)
Averages (d2)
Moving Estimate

Figure 11: Using two disks (d1, d2) and our estimation method we maintain a moving estimate of the average
random execution cost on the storage device.

depends on the number of disks in the storage system as
having more disks implies that a greater number of requests
complete per window. The window size we picked in the
above experiment (Figure 8) is 100ms. Other values such as
150ms provide similar estimation quality and later we look
at smaller windows of 75ms. Note that in Figure 9 there is
a number of recorded averages that are 0 because random
streams with low target rates are more likely to have no
arrivals in a window. Not having any completed random
requests in a window implies that we can estimate a new
sequential estimate more easily.

Finally, in the above, we assume there is always enough
queued requests from all streams. Without any modification
to our method we see from Figure 12 that under idle time
it is still possible to manage the rates. In particular, every
5000 requests (on average) dispatched to the storage device
we delay dispatching the next request(s) for a (uniformly
at) random amount of time between 0.5 to 1 second. From
Figure 12 we see that the rates are still achieved, while there
is slightly more noise in the estimates compared to Figure 9.
We noted that if the idle times are larger than the window
size, then our method is less affected. That was expected,
since idling over a number of consecutive windows implies
that new requests will be scheduled according to the previous
estimates as the estimates will not be updated. Finally,
although the start and end of the idle time window may
affect the estimate, the effect is not significant since the

estimate moves only by a small amount on each update and
most updates are not affected.

4.3 Mixed-workload streams
In practice, most streams are not perfectly sequential. For

example, a stream of requests may consist of m random
requests for every n sequential requests, where m is often
significantly smaller than n. To face that issue, instead of
characterizing each stream as either sequential or random
we classify each request. Note that the first request of a
sequential group of requests after m random ones is consid-
ered random if m is large enough. Although not all random
requests cost exactly the same, we do not differentiate be-
tween them since we work on top of the filesystem and do
not assume we have access to the logical block number of
each file. Therefore, we do not have a real measure of se-
quentiality for any two I/O requests. However, as long as the
cost of random requests does not vary significantly between
streams we expect to achieve the desired utilization for each
stream. Indeed, as it has been observed in [10], good uti-
lization management can still be provided when random re-
quests are assumed to cost the same. Moreover, from [3] we
see that requests from common workloads are usually either
almost sequential or fully random. Differentiating between
cost estimates on a per stream basis is expected to improve
the management quality and leave it as future work.

From Figure 10 we see that the targets are achieved in the

79

0 500 1000 1500
0

10

20

30

40

50

60

70

80

90

100

Window (150ms) counter

A
ve

ra
ge

 R
at

e
Sequential 50%, Random 50% (with idle time)

Total Sequential (50%)
Random (50%)
Sequential (20%)
Sequential (20%)
Sequential (10%)

0 500 1000 1500
0

0.5

1

1.5

2

2.5
x 10

4

Window (150ms) counter

R
an

do
m

 R
eq

ue
st

s
E

xe
cu

tio
n

C
os

t

Estimates [Sequential 50%, Random 50% (with idle time

Averages (d1)
Averages (d2)
Moving Estimate

Figure 12: Using two disks (d1, d2), the desired
rates are achieved well enough (reach 45% quickly)
even when there is idle time in the workload.

presence of semi-sequential streams. In particular, in 10(a),
stream A sends 25 random requests for every 475 sequential
ones. Stream B sends 7 random requests for every 693 se-
quential ones, while streams C and D are purely sequential
and random, respectively. Other target sets in Figure 10
are satisfied equally well. Note that each group of requests
does not have to be completed before the next one is sent.
Instead, requests are continuously dequeued and scheduled.

So far we have seen scenarios with fixed target rates. Our
method supports changing the target rates online as long as
the rate sum is up to 100%. Depending on the new target
rates, the cost estimation updates can be crucial in achiev-
ing those rates. For example, increasing the rate of a ran-
dom stream decreases the average cost of a random request
and our estimates are adjusted automatically to reflect that.
Figure 13(a) illustrates that the utilization rates are satisfied
and Figure 13(b) shows how the random estimate changes as
the clients adjust their desired utilization rates every thirty
seconds. For this experiment we set the number of disks to
four to illustrate our method works with a higher number
of disks and to support our claim that it can work with any
number of disks. The same experiment was run with two
disks giving nearly identical results (figure omitted.)

As explained earlier, the disk queue depth is set to one for
evaluation purposes. However, since a large queue depth can
improve the disk throughput we implicitly evaluate QBox
by comparing the throughput achieved when the depth is
1 and 31, while the target rates change. In particular, we
look at semi-sequential and random streams. As expected
and illustrated in Figure 15, having a depth of 31 achieves
a higher throughput over a range of rates. Although, this
does not verify our method works perfectly due to lack of
information, it provides evidence that it works and, as we
will see in the next subsection, that is indeed the case.

4.4 RAID utilization management
In our experiments so far, we have been sending requests

to disks manually in a striping fashion instead of using an
actual RAID device. That was done for evaluation purposes.
Here, we use a (software) RAID 0 device and instead eval-
uate QBox indirectly. The RAID configuration consists of
two disks with a chunk size of 4KB to match our previous
experiments, while requests have a size of 8KB.

In the first experiment we focus on the throughput achieved
by two (semi-)sequential streams as we vary their desired
rates. Moreover, we add a random stream to make it more
realistic and challenging. We fix the target rate of the ran-
dom stream since otherwise it would have a variable effect on

500 1000 1500 2000 2500
0

10

20

30

40

50

60

70

80

90

100

Window (75ms) counter

S
tr

ea
m

 R
at

es

Achieved Stream Rates with Shifts (4 Disks)

A (30%, 20%, 10%; 25R, 475S)
B (20%, 20%, 10%; 7R, 593S)
C (20%, 10%, 10%; All S)
D (30%, 50%, 70%; All R)

500 1000 1500 2000 2500
0

0.5

1

1.5

2

2.5
x 10

4

R
an

do
m

 R
eq

ue
st

 E
xe

cu
tio

n
C

os
t

Shifted Estimates [20<L<175] (Exp. F)

Disk Averages
Disk Averages
Moving Estimate

Figure 13: Using four disks and desired rates that
shift over time, the rates are still achieved quickly
under semi-sequential and random workloads.

the sequential streams throughput and make the evaluation
uncertain. As long as the throughput achieved by each of
the sequential streams varies in a linear fashion we are able
to conclude that our method works. Indeed, from Figure 14
stream A starts with a target rate of 0.5 and goes down to
0, while stream B moves in the opposite direction. As the
throughput of stream A goes down, the difference is pro-
vided to stream B. Moreover, in Figure 16 we see that having
two random streams and a sequential one fixed at 50% (not
plotted) has a similar behavior. The difference between
those two cases is the drop in the total throughput of the
first case with streams A and B having a lower throughput
when their rates get closer to each other. That is due to
the more balanced number of requests being executed from
each sequential stream leading to a greater number of seeks
between them. Since seeks are relatively expensive com-
pared to the typical sequential request the overall through-
put drops slightly. If that effect was not observed in Figure
14, then the random stream (C) would be getting a smaller
amount of the storage time, which would go against its per-
formance targets. Instead, the random stream throughput
remains unchanged. On the other hand, in Figure 16 there

80

(0.5, 0) (0.4, 0.1) (0.3, 0.2) (0.2, 0.3) (0.1, 0.4) (0, 0.5)
70

1000

2000

3000

4000

5000

6000

7000

8000
T

hr
ou

gh
pu

t [
IO

P
S

]
Throughput of Streams for different rates (no NCQ)

Stream A (seq)
Stream B (seq)
Total (seq)
Stream C (random)

(0.5, 0) (0.4, 0.1) (0.3, 0.2) (0.2, 0.3) (0.1, 0.4) (0, 0.5)
100

1000

2000

3000

4000

5000

6000

7000

8000

T
hr

ou
gh

pu
t [

IO
P

S
]

Throughput of Streams for different rates (NCQ 31)

Stream A (seq)
Stream B (seq)
Total (seq)
Stream C (random)

Figure 14: Using RAID 0 the throughput achieved by each sequential stream is in agreement with their
target rates. Stream A has a varied target rate from 50% to 0 and the opposite for B. Random stream C
requires a fixed rate of 50% of the storage time. Similarly for a large disk queue depth (NCQ.)

is no drop in the total throughput, which is expected since
the cost of seeks between random requests are similar to
the typical cost of a random request. Therefore, the to-
tal throughput remains constant. Moreover, the sequential
stream (not plotted) reaches an average throughput of 3600
and 5060 IOPS with a depth of 1 and 31, respectively as
in Figure 14. Finally, note that whether we use no NCQ
or a depth of 31 the throughput behavior is similar in both
Figures (14 and 16), which is desired since a large depth can
provide a higher throughput in certain cases [26], along with
other benefits such as reducing power consumption [24].

4.5 Evaluation using traces
To strengthen our evaluation, besides synthetic workloads

we run QBox using two different days of the Deasna2 [3]
trace as two of the three read streams, while the third stream
sends random requests. Deasna2 contains semi-sequential
traces of email and workloads from Harvard’s division of
engineering and applied sciences. As the requests wait to be
dispatched, we classify them as either sequential or random
depending on the other requests in their queue.

Unlike time, evaluating a method by comparing through-
put values is hard because the achieved throughput depends
on the stream workloads. However, by looking at the through-
put achieved using QBox in Figure 17 and the results of
throughput-based scheduling in Figure 18 it is easy to con-
clude that QBox provides a significantly higher degree of iso-
lation and that the target rates of the streams are respected
well enough. Moreover, looking more closely at Figure 17,
we see that wherever the throughput is not in perfect ac-
cordance with the targets of streams A and B, there is an
increase of random requests coming from the same streams.
That effect is valid and due to the trace itself. On the other
hand, Figure 18 demonstrates the destructive interference
inherent in throughput-based reservation schemes with semi-
sequential streams receiving a very low throughput.

4.6 Caches
So far our experiments have skipped the file system cache

to more easily evaluate our method and to send requests
asynchronously, since without O DIRECT they become block-

(S:0.3, R:0.7) (0.4, 0.6) (0.5, 0.5) (0.6, 0.4) (0.7, 0.3)
0

1000

2000

3000

4000

5000

6000

7000

8000

T
hr

ou
gh

pu
t [

IO
P

S
]

Total throughput of (mostly) sequential streams (Exp. F with three disks)

Disk Queue Depth 31
Disk Queue Depth 1

(S:0.3, R:0.7) (0.4, 0.6) (0.5, 0.5) (0.6, 0.4) (0.7, 0.3)
0

50

100

150

200

250

300

350

400

T
hr

ou
gh

pu
t [

IO
P

S
]

Total throughput of (mostly) random streams (Exp. F with three disks)

DIsk Queue Depth 31
Disk Queue Depth 1

Figure 15: The throughput with an NCQ of 1 and
31 is maintained while the desired rates vary.

81

(0.5, 0.0) (0.4, 0.1) (0.3, 0.2) (0.2, 0.3) (0.1, 0.4) (0.0, 0.5)
0

40

80

120

150
T

hr
ou

gh
pu

t [
IO

P
S

]
Throughput of Streams for different rates (no NCQ)

Stream A (random)
Stream B (random)
Total (random)

(0.5, 0) (0.4, 0.1) (0.3, 0.2) (0.2, 0.3) (0.1, 0.4) (0, 0.5)
0

50

100

150

T
hr

ou
gh

pu
t [

IO
P

S
]

Throughput of Streams for different rates (NCQ 31)

Stream A (random)
Stream B (random)
Total (random)

Figure 16: Using RAID 0 the throughput of each random stream is in agreement with its target. Stream
A has a varied target rate from 50% to 0 and B from 0 to 50%. The sequential stream (not plotted) has a
utilization of 50% leading to an average of 3600 and 5060 IOPS with no NCQ and a depth of 31, respectively.

C:0% 40 60 80 100 C:50% 140 160 180 200 C:100%240

150

500

1,000

1,500

2,000

2,500

3,000

Seconds

T
hr

ou
gh

pu
t [

IO
P

S
]

Throughput with a varying utilization target (using traces)

Stream A (Trace/Semi−seq 50% − 0%)
Stream B (Trace/Semi−seq 50% − 0%)
Stream C (Random 0% − 100%)
Stream (A+B) random throughput
Stream (A+B) 20sec avg throughput
Stream (A+B) 10sec avg throughput

Figure 17: QBox provides streams of real traces the
throughput corresponding to their rate close enough
even in the presence of a random stream.

C: 0% 40 60 80 100 C:50% 140 160 180 200 C:100%240

150

500

1000

1500

2000

2500

3000

Seconds

T
hr

ou
gh

pu
t [

IO
P

S
]

Throughput with a varying utilization target (using traces) and throughput scheduling

Stream A (Trace/Semi−seq 50% − 0%)
Stream B (Trace/Semi−seq 50% − 0%)
Stream C (Random 0% − 100%)
Stream (A+B) random throughput

Figure 18: Random stream C affects throughput-
scheduling leading to a low throughput for A and B.

ing requests. Although applications such as databases may
avoid file system caches, we are interested in QBox being
applicable in a general setting. For our purposes, request
completions resulting from cache hits could be ignored or ac-
counted differently. From our experiments, detection of ran-
dom cache hits seems reliable and the well-known relation–
as explained in [7]–between the queue size and the average
latency may also be useful to improve accuracy as well as
grey-box methods [1]. However, we cannot say the same for
sequential requests due to prefetching. Moreover, since ran-
dom workloads may cover a large segment of the storage,
hits are not as likely. Hence, in this paper we treat hits as
regular completions for simplicity.

Without modifying QBox we enable the file system cache
and see from Figure 19 that although the throughput is nois-
ier than in the previous experiments due to the nature of
cache hits, we still manage to achieve throughput rates that
are in accordance with the target rates. Scheduling based
on throughput (Figure 20) gives similar results to Figure
18, supporting our position on throughput-based schedul-
ing. Finally, using synthetic workloads we get an output
of the same form as Figure 14 with a maximum sequential
throughput of 1700 IOPS (figure omitted.)

4.7 Overhead
The computational overhead is trivial. We know the most

urgent request in each stream queue and thus picking the
next request to dispatch requires as many operations as the
number of streams. Since the number of streams is expected
to be low, that cost is trivial. In addition, on a request
completion we increase a fixed number of counters and at
the end of each window we compute a fixed, small number of
intersections. The time it takes to compute each intersection
is insignificant. Finally, updating the moving estimate only
requires computing the new estimate weight. In total the
procedure at the end of each window takes less than 10μs.

5. RELATED WORK
A large body of literature exists related to providing guar-

antees over storage devices. Typically they either aim to

82

C:0% 40 60 80 100 C:50% 140 160 180 200 C:100% 240
100

1000

2000

3000

4000

5000

6000

7000

Seconds

T
hr

ou
gh

pu
t [

IO
P

S
]

Throughput with a varying utilization target (using traces) and caches

Stream A (Trace/Semi−seq 50% − 0%)
Stream B (Trace/Semi−seq 50% − 0%)
Stream C (Random 0% − 100%)
Stream (A+B) random requests
Stream (A+B) 20sec avg throughput
Stream (A+B) 10sec avg throughput

Figure 19: The throughput achieved by QBox in the
presence of caches follows the target rates.

C:0% 40 60 80 100 C:50% 140 160 180 200 C:100% 240
100

1000

2000

3000

4000

5000

6000

7000

Seconds

T
hr

ou
gh

pu
t [

IO
P

S
]

Throughput with a varying utilization target (using traces), caches and throughput scheduling

Stream A (Trace/Semi−seq 50% − 0%)
Stream B (Trace/Semi−seq 50% − 0%)
Stream C (Random 0% − 100%)
Stream (A+B) random requests

Figure 20: Throughput-based scheduling fails to iso-
late stream performance leading to a low throughput
for semi-sequential streams.

satisfy throughput or latency requirements, or attempt to
proportionally distribute throughput. Most solutions do
not distinguish between sequential and random workloads,
which leads to the storage being under-utilized. Avoiding
that distinction leads to charging semi-sequential streams
unfairly due to the significant cost difference between se-
quential and random requests. Instead, QBox uses disk ser-
vice time rather than IOPS or Bytes/s to solve that problem.

Stonehenge [8] clusters storage systems in terms of band-
width, capacity and latency, however, being based on band-
width its reservations cover only a fraction of the disk per-
formance. Other proposed solutions based on bandwidth,
include [11, 15, 2] and take advantage of the relation - as
was later explained in [7] - between the queue length and
average latency to throttle requests. mClock [6] does not
provide performance insulation, while both [6] and pClock
[5] do not differentiate between sequential and random re-
quests. Other solutions such as [9, 11, 15, 16] do not provide
insulation either. On the other hand, Argon [22] provides in-
sulation, however, workload changes may affect its provided
soft bounds. In [14], distribution-based QoS is provided to a
percentage of the workload to avoid over-provisioning. [12]
attempts to predict response times rather than service times

through statistical models. PARDA [4] provides guarantees
by assuming a specific scheduler resides on each host, unlike
QBox, which does not assume access to the hosts/clients.

Facade [15] aims to provide performance guarantees de-
scribed by an SLA for each virtual storage device. It places
a virtual store controller between a set of hosts and storage
devices in a network and throttles client requests so that the
devices do not saturate. In particular, it adjusts the queue
size dynamically, which affects the latency of each workload.
However, a single set of low latency requests may decrease
the queue size of the system and it is hard to determine
whether a new workload may be admitted.

YouChoose [27] tries to provide the performance of refer-
ence storage systems by measuring their performance off-line
and mimicking it online. It is based on an off-line machine
learning process, similar to [23], which can be hard to pre-
pare due to the challenging task of selecting a representative
set of training data. Moreover, the safe admission of new
virtual storage devices can be challenging.

Solutions based on execution time estimates such as [18,
17, 10] assume we have low-level control over each hard-
drive. Moreover, in Horizon [18] it was shown that such
a solution can be used in distributed storage systems with
single-disk nodes using the Horizon scheduler. Our work is
also based on disk-time utilization and deadline assignment,
however, we treat the storage device as a black box and
therefore do not assume our own scheduler is in front of
every hard-drive. Finally, [25, 20] reserve I/O rates using
worst-case execution times, therefore, they can only reserve
a fraction of the storage device time.

6. CONCLUSIONS
In this paper, we targeted the problem of providing isola-

tion and performance guarantees in terms of storage device
utilization to multiple clients with different types of work-
loads. We proposed a “plug-n-play” method for isolating
the performance of clients accessing a single file-level stor-
age device treated as a black box. Our solution is based on
a novel method for estimating the expected execution times
of sequential and random requests as well as on assigning
deadlines and scheduling requests using the Earliest Dead-
line First (EDF) scheduling algorithm. Our experiments
show that QBox provides isolation between streams having
different characteristics with changing needs and on storage
systems with a variable number of disks.

There are multiple directions for future work. Extensions
include support for SSDs based on the cost difference of
reads and writes as well as hybrid systems. Adding support
for writes and RAID 4, 5 is another direction. Technical
improvements include a better use of the history of requests
in computing estimates and sophisticated methods to detect
sudden and stable changes. Finally, we would like to verify
QBox works on Network Attached Storage, test it at the
hypervisor level in a virtualized environment and explore the
case where there is multiple controllers and storage devices.

7. REFERENCES
[1] A. C. Arpaci-Dusseau and R. H. Arpaci-Dusseau.

Information and control in gray-box systems. In
Proceedings of the eighteenth ACM symposium on
Operating systems principles, SOSP ’01, pages 43–56,
New York, NY, USA, 2001. ACM.

83

[2] D. D. Chambliss, G. A. Alvarez, P. Pandey, D. Jadav,
J. Xu, R. Menon, and T. P. Lee. Performance
virtualization for large-scale storage systems. In In
Proceedings of the 22th International Symposium on
Reliable Distributed Systems (SRDSÕ03, pages
109–118, 2003.

[3] D. Ellard, J. Ledlie, P. Malkani, and M. Seltzer.
Passive nfs tracing of email and research workloads. In
Proceedings of the 2nd USENIX Conference on File
and Storage Technologies, FAST ’03, pages 203–216,
Berkeley, CA, USA, 2003. USENIX Association.

[4] A. Gulati, I. Ahmad, and C. A. Waldspurger. Parda:
proportional allocation of resources for distributed
storage access. In Proccedings of the 7th conference on
File and storage technologies, pages 85–98, Berkeley,
CA, USA, 2009. USENIX Association.

[5] A. Gulati, A. Merchant, and P. J. Varman. pclock: an
arrival curve based approach for qos guarantees in
shared storage systems. In Proceedings of the 2007
ACM SIGMETRICS international conference on
Measurement and modeling of computer systems,
SIGMETRICS ’07, pages 13–24, New York, NY, USA,
2007. ACM.

[6] A. Gulati, A. Merchant, and P. J. Varman. mclock:
handling throughput variability for hypervisor io
scheduling. In Proceedings of the 9th USENIX
conference on Operating systems design and
implementation, OSDI’10, pages 1–7, Berkeley, CA,
USA, 2010. USENIX Association.

[7] A. Gulati, G. Shanmuganathan, I. Ahmad,
C. Waldspurger, and M. Uysal. Pesto: online storage
performance management in virtualized datacenters.
In Proceedings of the 2nd ACM Symposium on Cloud
Computing, SOCC ’11, pages 19:1–19:14, New York,
NY, USA, 2011. ACM.

[8] L. Huang, G. Peng, and T.-c. Chiueh.
Multi-dimensional storage virtualization. In
Proceedings of the joint international conference on
Measurement and modeling of computer systems,
SIGMETRICS ’04/Performance ’04, pages 14–24, New
York, NY, USA, 2004. ACM.

[9] W. Jin, J. S. Chase, and J. Kaur. Interposed
proportional sharing for a storage service utility.
SIGMETRICS Perform. Eval. Rev., 32:37–48, June
2004.

[10] T. Kaldewey, T. Wong, R. Golding, A. Povzner,
S. Brand, and C. Maltzahn. Virtualizing disk
performance. In Real-Time and Embedded Technology
and Applications Symposium, 2008. RTAS ’08. IEEE,
pages 319 –330, April 2008.

[11] M. Karlsson, C. Karamanolis, and X. Zhu. Triage:
Performance differentiation for storage systems using
adaptive control. Trans. Storage, 1:457–480, November
2005.

[12] T. Kelly, I. Cohen, M. Goldszmidt, and K. Keeton.
Inducing models of black-box storage arrays. In
Technical Report HPL-SSP-2004-108, 2004.

[13] C. L. Liu and J. W. Layland. Scheduling algorithms
for multiprogramming in a hard-real-time
environment. J. ACM, 20:46–61, January 1973.

[14] L. Lu, P. Varman, and K. Doshi. Graduated qos by
decomposing bursts: Don’t let the tail wag your

server. In Distributed Computing Systems, 2009.
ICDCS ’09. 29th IEEE International Conference on,
pages 12 –21, June 2009.

[15] C. R. Lumb, A. Merchant, and G. A. Alvarez. Facade:
Virtual storage devices with performance guarantees.
In Proceedings of the 2nd USENIX Conference on File
and Storage Technologies, pages 131–144, Berkeley,
CA, USA, 2003. USENIX Association.

[16] A. Merchant, M. Uysal, P. Padala, X. Zhu, S. Singhal,
and K. Shin. Maestro: quality-of-service in large disk
arrays. In Proceedings of the 8th ACM international
conference on Autonomic computing, ICAC ’11, pages
245–254, New York, NY, USA, 2011. ACM.

[17] A. Povzner, T. Kaldewey, S. Brandt, R. Golding,
T. M. Wong, and C. Maltzahn. Efficient guaranteed
disk request scheduling with fahrrad. In Proceedings of
the 3rd ACM SIGOPS/EuroSys European Conference
on Computer Systems 2008, Eurosys ’08, pages 13–25,
New York, NY, USA, 2008. ACM.

[18] A. Povzner, D. Sawyer, and S. Brandt. Horizon:
efficient deadline-driven disk i/o management for
distributed storage systems. In Proceedings of the 19th
ACM International Symposium on High Performance
Distributed Computing, HPDC ’10, pages 1–12, New
York, NY, USA, 2010. ACM.

[19] A. S. Povzner. Efficient guaranteed disk i/o
performance management. PhD thesis, University of
California at Santa Cruz, Santa Cruz, CA, USA, 2010.
AAI3429522.

[20] L. Reuther and M. Pohlack. Rotational-position-aware
real-time disk scheduling using a dynamic active
subset (das). In In Proceedings of the 24th IEEE
Real-Time Systems Symposium (RTSS 2003). IEEE,
page 374. IEEE Computer Society, 2003.

[21] M. Spuri, G. Buttazzo, and S. S. S. Anna. Scheduling
aperiodic tasks in dynamic priority systems.
Real-Time Systems, 10:179–210, 1996.

[22] M. Wachs, M. Abd-El-Malek, E. Thereska, and G. R.
Ganger. Argon: performance insulation for shared
storage servers. In Proceedings of the 5th USENIX
conference on File and Storage Technologies, pages
5–5, Berkeley, CA, USA, 2007. USENIX Association.

[23] M. Wang, K. Au, A. Ailamaki, A. Brockwell,
C. Faloutsos, and G. R. Ganger. Storage device
performance prediction with cart models.
SIGMETRICS Perform. Eval. Rev., 32:412–413, June
2004.

[24] Y. Wang. Ncq for power efficiency. White paper,
February 2006.

[25] T. M. Wong, R. A. Golding, C. Lin, and R. A.
Becker-szendy. Zygaria: storage performance as a
managed resource. In In IEEE Real Time and
Embedded Technology and Applications Symposium
(RTAS 06, pages 125–134, 2006.

[26] Y. J. Yu, D. I. Shin, H. Eom, and H. Y. Yeom. Ncq
vs. i/o scheduler: Preventing unexpected
misbehaviors. Trans. Storage, 6:2:1–2:37, April 2010.

[27] X. Zhang, Y. Xu, and S. Jiang. Youchoose: Choosing
your storage device as a performance interface to
consolidated i/o service. Trans. Storage, 7:9:1–9:18,
October 2011.

84

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Cambria
 /Cambria-Bold
 /Cambria-BoldItalic
 /Cambria-Italic
 /CambriaMath
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2003
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

