
An Observation of Fine-Grain Usage Patterns for Two Configuration
Management Tools

Scott Banachowski Jim Whitehead
University of California, Santa Cruz

Computer Science Department
1156 High Street

Santa Cruz, CA 95064�
sbanacho, ejw � @soe.ucsc.edu

ABSTRACT
This paper presents the results of a survey of employees
from one company that uses different configuration manage-
ment tools and processes for the development of two separate
products. Results from this study suggest that workspace se-
mantics, and build semantics both have a significant impact
on the fine grain use pattern of the check-in operation. In
contrast, the meaning and use of check-out was the same
across configuration management systems. Other results
highlight the difficulty of overcoming lock-in to a given con-
figuration management tool, and the desirability of a hybrid
change approval process that finds a middle ground between
the lightweight and batch processes.

Keywords
Software configuration management, version control, soft-
ware engineering

1 INTRODUCTION
Today a wide selection of commercially available configura-
tion management systems exist; one web site catalogs over
50 such packages [4]. The technology of these systems is
well understood [1, 3, 6, 7, 8, 10], but the actual use patterns
and motivations for fine-grain operations such as check-in
are not. For example, we expect a check-in when the modifi-
cation of an item is complete—but motivations for check-ins
due to incremental changes are less predictable. We have ob-
served differences in frequency and rationale for fine-grain
operations, and seek to understand why. One study by Grin-
ter [5] identifies the interplay between the tool and the or-
ganization, and finds that tools provide coordination mecha-
nisms for developers. This suggests that use patterns may be
influenced by an organization’s adapted processes regardless
of the understood capabilities of the configuration manage-
ment technology.

A configuration management system requires three basic ca-
pabilities: version control, check-in/check-out facilities, and
history comparison tools [3]. Our study focuses on these
fine-grain operations, to determine the criteria used to ini-
tiate operations such as creating a new revision. Our paper
presents a survey taken at a company that develops two prod-
ucts, but uses different configuration management systems
for each product. The participants of the survey were all
software developers, as the goal is to discern the users’ per-

spectives and not an experts’ knowledge. The study focuses
on qualitative aspects of the users’ experiences with the CMS
tools and processes. Initially, differences in the processes
were not well-enough understood to establish useful quanti-
tative measurements for comparison; the motivation for the
survey is to uncover unexpected behavior patterns due to dif-
ferences in tools or processes.

The following sections describe the processes adapted by the
teams and the users’ perceptions of the tools and processes.
The conclusion summarizes the observed trends and offers
some future directions for further validating our findings and
extending this study.

2 STUDY BACKGROUND
The Company
FooMediCo1 manufactures medical equipment, including
hardware and its associated system software. The company
has 1500 employees worldwide, 90 of which are members of
the software development organization. There are two prod-
ucts currently on the market that have similar function, but
differ in their targeted market segments. The products are
based on different system architectures, and therefore do not
share any common software libraries. Product Alpha’s devel-
opment began in 1991, and the team of 35 is currently imple-
menting software release 7.0, which is roughly one million
lines of code. Product Omega’s development began in 1989,
and the team of 45 is currently developing release 6.0, which
is roughly seven million lines of code.2

Although both FooMediCo products are mature, enhance-
ments to software provide significant new capabilities for the
equipment, so software evolution continues. This work in-
cludes integrating new features into existing code and fixing
bugs. Research and marketing drive the enhancement tasks,
based on the desirability and feasibility of new features. An
independent test group and release manager decide priori-
ties for bug-fix tasks. In this study, we do not distinguish
between adding features and fixing bugs; we refer to either
effort simply as a task.

Survey Methodology
Although development of both products began near the same

1actual name withheld for anonymity
2including comments, figures based on employee estimates



time, the configuration management software and processes
differ. To determine the impact of the tools and processes
on fine-grain usage patterns, employees participated in a sur-
vey. The survey was conducted through phone interviews
with 10 employees of FooMediCo’s software engineering or-
ganization. All are system software developers, responsible
for designing and writing the source code for the embedded
processors of the products. One worked exclusively on Al-
pha, 5 on Omega, and 4 on both. The developers’ experience
at FooMediCo ranged from 1-10 years, with positions in-
cluding junior and senior programmers, and low-level man-
agers (who typically split their time between development
and managing small teams).

The questions were open-ended,3 encouraging interviewees
to describe usage of the tools and processes in their own
words—discussions often deviated from the questions pro-
viding valuable insight into the organization. When describ-
ing the CMS, interviewees were reminded not to provide
abstractions, but specific examples [2]. Answers were tran-
scribed during the interview, and later compiled. The results
do not provide data that is easy to quantify; with this study
we discover general trends in usage patterns. The open-
ended questions allow us to learn about unexpected behav-
ior, without preconceived notions of CMS processes. The
remainder of this paper presents a summary and analysis of
the results.

3 SURVEY RESULTS
Tools and Processes
The following discussion is gathered from descriptions of the
employees at FooMediCo, and reflects the terminology used
by them. Since these descriptions are derived from the per-
ceptions of the user, they may not necessarily reflect the ter-
minology or usage intended by the tools’ manufacturers or
applied by users at other companies. The survey deliberately
included only product developers, and not members of the
organization that administer the tools (a team known as the
build group; the group has other responsibilities as well). A
member of the build group reviewed a previous draft of this
paper to verify accuracy of the process descriptions. All con-
figuration items include only source code files, as the devel-
opers at FooMediCo do not maintain requirement or design
documentation with the CMS.

Product Alpha
The Alpha development team uses ClearCase for revision
control. ClearCase is a product of the Rational Software
Corporation [9]. In ClearCase, all versions of configuration
items are stored in databases. ClearCase is feature rich prod-
uct, and requires site customization. Due to the complex-
ity of the product, most sites using ClearCase dedicate re-
sources for administering the tool and the database servers.
At FooMediCo, this responsibility lies with the build group.

The database is accessible through a vob (version object

3see appendix A

Figure 1: Alpha model using ClearCase

base); to the user it looks and behaves like a file system, but
it provides work isolation between collaborators. The set of
items visible to the user is called a view. The view is deter-
mined by a config spec, a set of rules for selecting versions
to present the user. Developers working on different parts of
the same feature, or who must fix bugs in the latest release,
use identical config specs to see the same view of the system.
At FooMediCo specialists in the build group create templates
for config specs, and users execute scripts to make individual
copies of these templates. For example, the most commonly
used config spec sets a rule that all latest versions are visi-
ble. Users with this config spec see the same view so that
when one checks in a change the new version is immediately
visible to the others.

Custom scripts at FooMediCo allow users to freeze views,
meaning others’ check-ins will not be visible. This is equiv-
alent to creating a branch of the baseline, and is helpful be-
cause the developer may change and test items in isolation
from the rest of the system. When un-freezing the view, all
changes due to others’ check-ins become visible, and the de-
veloper must resolve conflicts before checking-in their own
changes. This step completes the merging of views, and
changes become visible to other collaborators.

For most projects, a developer views the latest version of a
baseline. Check-ins that conflict with or break existing soft-
ware must be resolved immediately, since a majority of de-

2



Figure 2: Omega model using CodeMgrTool

velopers require the latest code to be functional. When a
check-in prevents code from working, developers revert their
view to “yesterday’s” release until the problem is resolved.
A product release manager outside of the developer’s group
monitors all check-ins to the baseline, and backs out changes
that are unacceptable.

Product Omega
The Omega development team uses CodeMgrTool. CodeM-
grTool is a graphical interface wrapper for SCCS [10] de-
veloped by Sun Microsystems, which adds the capability for
workspace and directory management [11]4. CodeMgrTool
uses the concept of a workspace, which is a directory (or a
hierarchy of directories) under SCCS version control. Al-
though SCCS does not provide work isolation, workspaces
do; each developer may create their own workspace, or share
workspaces among collaborators.

There is a hierarchical relationship between workspaces.
The easiest way to visualize this relationship is with a tree
structure. At the root of the tree is a workspace containing
SCCS managed versions of every configuration item. This
root may have multiple children nodes, each containing a
copy of a subset of the items. At its creation, a child node
contains no files. The developer chooses to bringover items
from the parent, creating a new copy under SCCS control
within the child workspace. Subsequent bringovers of items
already existing in the child workspace result in a merge of
the parent item with the child’s, prompting the user to man-
ually resolve conflicts.

Within a child workspace, an item may be checked-out or
checked-in. A parent workspace is unaffected by changes in
its children. Changes in a child propagate up the tree through
a putback. A putback merges changes with the parent’s item,
creating a new version in the parent workspace.

Every Omega release is contained in its own workspace.
Some releases are intended for external distribution to cus-
tomers, but a majority are internal releases incorporating
project milestones or bug-fixes. Rather than storing items

4Sun packages this product in a suite called TeamWare.

from all releases in the same single database, each Omega
release is a duplicate of the complete collection of configu-
ration items; any release may act as the root of a workspace
tree, and there is no mechanism for sharing a single copy of
an item among two releases. Releases are stored in a repos-
itory on an NFS file system, and are maintained by the build
group. No developer has permission to edit items in a re-
lease, meaning no developer has permission to putback from
their child into a release workspace. If a developer must
change an item from a release, they create a workspace and
bringover the item for editing. Within that workspace, they
check out the item, edit it, and check it in. Instead of a put-
back, a request to change the item is submitted through a
web-based form called a girf (graphical integration request
form).5 Upon submission of the form, the girf scripts run
a putback; instead of placing new versions in the parent as
with an ordinary putback, the resultant versions are stored in
an intermediate workspace.

Approximately once a week, the build group takes changes
from the intermediate workspace, and with the approval of
the release manager, merges those changes into the root.
At this time, if two developers changed the same item, the
merge results in a conflict, and the build group notifies the
developers who submitted them. The process is held and de-
layed until a developer resolves the conflict. The name of
the latest release is master. The process of creating a new
release by incorporating the accumulated changes into the
latest release is known as toggling master. After master tog-
gles this new release becomes the master, and the old release
is renamed with a string code containing a release number.

Fine Grain Operations
With an understanding of each product’s software processes,
we now present the results of our survey on fine-grain config-
uration management tool usage, and explain the processes’
roles on the observed differences.

Check-out
Neither product team expressed different views of the check-
out process. A file is checked-out whenever it must be mod-
ified to complete a task. When beginning a task, developers
do not decide which set of files they need beforehand; in their
workspace or view, they begin checking out files as the ne-
cessity to edit them arises. The process of checking-out files
is complete when no more need for changes is encountered.

Check-in
Alpha engineers check-in files incrementally until they com-
plete a task.6 For most tasks, the selected view represents the
up-to-date state of the software. The developer has the ability
to test the interaction of their changes with the current system
as soon as they un-freeze their view (often they do not need
to freeze a view at all). Therefore a change is completely

5The web form is a combination of a HTML interface and scripts, and is
maintained on the company’s internal web site.

6For less complicated tasks a single check-in may suffice.

3



tested before check-in. If a check-in “breaks” the system,
all other team members immediately suffer the consequence;
developers quickly learn that to avoid the embarrassment of
reprimand by their peers they must test thoroughly before
check-in, and the process is highly self-regulating. Due to
the risk of check-ins, developers often check-in changes fre-
quently along the path to completing a task; it is easier to test
and manage small incremental changes than large ones.

Due to the hierarchical nature of CodeMgrTool, Omega engi-
neers have different rationale for check-ins on tasks of small
scope. The developers work in independent workspaces
spawned as children of master, so until a girf is processed
check-ins are invisible to others. A girf will not be accepted
until the task is complete, so there is little incentive for in-
cremental check-in. Check-in may wait until the task is com-
plete, tested, and ready to girf, with some exceptions. Some
developers incrementally check-in to preserve changes worth
keeping. The other common check-in occurs when master
toggles: to keep the workspace up-to-date with the new mas-
ter they must initiate a bringover. The tool requires a check-
in of any file that changed in master before the bringover
completes.

Omega engineers collaborating on larger tasks typically
share a child of master as an integration workspace, and
create grandchildren workspaces for independent work. A
putback from the grandchild propagates changes to the child
workspace, making them visible to the collaborators. Before
a putback, all files must be checked-in. Therefore check-ins
occur when the developer is ready to putback, either because
they completed a task or need to incrementally share changes
with collaborators. In this collaborative effort, the rationale
resembles Alpha’s, as the team must maintain the integrity
of a shared workspace themselves.

Version Comparisons
Surveyed developers express a wide variety of views about
version comparison, but these views are not product depen-
dent. Some indicate that they rarely-to-never look at previ-
ous versions of code (with the exception of resolving merge
conflicts). Only 30% refer to past versions more often, cit-
ing reasons such as “software archeology,” regression test-
ing, and bug-hunting. Software archeology is a term to de-
scribe the process of reconstructing the history of the system
as an aid for understanding its evolution or unraveling mys-
terious implementations. Regression testing ensures that a
new version meets the same standards as a previous version.
Past versions aid bug-hunting when a latent bug introduced
in earlier versions later appears.

Tool Evaluation
90% of survey participants expressed a preference for
ClearCase over CodeMgrTool. Even those who never used
ClearCase desired to switch based on its reputation. Cited
advantages of ClearCase include technological superiority,
shorter build times, better graphical interface, expanded au-

diting, easier access to previous versions, safer prevention of
misuse, improved abstraction, and more efficient use of stor-
age. The drawbacks of ClearCase are a higher learning curve
and more administration overhead.

Cited advantages of CodeMgrTool include ease of use and
intuitive interface. Most developers consider CodeMgrTool
less sophisticated. The most significant disadvantage is build
time. Although developers only operate directly on user-
created items in the CMS, we find that the tools’ maintenance
of derived objects (such as compiler outputs) is an important
factor in performance. The build system for Omega uses a
make tool that resolves links to items absent in a workspace
by locating the parent’s version of the item. The resolution
of this inheritance is limited to whole libraries, so a minor
change may require the bringover and compilation of an en-
tire colossal library, significantly increasing both workspace
maintenance overhead and build time. The ClearCase build
system shares object files in a view, so a single compilation
updates the object files for all sharing that view, resulting in
faster incremental builds.

When asked why the teams use different tools, most re-
sponses indicate political reasons (only 1 employee claimed
to know the full history of the decisions, yet all partici-
pants offered speculative reasons). The teams chose different
tools due to priorities of the projects at the time; the Omega
project conservatively chose CodeMgrTool because they felt
ClearCase was not yet proven in the market. Most employees
feel that decisions were most influenced by the personalities
of those who championed the tools; they also cite breakdown
of communication among the teams. When questioned why
Omega does not switch tools, considering the overwhelming
support for ClearCase, answers provide more pragmatic than
political reasons. Plans to switch were underway for several
years but not implemented due to limited time, budget and
manpower, lack of priority, reluctance to change, and techni-
cal challenges of conversion.

Change Incorporation Process Evaluation
Alpha’s change incorporation process allows developers to
introduce changes into the baseline at any time; developers
call it a “lightweight process” because configuration updates
are distributed among all users. Omega follows a batch pro-
cess: a group is responsible for periodically incorporating
multiple changes into the system at once. Preference for a
process is less divided than for the tool (60% favored Alpha’s
process); survey participants noted advantages and disadvan-
tages for both processes, and interestingly wished to find a
medium between the two.

The most notable problem with Omega’s process is not the
process itself, but its implementation. The master toggle
rarely occurs on schedule, creating intolerable latencies. The
opportunity to synchronize with the latest release comes in-
frequently, and often the long lapses tend to break more soft-
ware when updated, so incompatibilities are expected rather

4



than prevented. Because responsibility for maintaining the
integrity of the release lies with the build group, the pro-
cess encourages less consideration of the impact of changes
on other parts of the system. Alpha’s developers introduce
changes one at a time making them easier to manage. In
Alpha’s process, version updates are synchronous and con-
flicts detected and resolved immediately by the developer,
who is in a better position to fix problems than an indepen-
dent group.

Although batch processing has weaknesses, it also has ad-
vantages for large projects. The build group acts as gate-
keeper, protecting the main baseline from instability and co-
ordinating changes from multiple activities on different com-
ponents of a complex system. Also due to awareness of the
latency, only fully developed and reviewed changes are sub-
mitted.

4 CONCLUSIONS
The employees of FooMediCo were surveyed to determine
the use patterns of two different configuration management
systems applied to different products. Section 3 presents the
tools and processes applied to configuration management,
and the opinions of the developers. The major patterns dis-
covered by the study indicate that:

� Workspace semantics have a direct impact on the use
of check-in. For example, since workspaces in Al-
pha immediately made any checked-in object visible to
all developers, check-ins occurred more frequently; in
Omega, the batch process used to bringover objects into
the build workspace led to less frequent check-ins, with
each check-in typically representing a completed task.� Build semantics are tightly linked to workspace se-
mantics. In Alpha, changes appear immediately in
the shared development workspace, and builds are per-
formed against this workspace. This leads to a strong
desire to avoid breaking the build, and contributes to the
observed rapid check-in behavior. In Omega, the build
tool’s missing object resolution algorithm leads directly
to slower builds, and contributes to the observed slow
release-to-release cycle time. This, in turn, leads to
less frequent check-in. Hence, workspace and build
semantics are intertwined, and both have a direct ef-
fect on the check-in use pattern. This result is signif-
icant, since workspaces, build capability, and check-in
are typically portrayed as independent operations in de-
scriptions configuration management systems; these re-
sults suggest the situation is much more complex.� Once a tool is in place it is difficult to replace, even with
much transfer of experience from another tool. One
striking result of the study is Omega’s long-sustained
resistance to switching tools, considering the disdain
for CodeMgrTool and the fact that ClearCase may adapt
to Omega’s process. Tool dependency becomes en-
trenched independent of process.� Developers expressed an interest in a hybrid change in-

corporation process, combining the advantages of the
batch and lightweight processes. Finding the proper
balance of combining lightweight and batch processes
would be a beneficial undertaking for FooMediCo.

Future Work
One of the weaknesses of these conclusions is that they are
based on the observation of a small population within a sin-
gle organization. Further research to increase the number of
people interviewed, and the number of organizations con-
sidered, will increase our confidence in these results. A
more general questionnaire, instead of one tailored to a sin-
gle company, is necessary to broaden the scope of the survey.

Our study strongly suggests that a thorough examination of
the interplay between workspace semantics, build semantics,
and check-in behavior will yield a deeper understanding of
the forces driving use patterns of configuration management
tools. Future work may quantitatively measure this inter-
play by collecting check-in and build frequency data, and
benchmarking product quality and developer productivity. It
will be enlightening to learn if our observed user’s percep-
tion of each process and tool correlates with measurable per-
formance data. We hope this research will provide valuable
input into the design of next generation configuration man-
agement systems.

ACKNOWLEDGMENTS
We would like to thank the FooMediCo employees for their
participation and valuable insight. We would like to thank
our anonymous reviewers, who created more questions than
our study answered, paving the way for future work.

REFERENCES

[1] E. H. Bersoff. Elements of software configuration
management. IEEE Trans. on Software Engineering,
10(1):79–87, Jan. 1984.

[2] H. Beyer and K. Holtzblatt. Apprenticing with the cus-
tomer: A collaborative approach to requirements def-
inition. Communications of the ACM, 38(5):45—52,
May 1995.

[3] F. J. Buckley. Implementing a software configuration
management environment. Computer, 27(2):56–61,
Feb. 1994.

[4] D. Eaton. Configuration management tools sum-
mary, Aug. 2000. At the printing of this paper, the
comp.software.config.mgmt newsgroup FAQ is online
at http://www.landfield.com/faqs/sw-
config-mgmt/cm-tools/.

[5] R. Grinter. Supporting articulation work using configu-
ration management systems. Computer Supported Co-
operative Work: The Journal of Collaborative Comput-
ing, 5(4):447–465, 1996.

5



[6] W. Keuffel. Configuration management. Computer
Language, 9(11):31–34, 1992.

[7] M. C. Paulk, B. Curtis, M. B. Chrissis, and C. V. We-
ber. The capability maturity model for software. IEEE
Software, 10(4):18–27, July 1993.

[8] J. Plaice and W. W. Wadge. A new approach to ver-
sion control. IEEE Trans. on Software Engineering,
19(3):268–276, Mar. 1993.

[9] Rational Software Corporation, 18880 Homestead
Road, Cupertino, CA 95014 USA. Rational ClearCase
Manual, 1999.

[10] M. J. Rochkind. The source code control system. In
IEEE Trans. on Software Engineering, pages 364–370,
1975.

[11] Sun Microsystems, 901 San Antonio Road, Palo Alto,
CA 94303 USA. Sun WorkShop TeamWare: User’s
Guide, A edition, Dec. 1996. At the printing of this
paper an online version of the manual is available at
http://docs.sun.com.

A SURVEY QUESTIONS
1. What FooMediCo products do you work on (now and

in the past)? What are (or were) your roles?
2. In your own words, what is the purpose of software con-

figuration management?
3. For the products you are familiar with, please describe

in detail the CM process (please walk through an exam-
ple).

4. How do you know when to check-out a file? When is
check-out complete?

5. How do you know when to check-in a file? How are
check-in conflicts handled?

6. When and why did you examine a file’s version history?
7. Are you familiar with the tool of both products? If so,

which do you prefer (independent of process)?
8. Are you familiar with the process of both products? If

so, which do you prefer (independent of tool)?
9. Do you know why the tools were selected?

10. Do you know why product teams do not switch to the
same tool/process?

6


