
Improving Control Performance Using Discrete Quality of Service Levels in
a Real-Time System †

Caixue Lin, Pau Martı́, Scott A. Brandt, Scott Banachowski
Computer Science Department

University of California
Santa Cruz, CA, USA�

lcx,pmarti,sbrandt,sbanacho � @cs.ucsc.edu

Manel Velasco and Josep M. Fuertes
Automatic Control Department

Universitat Politècnica de Catalunya
Barcelona, Spain�

manel.velasco,josep.m.fuertes � @upc.es

Abstract

Traditional control systems employ fixed sampling in-

tervals. Recent work in integrated control and real-time

systems has resulted in control systems in which the sam-

pling interval may vary based on the state of controller

performance. Modern real-time systems provide mecha-

nisms for dynamically adapting application resource us-

age based on system state and application needs. In this

paper we investigate employing this mechanism to allow

several control applications to dynamically adapt their

resource usage so that they receive enough of the lim-

ited resources to achieve their goals, but do not greedily

consume resources, allowing the system to be utilized by

other applications as well. Our preliminary results show

that this technique can result in significantly lower con-

troller error (by an average of over 20% in our experi-

ments) with no increase in overall resource usage.

1. Introduction

Recent work in flexible real-time provides applica-
tions with the opportunity to adapt to available system
resources [2]. When processes do not meet enough dead-
lines to provide adequate Quality of Service (QoS), they
adapt by changing their processing requirements. Sim-

† This work was supported in part by Intel Incorporation, by De-
partament d’Universitats, Recerca i Societat de la Informació de
la Generalitat de Catalunya, and by Spanish Ministerio de Cien-
cia y Tecnologia Project ref. DPI2002-01621.

ilarly, researchers have examined ways to provide sim-
ilar soft functionality to control applications by allow-
ing the applications to change their sampling intervals,
along with their control law, on the fly [4]. The reason-
ing is that when the system is stable, the control appli-
cation need not monitor and control the plant as aggres-
sively, and by reducing the sampling interval, the task
consumes less resources than the worse-case. Generally,
smaller sampling intervals consume more resources and
yield better control, while larger sampling intervals con-
sume less resources but may yield larger errors.

This paper examines using an adaptive Quality of
Service (QoS) framework to support these new flexi-
ble control applications. The contributions of this work
are the implementation of an adaptive QoS soft real-
time scheduling framework in an integrated real-time
scheduler, and the application of this framework to the
problem of supporting flexible control applications. The
novel aspects of the design include the elimination of
static benefit functions associated with different levels
of QoS in favor of dynamic benefits based on a novel
function of instantaneous controller error. Overall, we
show scenarios in which this technique reduces the er-
ror of an individual controller by as much as 40% and
reduces the average error of all executing controllers by
about 22%.

2. Flexible Real-Time Processing

We implemented the Adaptive QoS system in the
Rate-Based Earliest Deadline (RBED) Linux system [2].

RBED provides fully integrated scheduling of hard real-
time, soft real-time, and best-effort processes. RBED
dynamically adjusts both the utilizations and periods of
applications so that it flexibly supports several flavors of
real-time, soft real-time and best-effort processing.

To support Adaptive QoS applications, we have im-
plemented a modified version of the DQM QoS Level
real-time system [1] in the RBED system. QoS Lev-
els allow discrete application adaptation. Each applica-
tion provides to the system a table specifying the dis-
crete levels at which it can operate, the relative amount
of resources required to run at each level, and the rela-
tive benefit of running at each level. Then, a QoS man-
ager analyzes the information provided by each applica-
tion to determine its allocation strategy.

3. Flexible Control

Traditional control specifications are used to obtain
static controllers; given a set of different control applica-
tion scenarios, a controller is designed with enough ro-
bustness to cope with all of them while achieving the de-
sired application performance. When using a static con-
troller we obtain the same average performance (e.g.,
benefit) for all application scenarios. However, if we ex-
ecute specific controllers for each application scenario,
we may maximize the overall benefit by executing each
controller according to the application dynamics.

Consequently, in our system we design different con-
trollers for different scenarios, each one delivering a spe-
cific performance level (benefit) and demanding a spe-
cific CPU share (utilization). Note that each controller’s
benefit relates to control performance in the sense that
higher execution rates yield better control performance.
Therefore, it is desirable to execute each task with the
highest rate controller. However, this is not always fea-
sible due to the limited availability of computing re-
sources. In a situation with several tasks, each one with
few candidate controllers, we must choose for each task
the appropriate controller such that the overall benefit is
maximized taking into account resource availability. To
solve the problem of choosing the appropriate combina-
tion of controller levels, we allow the system to obtain

feedback information from the controlled plants. To do
so, the norm of the state vector of each controlled pro-
cess (that may be appropriately weighted), which cap-
tures all of the control system dynamics, will be used as
a feedback information. Based on the feedback informa-
tion (i.e. the control errors) from the control tasks, the
system re-scales the benefits, and from these dynamic
benefit values the best controller per task is chosen (re-
fer details to [?]).

It is worth to mention that in Cervin et al. [3] a system
in which feedback from control tasks is used to adjust
the workload by rescaling the task periods is presented.
However, in this work all periods are rescaled each time,
and there is no provision to trade-off resources among
tasks that need them more urgently.

4. Results

To show the performance achieved using dynamic
period adjustment, we simulated the control tasks, and
ran them in the RBED scheduler. The simulated control
tasks were configured with the QoS Levels described in
Table 1.

Table 1: Benefit tables for the control tasks

Number of QoS Levels: 4
Level Benefit % CPU Period
1 0.80 40% 0.2 s
2 0.56 27% 0.3 s
3 0.40 20% 0.4 s
4 0.32 16% 0.5 s

We evaluate the performance of the system by com-
paring the performance of control tasks control-
ling inverted pendulums with and without dynamic
scaled adaptation. In the non-flexible case, bene-
fits are static so the period chosen by the controller
does not change throughout the execution. With adap-
tation, the benefit of each QoS level is scaled in pro-
portion to the dynamic control error. This means as
the controller executes its benefit will be scaled, possi-
bly triggering the QoS adaption mechanism to alter the
sampling periods of the controller tasks.

To evaluate the performance of the system, we con-
sider three control tasks. A hard real-time task HRT with

 0

 2

 4

 6

 8

 0 1 2 3 4 5 6 7 8 9

A
ng

le
 (r

ad
ia

ns
)

 1

0*
P

er
io

d
(s

)

Time (s)

Task1: Error
Task2: Error
Task3: Error

Task1: Period
Task2: Period
Task3: Period

 0

 2

 4

 6

 8

 0 1 2 3 4 5 6 7 8 9

A
ng

le
 (r

ad
ia

ns
)

 1

0*
P

er
io

d
(s

)

Time (s)

Task1: Error
Task2: Error
Task3: Error

Task1: Period
Task2: Period
Task3: Period

(a) Adaptation (not overlapped) (b) Adaptation (partially overlapped)

 0

 2

 4

 6

 8

 0 1 2 3 4 5 6 7 8 9

A
ng

le
 (r

ad
ia

ns
)

 1

0*
P

er
io

d
(s

)

Time (s)

Task1: Error
Task2: Error
Task3: Error

Task1: Period
Task2: Period
Task3: Period

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10

C
um

ul
at

iv
e

E
rr

or

Time (s)

Task1: w/Adaption
Task2: w/Adaption
Task3: w/Adaption

Task1: w/out Adaption
Task2: w/out Adaption
Task3: w/out Adaption

(c) Adaptation (fully overlapped) (d) Cumulative error (not overlapped)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10

C
um

ul
at

iv
e

E
rr

or

Time (s)

Task1: w/Adaption
Task2: w/Adaption
Task3: w/Adaption

Task1: w/out Adaption
Task2: w/out Adaption
Task3: w/out Adaption

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10

C
um

ul
at

iv
e

E
rr

or

Time (s)

Task1: w/Adaption
Task2: w/Adaption
Task3: w/Adaption

Task1: w/out Adaption
Task2: w/out Adaption
Task3: w/out Adaption

(e) Cumulative error (partially overlapped) (f) Cumulative error (fully overlapped)

Figure 1: Summary of Results. Graphs (a), (b) and (c) show the variation on control tasks periods ac-
cording to the inverted pendulum error, for each scenario. Graphs (e), (f) and (g) show the cumula-
tive error achieved by each control task with and without adaptation, for each scenario.

period of 0.5s and execution time of 0.05 s. (10% CPU
bandwidth) and a CPU bound best-effort task BE are
also running simultaneously with the control tasks. The
control tasks start running at the same time and initially
are in stable states. We perturb each task controlled sys-
tem at different times in the different scenarios. First, a

perturbation is triggered at different times for each con-
trol task with large enough gaps that only one task has
controller error at any one time, i.e., not overlapped. Sec-
ond, a perturbation is triggered at different times for
each control task with small enough gaps that multi-
ple controllers have error at the same time, i.e., partially

overlapped. Third, a perturbation is triggered simultane-
ously for all control tasks, i.e., fully overlapped.

Figures 1 (a), (b) and (c) show the resulting perfor-
mance of the control tasks in these scenarios. In Fig-
ure 1(a) the system dynamically reallocates the system
resources to allow the controller with the greatest error
to run at a higher sampling frequency while lowering the
sampling frequency of the controller with the least er-
ror. As the perturbations are sufficiently far apart, there
is only one application with any error at a time and this
application is always allowed to run at it’s highest level
while it is responding to the perturbation. This results in
an overall controller error of 1.61, 25.3% less than with-
out adaptation (refer details to [?]). The results for the
case of partially overlapped (Figure 1, (b)) are similar to
the previous one except that the partial overlap of the er-
rors requires greater sharing of the resources. Neverthe-
less, the controller error numbers are almost identical,
with total error of 2.16 without adaptation and 1.61 with
adaptation for a 25.3% reduction overall. In the last sce-
nario (Figure 1 (c)), the overlap of the errors is nearly
complete and no benefit is achieved by reallocating the
resources. Thus each controller continues to run mostly
at its original level and there is little difference between
the two cases.

The accumulated error for each task, shown in Fig-
ure 1 (e), (f) and (g), provides a good way to com-
pare the performance of the system in the various sce-
narios, without and with adaptation. In Scenario 1 (not
overlapped) and Scenario 2 (partially overlapped), the
tasks with adaptation have much less cumulative error
than those without adaptation. In Scenario 3 (fully over-
lapped), there is almost no gap between the accumulated
error of the two cases, again reflecting the lack of room
for adaptation due to the overlapping errors.

Overall in these three scenarios the controllers
achieved 22.3% less error. While the actual bene-
fit in real system will vary, the artificially constructed
worst-case parameters of Scenario 3 (fully over-
lapped) are unlikely to occur in practice and we expect
that the system will therefore provide significant perfor-
mance improvements in most real situations.

5. Conclusion

Traditional control and hard real-time systems have
evolved hand-in-hand. Our work continues this evolu-
tion by merging flexible control with adaptive soft real-
time processing. We have extended the RBED integrated
real-time scheduler to include dynamic QoS Level soft
real-time processing, and implemented an flexible con-
trol system on this platform. We show significant perfor-
mance improvement when using our QoS level frame-
work to execute flexible control applications with up to
40% improvement (refer details to [?]) in some con-
trollers and an average of 22% improvement over all of
our experiments, with no corresponding increase in re-
source usage (refer details to [?]).

References

[1] S. Brandt and G. Nutt. Flexible soft real-time processing

in middleware. Real-Time Systems, 22:77–118, 2002.

[2] S. A. Brandt, S. Banachowski, C. Lin, and T. Bisson. Dy-

namic integrated scheduling of hard real-time, soft real-

time and non-real-time processes. In Proceedings of the

24th IEEE Real-Time Systems Symposium (RTSS 2003),

pages 396–407, Dec. 2003.

[3] A. Cervin, J. Eker, B. Bernhardsson, and K.-E. Årzén.

Feedback-feedforward scheduling of control tasks. Real-

Time Systems, 23:25–53, 2002.

[4] P. Marti, G. Fohler, K. Ramamritham, and J. M. Fuertes.

Improving quality-of-control using flexible time con-

straints: Metric and scheduling issues. In Proceedings

of the 23nd IEEE Real-Time Systems Symposium (RTSS

2002), Dec. 2002.

