
Hierarchical Disk Sharing for Multimedia Systems

Joel C. Wu, Scott Banachowski, Scott A. Brandt
Computer Science Department

University of California, Santa Cruz
{jwu, sbanacho, sbrandt}@cs.ucsc.edu

ABSTRACT
Systems that use or serve multimedia data require timely
access to data on hard drives. To ensure adequate perfor-
mance users must either prevent overload of disk resources,
or use real-time algorithms that rely on intricate knowledge
of disk internals to meet deadline requirements. We have de-
veloped Hierarchical Disk Sharing (HDS) to allow disks to
be fully utilized while sustaining a bandwidth reservation,
without requiring detailed knowledge of the drive internals.
HDS uses a hierarchy of token bucket filters to isolate disk
accesses among clients and groups of clients, and to allow
for reclaiming of unused bandwidth. We discuss the design
of HDS and present our implementation in a Linux block
device driver, demonstrating the effectiveness (and limita-
tions) of this approach.

Categories and Subject Descriptors
D.4.2 [Operating Systems]: Storage Management—Sec-
ondary storage; D.4.8 [Operating Systems]: Performance

General Terms
Algorithms, Design, Performance

Keywords
Disk, QoS, Multimedia, Soft Real-Time

1. INTRODUCTION
Multimedia computing is ubiquitous and it is common to

find systems concurrently supporting both multimedia and
general-purpose workloads. This is also true for storage,
as multimedia files reside on the same storage devices as
other data. To meet their timing constraints, multimedia
applications must access stored data in a timely manner or
experience undesired performance such as jitter, drop-outs,
or other audio and video glitches.

Applications typically access data without regard for oth-
ers by successively requesting multiple blocks as fast as the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
NOSSDAV’05, June 13–14, 2005, Stevenson, Washington, USA.
Copyright 2005 ACM 1-58113-987-X/05/0006 ...$5.00.

storage device permits. This may negatively impact per-
formance when multimedia applications, which require sus-
tained disk bandwidth to read and decode data on time,
must compete for disk resources while other applications
greedily use it for non-real-time purposes. Since we can-
not in general expect applications to cooperatively share
the disk, it is the role of the operating system to provide
resource isolation by allowing time-critical applications to
access data at reserved levels of service (reservations), or by
limiting the amount that competing applications may inter-
fere with each other (fairness).

This paper describes Hierarchical Disk Sharing (HDS), an
algorithm for reserving and partitioning the bandwidth to
disk and other block storage devices among different applica-
tions, or groups of applications (which we call classes). The
principle behind HDS is based on the hierarchical link shar-
ing for networks [6]. HDS provides capability that is absent
in current commodity operating systems. One of our main
design goals is that the reservation mechanism be indepen-
dent of high-level features like file-systems, and low-level fea-
tures like disk schedulers, so that it can be employed across
many systems, including storage network devices. Therefore
we chose to implement our prototype of HDS in the block
device layer of the Linux kernel.

2. BACKGROUND AND RELATED WORK
Time-sensitive storage access is addressed by real-time

disk scheduling algorithms [7]. Generally, real-time disk
schedulers are designed for homogeneous applications such
as video-on-demand. In such systems, disk requests have
deadlines. The requests are typically ordered based on some
combination of real-time scheduling technique and disk seek
optimization scheme (e.g. SCAN-EDF). These algorithms
do not support mixed-workload environment well.

More elaborate disk schedulers (whether real-time or not)
that take into account the seek time and rotational latency,
require the use of accurate disk models. Using such low-
level information may provide predictable service guaran-
tees [8]. A challenge facing the practical deployment of
these schedulers in commodity systems lies in their depen-
dency on intricate knowledge of drive internals (which must
be determined by probing the disks [5, 12]). This run-time
information is difficult to obtain for an external schedul-
ing algorithm, and low-level disk properties must be known
and well-characterized for each different model of drive. Ex-
acerbating the issue is the increasing intelligence of drive
firmware, which limits the effectiveness of these algorithms
to special-purpose systems. Our goal is to provide better

Disk

Best-Effort
Soft Real-TIme

P
s1
 P
b3
P
b2
P
b1
P
s2

100%

40%
 60%

20%
 15%

P
b4

80%
 30%
30%
25%

G

C
 C

P
P
P
P
P
P

Figure 1: HDS allows arbitrary mix of shares con-
trolled by Global bucket, Class buckets, and Process
buckets.

support using commodity equipment.
Real-time disk schedulers provide fine-grained control of

disk requests based on the deadlines of the disk requests. For
many applications, this amount of control is unnecessary.
For example, for many soft real-time applications it is more
important to achieve a constant data rate (a constant quality
of service (QoS)) than to meet the deadlines of individual
disk requests. Our approach is to provide better QoS over
aggregate data rates.

Some QoS-aware schedulers are designed specifically to
address mixed workloads [4, 10, 11]. These are typically two-
level schedulers that classify disk requests into categories
such as real-time, best-effort, and interactive. Each class
has its own scheduler, and the requests from different classes
are merged by a meta-scheduler. The number of classes is
limited and static. Our multi-level approach allows the dy-
namic creation and removal of classes at run-time. YFQ [1]
offers similar capability to HDS, using different mechanisms.

The techniques we employ in HDS are already used for
managing networking resources. Our resource allocation
policies are based on the hierarchical link-sharing mecha-
nism for networks [6]. Like that system, we isolate traffic
by separating the requests of different applications or types
of application; disk blocks are analogous to packets, and
bandwidth represents the number of blocks accessed over a
period of time.

The mechanism we use to control disk bandwidth is also
based on a networking technique: token bucket filters [9],
which were designed for network flow control. Again, we
view the disk as a resource that can be divided into a band-
width analogously to a network. However, unlike network
bandwidth, disk bandwidth fluctuates due to variations in
seek times for different disk requests.

3. HIERARCHICAL DISK SHARING
Traditional disk access is best-effort; there are no guar-

antees for the timing of accesses. Acceptable performance
is achieved when the disk is not overloaded. When demand
for disk bandwidth exceeds the supply, all of its users may
experience performance degradation.

Our approach to this problem is to provide a mechanism
that allows reservations of disk bandwidth, graceful degra-
dation under heavy load, and reclaiming of unused reserva-
tions. A hierarchical structure for resource sharing provides
a basis for meeting all of these goals. This section describes
the Hierarchical Disk Sharing (HDS) approach.

3.1 Disk usage accounting
Specifying a disk reservation by bandwidth is intuitive,

but disk bandwidth is not constant; service times vary de-
pending upon the initial position of the read-write head, the
position of the requested data on the disk, the low-level disk
scheduling algorithm, etc. Translating bandwidth require-
ment into low-level disk operations is a complicated task [2].
Alternatively, specifying disk reservation by a reserved time-
slice (instead of bandwidth) may result in different amounts
of data being retrieved per time-slice, and the specification
of disk time is not intuitive from the user’s perspective.

Existing reservation-capable schedulers must contend with
this issue. The Cello [10] scheduler presents two methods of
accounting, either by size or time. Some schedulers allow
reservations in terms of number of requests [1, 11]. How-
ever, requests may also vary in size and service time.

To fulfill QoS goals, the system must provide performances
in line with the user’s expectation, regardless of the amount
of work that the disk is actually doing on behalf of differ-
ent users. We expect users to perceive the quality of ser-
vice for disk by the bandwidth (data rate) that it can pro-
vide. Therefore HDS accounts for disk usage in terms of
bandwidth, and so does its accounting based on the actual
amount of data transferred.

3.2 Hierarchical structure
A disk’s bandwidth is divided between applications in a

hierarchical tree structure; an example is pictured in Fig-
ure 1. Each leaf node represents a point of control for ac-
cessing the disk. Therefore, each leaf-node is associated with
an individual client of the disk; in our implementation a leaf
node corresponds to a Linux process. When a process first
attempts to access the disk, a leaf node is created and added
to the tree, and when it quits, its node is removed.

Non-leaf nodes are called classes, and represent a group
of clients. The children of a class node may be leaf nodes
or other class nodes. For example, a class node might rep-
resent a user logged onto the system, with all its children
representing processes created by this user. The parent of
the user class node may itself be a class node representing
the user’s department. In Figure 1 classes represent differ-
ent types of processes, to isolate best-effort and real-time
traffic. The latter approach is useful for multimedia servers
in order to isolate traffic with time constraints from other
traffic.

Trees may be created to control disk accesses in many
flexible configurations, and we expect that a system admin-
istrator or other expert may to choose how to set up a par-
ticular system. Our system has an interface for construct-
ing the desired class hierarchy, including dynamically adding
and deleting classes; for brevity the interface description has
been left out of this paper.

3.3 Hierarchical reservation
Each node x has an associated reservation rx, determined

by the reservations of nodes above it in the tree structure.
There are two modes for a node to specify its reservation: it
is either an absolute fraction fx or a relative fraction, based
on a weight wx, of the parent node’s reservation. The root
node has an absolute fraction of 1.

If a node x has an absolute reservation fx (between 0
and 1), its reservation is this fraction of its parent’s reser-
vation. For example, because the root node has r0 = 1, a

child of the root with fx = 0.4 will have a reservation of
rx = fxr0 = 0.4. The sum of absolute fractions among any
node’s children may not exceed 1.

A class’s bandwidth that is not used by absolute reserva-
tions is shared by its other children in proportion to their
relative weights. For example, consider a class node (node p)
with reservation rp = 0.5, and three children nodes (a,b,
and c), the first with absolute fraction fa = 0.4, and the
others with relative weights wb = 4 and wc = 6. Be-
cause node a is absolute ra = 0.4rp = 0.2, leaving 0.6rp =
0.3 left for nodes b and c. Node b’s reservation is rb =
(0.6rp)4/(4 + 6) = 0.24rp = 0.12, and node c’s reservation
is rc = (0.6rp)6/(4 + 6) = 0.36rp = 0.18.

In the default setting, clients are added to a parent node
with equal weight to promote fair sharing. When a client
needs a higher level of service than others, it may do so by
either increasing its weight or requesting an absolute frac-
tion of its parent bandwidth. If the nodes on the path from
a client to the root all have absolute reservations, then the
client effectively reserves a static fraction of the total disk
bandwidth; if any node in this path has a relative reser-
vation, the node’s reservation may vary when other nodes
join or leave the structure. HDS allows administrators to
set permissions for adding classes or nodes, changing reser-
vations, admission control, etc. These policy-based controls
are outside the scope of this paper.

3.4 Token bucket implementation
In the previous section we explained that each node in

the hierarchical tree structure has a value representing its
current reservation of the disk. We now describe our mech-
anism for enforcing these reservations using token bucket
filters at each node of the hierarchy. Current Linux distri-
butions include a Hierarchical Token Bucket (HTB) filter for
the network driver [3]. We developed HDS for the block de-
vice driver independently of the network driver—they share
no common code and the algorithms differ (although the
basic goals of operation are essentially the same).

Disk bandwidth may be controlled at different points in
the I/O stack. HDS is a the block-device layer, which is
below the file system and above the external disk scheduler.
The regulation of disk bandwidth in HDS is implemented
using token bucket filters. In order to make disk requests, a
client must possess tokens. In HDS, each token represents
1 Kb of data, meaning a request for 16 Kb of data requires
16 tokens. Each node x in the hierarchy has an associated
bucket, which may hold up to Nx tokens. When a client
request is serviced, tokens are removed from its bucket. To-
kens are replenished at a rate corresponding to the client’s
reservation. If the root token rate is T0, then node x with
reservation rx will replenish tokens at rate Tx = rxT0. The
root token rate represents the entire bandwidth of a disk,
for example if a disk supports an average throughput of
20 Mb/second, the root token rate T0 = 20K tokens/second.

Only leaf nodes make requests, although every node has a
token bucket. The token buckets of non-root nodes facilitate
sharing of bandwidth among nodes. In addition to their own
tokens, nodes may use tokens from their parents (which in
turn, may use those of their parents). The effect is that
unused bandwidth is shared first among nodes of the same
class, then among parent class, and, eventually, globally.

replenish(x)
cx = max(cx + (t − lx)Tx, Nx)
lx = t

decrement(x, size)
cx = cx − size
if(Px! = root) decrement(Px, size)

node can make request(x, size)
if(size > cx) replenish(x)
if(cx ≥ size) return x
if(Px! = root) return can make request(Px, size)
return null

make request(x, size)
y = can make request(x, size)
if(y)

decrement(y, size)
else

decrement(x, size)
sleepfor((size − cx)/Tx)

endif
do disk access

Figure 2: Functions used by the HDS algorithm.

Definitions. The following definitions are used to describe
the algorithm: The current time is t. For a node x, Px is
its parent, Nx is its bucket size, cx is the number of tokens
currently in its bucket, Tx is the token rate, and lx is the
last time its bucket was replenished. Pseudo-code for the
algorithm is in Figure 2.

To make a disk request, the client calls the function
make request(), with arguments indicating its node and the
size of the request (all client nodes are leaf nodes). If the
client, or any of its ancestors, has enough tokens to satisfy
the request (determined by can make request()), then the
disk access proceeds immediately, otherwise the calling pro-
cess is suspended until enough time passes to acquire the
necessary tokens. This blocking mechanism forces clients to
throttle their request rate to their token rate, thus enforcing
the bandwidth reservation.

The function can make request() determines if a node
has enough tokens to meet the request. If the node’s current
token supply is low, it calculates the number of tokens that
should be replenished since its last request. If the node
still does not have enough tokens to service the request, it
determines if a higher-level node in its hierarchy does by
recursively calling can make request() to its parent. If no
node in the caller’s path to the root may satisfy the request,
can make request() returns null, otherwise it returns the
identity of the node that satisfies the request.

Before servicing the disk request, make request() decre-
ments the tokens from the bucket of the node supplying the
tokens. Decrement is a recursive function, so tokens are also
removed from the buckets of all higher-level nodes.

3.5 Properties
Only leaf nodes initiate requests. Because every node

has its own supply of tokens, HDS guarantees that every
node is always able to freely request up to its reservation
in disk requests (allocated at rate Tx, and corresponding to
x’s reservation rx). HDS also allows clients to consume any
extra bandwidth by using tokens supplied by parent nodes

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 0 5000 10000 15000 20000 25000

Re
ce

ive
d

Ba
nd

wi
dt

h
(K

B/
s)

Requested Bandwidth (KB/s)

Stream 1
Stream 2

(a) Normal Linux system behavior.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 0 5000 10000 15000 20000 25000

Re
ce

ive
d

Ba
nd

wi
dt

h
(K

B/
s)

Requested Bandwidth (KB/s)

Stream 1: 50%
Stream 2: 50%

(b) With HDS sharing of 50%-50%.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 0 5000 10000 15000 20000 25000

Re
ce

ive
d

Ba
nd

wi
dt

h
(K

B/
s)

Requested Bandwidth (KB/s)

Stream 1: 70%
Stream 2: 30%

(c) With HDS sharing of 70%-30%.

Figure 3: The effect of overload on throughput.

recursively, up to the root node. This hierarchical structure
provides a method for clients to reclaim bandwidth that is
reserved, but not used, by others.

When a node drains tokens from its own bucket, it also
drains those from higher-order buckets. The result is that
when a class’s children make disk requests, the class’s tokens
will be drained as well. If some of the children are not fully
using their reservation, the parent will have surplus tokens.
These tokens are available to other children when their own
supply runs out, so that a node that has exceeded its reser-
vation may still be able to proceed. Bandwidth isolation is
preserved not only between leaf nodes, but at the class level,
and, in fact, at every level of the hierarchy.

4. EXPERIMENTS WITH HDS
We ran several experiments to demonstrate the ability of

HDS to shape disk traffic, using synthetic applications to
generate disk workload. We focus mostly on read workloads
both because multimedia is typically read intensive and be-
cause write performance is often aided by buffering. Our
test system is a 1.5 GHz P4 with 512MB of RAM. The disk
is a Seagate ST340810A IDE drive formatted with the ext2
file system.

Figure 3 shows a situation where disk bandwidth has be-
come saturated. Two processes are reading from the disk
simultaneously, at the same rate. The x-axis shows the re-
quested bandwidth and the y-axis shows the measured re-
ceived bandwidth. Figure 3(a) shows the result on unmod-
ified Linux. Both processes receive their desired bandwidth
until the disk became saturated with requests (i.e. the sum
of requested bandwidth exceeds the total disk bandwidth).
There is no isolation, so at that point actual throughput is
unpredictable, and varies considerably.

HDS provides reservation and isolation of bandwidth. Fig-
ure 3(b) shows the same experiment with HDS, where each
task reserves equal relative weight. At saturation the band-
width divides evenly between the streams, and achieved
throughput is very stable. This fair-sharing comes at the
expense of slightly lower overall disk throughput because
we limit the number of requests. Section 5 discusses future
work for alleviating this effect by varying the root token rate
based on observed performance.

Figure 3(c) shows the same workload again, while demon-
strating HDS’s reservation capability. We allocated 70% of

the disk to stream 1 and 30% stream 2. Below disk overload,
each process receives what they request. As the requested
bandwidths exceed the disk capability, the reservation mech-
anism begins to take effect. Stream 1 continues to receive a
higher level of service based on its share. Once the 70%-30%
share is reached, the bandwidth received by each process re-
mains constant as the rate of disk requests increases. The
average throughput for stream 1 at full rate is 12.7 MB/s,
about 70% of the total disk bandwidth of 18 MB/s , and for
stream 2 it is 5.7 MB/s, about 30% of the total bandwidth.

The next experiment shows the ability of HDS to pro-
vide hierarchical resource sharing. We created two classes,
A and B, each reserving 50% of the disk. Stream 1 be-
longs to Class A, so it reserves 100% of the class reservation.
Streams 2 and 3 belong to Class B, and reserve 65% and 35%
of Class B’s reservation, respectively. Figure 4 shows that
all three streams receive bandwidths corresponding to their
allocation, with no interference from each other.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0 20 40 60 80 100 120 140 160 180

Th
ro

ug
hp

ut
 (K

B/
s)

Time (s)

Stream 1 (100% of class A)
Stream 2 (65% of class B)
Stream 3 (35% of class B)

Figure 4: Isolation of bandwidths. Class A and B
reserve 50% each. All streams are greedy.

Excess bandwidth may be available when a process needs
more than its reserved share. Figure 5 shows this scenario.
In this experiment, there are two classes and three streams.
Class A and B each reserve 50%. Stream 1 and 2 belong
to Class A and reserve 80% and 20% of its bandwidth.
Stream 3 belongs to class B, so receives 100% of its band-
width. At the beginning, only Stream 1 is active. Although
its total share is only a fraction of the total bandwidth (its

 0
 2000
 4000
 6000
 8000

 10000
 12000
 14000
 16000
 18000
 20000

 0 20 40 60 80 100 120 140 160 180

Th
ro

ug
hp

ut
 (K

B/
s)

Time (s)

Stream 1 (80% of class A)
Stream 2 (20% of class A)

Stream 3 (100% of class B)

Figure 5: Using unassigned bandwidth. Class A and
B reserve 50% each. All streams are greedy.

share is 40%), because no other tasks are active it receives
the total disk bandwidth. At time 60 Stream 2 becomes
active. There is still excess bandwidth because Class A’s
share is only 50%. The excess bandwidth is distributed to
Streams 1 and 2. From time 60 to time 120, they receive
their fair-share plus the excess bandwidth. Excess band-
width is allocated on first-come first-serve basis, accounting
for the observed variation in actual rate (this variation is a
topic for future investigation). At time 120 Stream 3 begins
and, now fully loaded, the nominal reservations are enforced.

5. FUTURE WORK
The throughput of a disk during overload depends on the

workload. Since the totality of resource can vary, propor-
tional sharing is often used to allocate a fraction of the band-
width to different shares [10, 1]. The utility of this is limited
because the bandwidth received by a client under the frac-
tional guarantee can vary. In many circumstances it would
be more useful to have assurances in terms of data rates, and
not in terms of a fixed fraction of a dynamically changing
total bandwidth.

HDS is able to provide assurance in terms of data rates
with absolute reservation and knowledge of the root node
bandwidth. However, the unpredictable nature of storage
also presents a problem for HDS. Thus far we have assumed
that the disk bandwidth is fixed. Although convenient, as
already noted, this assumption is not true; the throughput
of a disk during overload depends on the workload. This is
highlighted in the experiment shown in Figure 6 (without
HDS), where we introduced 8 greedy streams in 25 second
intervals. The upper line shows total throughput. As the
offered load increases, the total achieved bandwidth varies
significantly.

HDS uses a conservative estimate of total bandwidth. This
under-utilizes the disk, but allows HDS to provide the re-
served bandwidth. The more aggressively HDS utilizes the
disk, the less effective it is at providing isolation and sharing.
As (shown in Figure 7 and having the same workload as Fig-
ure 4) we increased the bandwidth of the root node 384 Kb/s
every 20 seconds, the share mechanism became less effective,
failing completely about 2 minutes into the experiment after
an increase in disk bandwidth of about 2 Mb/s.

We plan to increase the performance of HDS by addressing
this issue. One possible solution is to adapt the total rate

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0 50 100 150 200

Th
ro

ug
hp

ut
 (K

B/
s)

Time (s)

Stream 1-8
Total

Figure 6: Effect of changing workload on total
throughput.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 0 20 40 60 80 100 120 140 160 180

Th
ro

ug
hp

ut
 (K

B/
s)

Time (s)

Stream 1 (80% of class A)
Stream 2 (20% of class A)

Stream 3 (100% of class B)

Figure 7: Effect of increasing root node bandwidth
on sharing.

of the root node based on the current disk performance, or
the effectiveness of the current reservations. For example,
we may monitor the actual rates at nodes during overload
and, if they do not match their reservations, we may adjust
the root token rate downward until they do.

We implemented a heuristic to show the benefit of adjust-
ing the root node’s bandwidth in response to performance,
shown in Figure 8. Stream 2 begins at time 40, and the two
streams maintain their relative share of 3:1 from time 40
to 70. The adaptive mechanism is triggered at time 70; it
attempts to increase the total bandwidth without violating
the reservations. The algorithm increases the global token
rate if the current measured shares are accurate; otherwise
it decreases the global token rate. After the adjustment
at time 70, the throughput of Stream 1 is increased while
Stream 2 maintains its constant rate. This algorithm is slow
to adapt, but illustrates preliminary work along this direc-
tion.

With a dynamically changing bandwidth for the root node,
the absolute and relative weighted sharing of HDS can be
augmented by a third type of reservation, absolute band-
width reservation, where a portion of the bandwidth is set
aside for reservation in terms of bandwidth, and the rest of
the bandwidth is available for proportional reservation by
either absolute or relative weighted sharing. The portion
of bandwidth set aside for absolute reservation can be pro-
tected during overload by monitoring and throttling the rate

 0

 5000

 10000

 15000

 20000

 0 20 40 60 80 100 120

Th
ro

ug
hp

ut
 (K

B/
s)

Time (s)

Stream 1 (max, 25%)
Stream 2 (13.5 MB/s, 75%)

Figure 8: Maximizing total throughput.

of the proportional share portion.
Adapting the root token rate dynamically also solves an-

other problem for HDS—that the throughput of a disk is
unknown without testing. In our experiments, the default
token rate was set to a value we predetermined based on
previous average throughput measurements. If deployed in
a commodity system, the disk performance on other disks
will be unknown. Using an adaptive root token rate will
allow HDS to dynamically discover appropriate rates when
applied to an unknown disk.

Other future work includes investigating the interaction
between HDS and low-level disk schedulers. Although one
of our stated goals is to avoid dependence on disk scheduler,
our algorithm need not ignore that many low-level sched-
ulers have similar goals which we can leverage by managing
the ordering of related requests. Another area to investigate
is the effect of prefetching on our token-cost structure. In
addition to the streaming workloads of file data, the block
device driver where we implemented HDS sees requests for
metadata and prefetches from the file system, facts that
HDS has so far ignored.

6. CONCLUSION
Hierarchical Disk Sharing (HDS) supports flexible and dy-

namic sharing of storage resources. It allows processes to
reserve disk bandwidth, and effectively isolates disk clients,
providing them with their reserved share. HDS uses a hier-
archical structure for allocating disk bandwidth that simpli-
fies reservations and allows processes to reclaim unreserved
or reserved but unused bandwidth. We implemented the
HDS in Linux and demonstrated its ability to isolate the
disk traffic of clients and provide storage quality of service.
During overload, clients receive at least their reserved share
of bandwidth, in isolation from other competing loads. The
effectiveness of HDS is determined by the choice of the algo-
rithm’s maximum disk bandwidth. We are currently devel-
oping an algorithm that will allow the entire disk bandwidth
to be dynamically adjusted, automatically adapting to new
platforms and changing workloads. Our eventual goal is to
apply HDS in an overall end-to-end QoS framework for dis-
tributed storage.

Acknowledgments
This research was supported in part by Lawrence Livermore
National Laboratory, Los Alamos National Laboratory, and

Sandia National Laboratory under contract B520714; also
by Intel Corporation and a DOE High-Performance Com-
puter Science Fellowship.

7. REFERENCES
[1] J. Bruno, J. Brustoloni, E. Gabber, B. Ozden, and

A. Silberschatz. Disk scheduling with quality of
service guarantees. In IEEE International Conference
on Multimedia Computing and Systems, volume 2,
pages 400–405, June 1999.

[2] S. Childs. Portable and adaptive specification of disk
bandwidth quality of service. In Proceedings of the 9th
International Workshop on Network and Operating
Systems Support for Digital Audio and Video
(NOSSDAV), June 1999.

[3] M. Devera. Hierarchical token bucket.
http://luxik.cdi.cz/~devik/qos/htb/.

[4] Z. Dimitrijevic and R. Rangaswami. Quality of service
support for real-time storage systems. In Proceedings
of the International IPSI-2003 Conference, October
2003.

[5] Z. Dimitrijevic, R. Rangaswami, and E. Chang.
Diskbench: User-level disk feature extraction tool.
Technical report, UCSB, November 2001.

[6] S. Floyd and V. Jacobson. Link-sharing and resource
management models for packet networks. IEEE/ACM
Transactions on Networking, 3(4):365–386, 1995.

[7] J. Gemmell, H. Vin, D. Kandlur, P. Rangan, and
L. Rowe. Multimedia storage servers: A tutorial and
survey. IEEE Computer, 28(5):40–49, 1995.

[8] L. Reuther and M. Pohlack. Rotational-position-aware
real-time disk scheduling using a dynamic active
subset (DAS). In Proceedings of the 24th IEEE
Real-Time Systems Symposium (RTSS 2003). IEEE,
December 2003.

[9] S. Shenker, C. Partridge, and R. Guerin. Specification
of guaranteed quality of service. RFC 2212, September
1997.

[10] P. Shenoy and H. Vin. Cello: A disk scheduling
framework for next generation operating systems. In
Proceedings of the ACM SIGMETRICS Conference on
Measurement and Modeling of Computer Systems,
pages 44–55. ACM Press, 1998.

[11] R. Wijayaratne and A. L. Reddy. Integrated QOS
management for disk I/O. In Proceedings of the IEEE
International Conference on Multimedia Computing
and Systems, pages 487–492, June 1999.

[12] B. Worthington, G. Ganger, Y. Patt, and J. Wilkes.
On-line extraction of SCSI disk drive parameters. In
Proceedings of the 1995 ACM SIGMETRICS
Conference on Measurement and Modeling of
Computer Systems, pages 146–156. ACM Press, 1995.

