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Abstract

Demand for real-time capability in general-purpose
systems is rising and as systems are retrofitted with new
scheduling features they become increasingly complex. To
counter this trend we present the best-effort bandwidth
server (BEBS), an aperiodic server for flexible and efficient
support of best-effort applications in a real-time system.
Recognizing that the responsiveness of a server depends
on its period, and that not every best-effort task requires
equal responsiveness, the algorithm adjusts its period based
on run-time behavior of tasks. We created a prototype im-
plementation of the system to demonstrate that it performs
suitably as a general-purpose scheduler in comparison to
Linux, and outperforms a common type of hierarchy used
in existing general-purpose systems. The result is a system
that integrates real-time scheduling with best-effort support,
both simple and powerful enough to be used as the only
scheduler in a general-purpose operating system.

1. Introduction

Modern computer systems are expected to simultane-
ously execute a variety of applications, many with differ-
ent types of timing requirements. For example, the pro-
liferation of multimedia on desktop computers means that
systems should support soft real-time applications in ad-
dition to general-purpose workloads. In many cases, even
though media applications have deadlines, they run on best-
effort systems that are unaware of their timing constraints.
Other applications with similar soft real-time constraints in-
clude virtual reality simulators, virtual machines, games,
soft modems, and hardware controllers.

Real-time systems are usually considered specialized be-
cause they are designed specifically to guarantee time con-
straints. Therefore real-time schedulers are not usually
considered for executing best-effort workloads, which lack
strict timing constraints. Nevertheless, we wish to design
flexible systems that execute mixed time constraints: hard,
soft and best-effort. While real-time systems handle hard
and some soft real-time applications, they often treat best-
effort applications in ad hoc fashion. This paper describes
a system in which best-effort, time-share scheduling poli-

cies are integrated into a real-time scheduler, allowing tasks
to coincide in the system without the need for complexities
like partitioning or scheduling hierarchies.

In order to add real-time scheduling capability to a
general-purpose system we do the opposite: start with a
real-time scheduling algorithm (EDF) and add best-effort
scheduling capability. Real-time scheduling algorithms are
capable of scheduling applications without time constraints
as long as conditions for guarantees are not violated [3].
Aperiodic servers are one way to run non-periodic tasks
in EDF. When applied to general-purpose workloads, most
aperiodic server approaches assume that best-effort tasks
may be batch processed, and therefore make no distinction
between interactive and compute-bound tasks. This con-
flicts with a long-standing design principle of time-share
systems that gives interactive tasks increased priority for
better responsiveness [13]. By combining a time-share
strategy with an aperiodic server, the resulting system is,
from a general-purpose user’s standpoint, indistinguishable
from a time-share scheduler, but also capable of meeting
periodic deadline constraints for real-time applications.

We developed an aperiodic server called the Best-Effort
Bandwidth Server (BEBS) to meet time-sharing goals. A
major difference between BEBS and other aperiodic servers
is that it dynamically adjusts periods as applications ex-
ecute so that they perform similarly to other time-share
schedulers. This unified approach provides general-purpose
scheduling without sacrificing real-time capability, and has
several advantages. It is simpler than many hierarchical sys-
tems, where several scheduling algorithms and their inter-
actions at different levels must be understood in order to
predict system behavior. Best-effort applications may be
scheduled with better responsiveness than approaches that
treat them as background tasks. And because it uses EDF,
other EDF-based real-time scheduling algorithms may eas-
ily be integrated into the system. In this paper we will also
show how BEBS provides better performance to periodic
best-effort tasks, such as legacy multimedia applications,
without any a priori knowledge about their processing char-
acteristics.

This research demonstrates that using a strict real-time
scheduler as the single, core scheduler for all tasks in an



open, general-purpose operating system is not only feasi-
ble, it is desirable. It offers performance similar to existing
general purpose schedulers with the additional advantage of
native EDF real-time scheduling. We have built a prototype
implementation of the scheduler that efficiently and effec-
tively schedules general-purpose workloads, automatically
detects and schedules soft real-time workloads, and natively
supports hard real-time workloads.

2. Related work

A predecessor to this research is the Rate-Based Ear-
liest Deadline scheduler (RBED) [3]. The principle of
RBED’s operation is that resource allocation decisions are
made distinctly from dispatching decisions. Jobs are dis-
patched using an EDF scheduler, while a resource allo-
cation algorithm ensures that tasks meet specific perfor-
mance criteria. RBED meets hard and soft real-time re-
quirements by dynamically controlling the rate that applica-
tions consume CPU (by adjusting either the period or exe-
cution time). Rates changes occur within rules derived from
a generalized periodic task model, such that an EDF sched-
ule remains feasible. Although developed independently,
the RBED model is similar to the Variable Rate Execution
Model (VRE) [9], which also defines rules for changing ap-
plication rates at any time. The elastic task model [5] sim-
ilarly defines a method for sets of tasks to simultaneously
change rate, using the novel approach of modeling task uti-
lization as elastic springs; in contrast, RBED allows a single
task to change rate independent of other tasks. BEBS ex-
pands RBED by integrating more robust and efficient best-
effort support.

Because general-purpose systems do not provide guar-
antees or predictability, they are not typically used for real-
time applications. However, there has been effort to add
real-time capability. A common approach uses separate
schedulers for different types of applications. The POSIX
API [12] specifies fixed-priorities for real-time tasks, with
other tasks in a lower priority scheduler. However per-
formance degrades or fails when tasks misbehave [19].
RTLinux [25] takes this approach further, running Linux as
a preemptable low-priority task in a small real-time exec-
utive. A downside of these approaches is that best-effort
scheduling occurs in the slack of real-time programs (turn-
ing best-effort workload into background tasks with pos-
sibly poor response time). Linux-SRT [7] adds another
scheduling class to the existing POSIX classes—we wish
to instead treat each application the same when making
scheduling decisions.

The new Linux 2.6 kernel [14] improved its scheduling
performance by reducing the amount of non-interruptible
code, allowing the kernel to be preempted, and improving
scalability. Time-sensitive Linux (TSL) [10] and Real-time

Enhanced (RTE) Linux [24] both add high-precision tim-
ing facilities so that scheduling allocations do not depend
on coarse-grain periodic clocks. With all this emphasis on
improving the real-time performance of modern operating
systems, we pose the question: “Why not use a real-time
scheduling algorithm as the only task scheduler?”

To simultaneously support mixes of applications, more
flexible hierarchical approaches use dynamic schedulers to
multiplex the CPU between schedulers, supporting multi-
ple scheduling paradigms simultaneously [11, 8, 6, 15]. Al-
though challenging, it is possible to analyze a system with
multiple tiers of schedulers [20]. Nevertheless, hierarchi-
cal scheduling poses many engineering difficulties, and ulti-
mately no matter how intricate the tree of schedulers, results
in a one-dimensional schedule. Also, schedulers providing
the weakest guarantees must be at lower levels, meaning
that best-effort tasks are relegated to the lowest levels of the
hierarchy, receiving only slack processing time. We chose
to develop our scheduler without the extra complexity of
multiple interacting schedulers.

The BEBS algorithm is similar to IRIS [18], which is
based on the Constant Bandwidth Server (CBS) [1]. CBS is
designed to provide CPU bandwidth reservations to contin-
uous media applications. In our implementation, we model
best-effort applications as aperiodic tasks so that we can
serve them with a similar approach. IRIS enhances CBS
with a fairer slack reclaiming strategy, and BEBS is similar
to IRIS. However, BEBS differs from these and other ape-
riodic servers [16, 22] in that BEBS adapts its period and
utilization according to the best-effort workload it is pre-
sented. We implemented our prototype system in Linux by
developing an EDF scheduler with overrun protection (sim-
ilar to R-EDF [26]).

3. General approach

Our scheduler uses the traditional periodic task
model [17]: tasks consist of a series of sequential
periodically-released jobs, and each job must complete be-
fore its deadline, which coincides with the release of the
next job.1 We use the earliest deadline first (EDF) schedul-
ing algorithm because it is optimal for this workload, allows
full processor utilization [17], and is not complicated to im-
plement. We believe, as was recently argued [4], that al-
though EDF introduces the overhead of dynamic priorities,
its performance relative to a static priority system is better
in terms of utilization and responsiveness.

Using EDF, the system naturally supports periodic real-
time tasks; our implementation provides a system call and
admission control for users to submit real-time jobs they
wish to be scheduled. However, for general-purpose use,

1Note that making the deadline equal to the period is not a requirement,
but a simplification.



much of the workload may not have specific periodic time
constraints. Therefore, by default users do not specify any
period or utilization parameters for these tasks, and the sys-
tem transparently converts them to periodic tasks.

In our model, each non-real-time task is handled by
an aperiodic server, an abstraction that converts tasks that
are not necessarily periodic into a stream of periodic jobs
schedulable by EDF. For tasks without deadlines, the goal
of an aperiodic server is to minimize the service response
time [23]. We distinguish between three different kinds of
best-effort tasks:

• Compute-bound tasks spend most of their time ready to
execute, with very little idle time.

• Interactive tasks spend much of their time blocked, wait-
ing for input from users or devices.

• Periodic tasks have soft real-time periodic workloads, but
are submitted as best-effort tasks, with their constraints
unknown to the scheduler.

Best-effort systems do not make guarantees about the
timing of resource delivery because such a system is not
aware of timing constraints. However there are some as-
sumptions about the responsiveness for different kinds of
best-effort tasks: CPU bandwidth should be allocated fairly
over the long-term, while interactive tasks should receive
higher priority in the short term. This policy ensures that
interactive tasks remain responsive, even in the presence of
compute-intensive tasks. Our scheduler is designed to meet
these goals, with the additional goal that it serves periodic
best-effort applications so that they meet periodic deadlines.

In the literature, there is little indication of how to set up
aperiodic servers for different kinds of applications. Com-
mon practice indicates that for a periodic task, the server’s
period should match the task’s. For the unpredictable work-
load in a general-purpose scheduler, we use a heuristic to
determine appropriate server parameters.

The responsiveness of a task running under a server is
a function of the server period, because the period deter-
mines the granularity at which CPU bandwidth is allocated.
For example, with a small period tasks receive small allo-
cations of CPU frequently, while with a large period they
receive CPU less frequently but in larger portions. For inter-
active tasks and those with time constraints, shorter periods
generally provide faster responsiveness. If there were no
scheduling overhead, periods could be set arbitrarily low,
but there is another trade-off: the smaller the period, the
more likely an increase in context switches and associated
scheduler overhead.

This gives us the following heuristics:

• Compute-bound tasks should use large periods, because
responsiveness is less critical, and increasing the period
reduces overhead.

• Interactive tasks should use shorter periods, for better re-
sponsiveness.

• Periodic tasks should have a server period equal to their
application period.

Managing periodic applications is not normally an ex-
plicit goal of general-purpose schedulers. Traditional time-
share algorithms are not designed for periodic deadline pro-
cessing and the performance of periodic best-effort appli-
cations degrades in the presence of other applications due
to scheduling latency [2]. Because BEBS uses a real-time
scheduling algorithm, it provides better responsiveness to
workloads containing periodic deadlines with appropriate
parameter settings. This means periodic tasks that do not
specify their constraints to the system (such as legacy desk-
top multimedia programs) still realize the benefits of run-
ning in a real-time scheduler.

4. Supporting best-effort tasks

The Best-Effort Bandwidth Server (BEBS) sets the pe-
riod and utilization parameters for best-effort tasks so that
they do not violate any real-time constraints of other tasks,
while providing the performance expected from a typical
time-share scheduler. The novelty of this approach is that all
tasks, real-time or not, execute together in the same schedul-
ing algorithm. BEBS is composed of three components: a
basic aperiodic server, a slack reclaiming procedure, and
an algorithm for determining appropriate server parameters.
The following subsections describe each component sepa-
rately.

4.1. The aperiodic server algorithm

First we describe the aperiodic server. Each task is as-
signed a single server, and each server i has a budget bi

and period pi. For now we assume that bi and pi are fixed,
even though they will be changed on-the-fly, as explained
in Section 4.3. The budget is the amount of time a server
may execute per period, so utilization is ui = bi/pi. The
server’s dynamic budget ci decreases as it executes; it rep-
resents the budget remaining in the current period. There
are three states for a task: executing, expired or blocked.
The rules for each server are:

1. A start of a period is called the release time ri, at which
time the server’s dynamic budget ci is set ci = bi, its dead-
line is di = ri + pi, and its state is set to executing.

2. As a task executes, its server’s budget is decremented by
its execution time. If a task voluntarily sleeps before the
budget expires, the state is set to blocked.

3. When ci = 0, the task is expired, and suspended until its
next release time ri = ri + pi, at which time step 1 is re-
peated.



4. When a blocked job wakes at time t, the state is set to
executing, and if t ≥ (ri + pi) or (bi −ci) ≤ (t − ri)ui then
ri = t, di = ri + pi and ci = bi, otherwise resume with its
current deadline and budget.

The algorithm is similar to CBS [1] (specifically, Step 4
is the same as CBS). The difference is that CBS does not
include an expired state; in CBS when a budget expires it is
immediately recharged, with the deadline incremented. In
CBS, it is possible for the deadline to advance unbounded,
which is potentially unfair to some workloads.

4.2. Slack reclamation

When a process does not consume all the CPU band-
width it is allocated, we say that dynamic slack is added to
the schedule. To fully utilize the processor, dynamic slack
must be used by tasks that want to use it.

For dynamic slack reclamation, BEBS uses a method de-
rived from the IRIS scheduler [18], although they differ in
the way deadlines are set. When the system will idle be-
cause there is no task eligible to run, the next best-effort
task to be released from the expired state is released imme-
diately. To preserve fairness among other expired tasks, the
release times of all other expired best-effort tasks are ad-
vanced by the same amount as the early-released task. The
rule may be summarized as:

1. When a task reaches expired state, cache it’s next sched-
uled release time ri in rorig.

2. If the CPU idles at time t and at least one task is in the
expired state, find the expired task with earliest release ri,
and call this time re. For all expired tasks change their
next release time to ri = ri − (re − t). Note that at least
one task will have a new ri = t, and so is eligible to run.

3. When tasks with ri < rorig are set to executing, set their
respective budgets and deadlines to ci = bi and di = rorig +
pi, and set their next release to ri = t + pi, where t is the
current time.

In CBS it possible for a task’s deadline to exceed the cur-
rent time by an unbounded amount, and this effect is pro-
nounced when a task consumes slack, because as long as
a task remains executing, its deadline advances. This has
two negative effects: a task is penalized by reduced utiliza-
tion in the future, and it is possible for it to temporarily
starve. Suppose a compute-bound task runs during slack—
when the slack goes away, its budget is always ≤ b, but if
its current deadline is far ahead, not only is its utilization
in the current period diminished, but it may potentially wait
a long time before becoming the earliest deadline. In other
words, a task is penalized in the future for using slack. We
do not wish to penalize tasks for using processing time that
is essentially “free.”
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Figure 1. A comparison of CBS and BEBS



Figure 1(a) demonstrates the problem with CPU using
two tasks assigned equal allocations of CPU bandwidth.
Initially Task 1 does not use all of its bandwidth, and Task 2
consumes the slack. In CBS, as Task 1 begins to require
more CPU, it temporarily starves Task 2 for an interval
beginning at 0.4 seconds. This problem does not exist in
BEBS (or IRIS). Figure 1(b) shows the same tasks served
instead by the BEBS algorithm. As Task 1 demands its full
share of CPU it receives it, without causing Task 2 to starve.

BEBS slack reclamation leads to better performance than
CBS. In the experiment of Figure 1(c), a set of hard real-
time tasks consumed half the processor bandwidth, while
a soft periodic task that computes periodic, variable-time
frames (like a multimedia application) ran in BEBS or CBS.
The task should finish processing each frame at a constant
rate, so it has periodic frame deadlines (which are indepen-
dent of its server’s deadlines). We measure the average tar-
diness as the load of the soft application saturates its avail-
able bandwidth. Tardiness is measured as the difference be-
tween the actual completion time and the frame deadline
for late frames, or zero for on-time frames. We see that at
less than full saturation, BEBS outperforms CBS, resulting
in less than half the average tardiness. The reason is that
because each frame is variable length, some take longer and
require slack processing in order to complete. In BEBS, a
task is not penalized for using slack as it is in CBS.

BEBS introduces an optimization for interactive tasks
that differs from IRIS in Step 3. In IRIS, when a task is
released earlier than its originally scheduled release, the
next deadline is set to di = ri + pi. In BEBS, it is set to
di = rorig + pi, which is exactly the deadline it would have
received if it was not released early (rorig ≥ ri). In IRIS,
a task receiving slack is released with higher EDF priority,
making it unfair to tasks that voluntarily block. Consider
the following example with three tasks, each with b = 10 ms
and p = 30 ms, depicted in Figure 2(a). At time 5 ms, Task 1
voluntarily blocks. At 25 ms, there is slack, so IRIS releases
the two expired tasks, each with deadline d = 25+30 = 55.
When Task 1 unblocks at 26 ms, its new deadline is set to
d = 26+30 = 56. Therefore, it must wait to execute, even
though it voluntarily released the CPU, because it has the
latest deadline.

In keeping with time-share principles, we prefer that
voluntarily blocking tasks remain responsive. Figure 2(b)
shows the same scenario in the BEBS scheduler. When the
tasks are released early at time 25 ms, their deadlines are
set to d = 30 + 30 = 60. When Task 1 unblocks, it is as-
signed the earliest deadline (d = 56) and runs immediately.
Note that in both algorithms the resources consumed and
the subsequent release times of all tasks are equal.

Unlike CBS, in which deadlines may differ from the cur-
rent time by an unbounded amount, BEBS bounds the dif-
ference between the actual time and the deadline by at most

2pi−bi (in IRIS, the bound is pi). This prevents a task from
starving for resources too long.

4.3. Setting server parameters

Period adaptation is an important aspect of handling
workloads in which application properties are unknown a
priori. For general-purpose workloads, it is not expected
that users will want, or even know how, to properly as-
sign server parameters for the applications they run. Nor
is it incumbent upon application programmers to build such
knowledge into their applications. In order to appropriately
serve best-effort applications, BEBS observes applications
as they execute and adjusts their server periods dynamically.

To test our assertion (in Section 3) that the period of the
server impacts both the application response time and the
scheduling overhead, we measured both the tardiness of a
soft-real time task and the number of context switches as
a function of server period. The workload is the same as
in Figure 1(c) but we varied the period of the server while
using a constant load. In Figure 3(a) we see that tardiness
is generally better at lower periods (and as before BEBS
outperformed CBS). We also see in Figure 3(b) that lower
periods incur more scheduling overhead due to an increased
number of context switches. (BEBS incurs more schedul-
ing overhead than CBS because as CBS replenishes budgets
of expired tasks it does not always need to preempt them,
whereas BEBS always preempts expired tasks and waits un-
til idle time before replenishing their budgets). Therefore,
we wish to reduce overhead by using larger server periods
for CPU-bound tasks that do not need fast response times,
while using shorter periods for the interactive workload for
better performance.

Period adaptation is a major difference between BEBS
and other aperiodic servers. BEBS servers adjust their pe-
riod to best suit best-effort workloads, and to provide the
same performance expected from time-share scheduling al-
gorithms. The algorithm adjusts periods by observing past
execution rates, and inferring whether tasks are interactive,
compute-bound, or soft real-time periodic.

Before describing the period adaption algorithm, we will
motivate it with an example. Figure 4 shows what happens
when we run 5 best-effort tasks in the BEBS server along
with 5 real-time applications. Two of the best-effort tasks
have soft periodic deadlines (with frame rates 25 and 12.5
frames/sec) that they should be able to meet within their
share of CPU, and the other three are compute-bound. In
the first run, the aperiodic server periods are not set appro-
priately. They are all set to the period of the lowest pe-
riod application— the result is that the soft-real time tasks
miss their deadlines, while the scheduler incurs more con-
text switches. In the second run, the server period for all
tasks is increased, resulting in less overhead but even worse
real-time performance. In the third run, server periods are
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Figure 4. Comparison of different fixed server periods
vs. adaptive periods. When using fixed server peri-
ods, we miss more deadlines. The adaptive approach
balances scheduler overhead for better performance in
terms of missed deadlines.

adjusted using the algorithm described in this section. The
result is no deadline misses, with a balanced scheduling
overhead.

BEBS assigns utilization to servers consistent with the
fair-weight policy of time-share schedulers (in most UNIX-
type schedulers, this is adjusted with the user-control nice).
Each task has a priority q based on the value of its nice pri-
ority. The utilization for each task is set to u = q

LUBE , where
the load L = ∑qi is the sum of all best-effort tasks’ quanta,
and UBE is the utilization available to best-effort tasks.

The period of each server is adjusted according to how
its task executed in the past—in this way it distinguishes be-
tween interactive and compute-bound processes. For each
process, the algorithm is:

1. Each time a task i goes from state executing to either
blocked or expired, sample the amount of CPU consumed
ei since the last time the task entered executing state.

2. Average the current sample with the past average (using a
weight w for hysteresis): ei,avg =

wei,avg+ei
w+1 . In our proto-

type, w = 3 (making the divisor a bit-shift operation).
3. Set the budget so in the next period, the task consumes

bi = min(ei,avg +C,ei,max). The value C is added to the
estimated duration to compensate for the fact that because
ei,avg is an average, some durations may be more than the
average. In our implementation, C is set to ei,avg/2. The
upper bound on budget emax is set to 200 ms (equal to the
maximum time-slice of Linux).

4. Set the appropriate period for a best-effort task, pi = bi
ui

.

Note that because each task’s utilization based on
weight, when tasks enter and leave the system, it may
change. The following Section 4.4 discusses when these
changes take place.

The BEBS algorithm automatically distinguishes be-
tween interactive and compute-bound tasks through its mea-
sure of past execution times, so the parameter assignments
give each task the allocation it needs to preserve time-share
goals. For example, a compute-bound process will have
constant budget eavg = emax, and so period is a function
of the system load L; as the load of the system increases,
compute-bound tasks periods expand so that they run less
frequently, but receive long budgets. In contrast, for an in-
teractive bound process eavg depends on the rate and du-
ration of CPU bursts, and will generally produce a short
period so it is responsive relative to compute-bound tasks.

There is an additional benefit to this algorithm: if a peri-
odic best-effort task meets its previous deadlines within its
fair share of CPU, then its period is set so that it will likely
meet future deadlines. Assume that a periodic task has an
average runtime per job of a. If the task is to meet deadlines
within its fair share, then a/pactual ≤ u, where pactual is the
actual period unknown to the scheduler. As the task runs,
it will block, on average, after consuming a units of CPU,
measured by the scheduler as eavg ≈ a. The server period is
set to p = eavg/u, which means that p ≤ pactual . The result-
ing deadline ensures that, on average, the task receives its
processing on time. Because a is an average, some frames
will be expected to overrun their deadlines, nevertheless we
previously showed that this technique provides much bet-
ter best-effort support for periodic and multimedia applica-
tions [2].

4.4. Overhead discussion

The system combines an EDF scheduler with an adaptive
aperiodic server algorithm. An obvious question is “How
much overhead is imposed?” Although dynamic priorities
incur more overhead than fixed priorities (used in many
real-time systems), the actual overhead is similar to that of
other general-purpose schedulers. In this section we con-
sider this practical aspect of BEBS. To verify our approach,
we developed an EDF scheduler in Linux, implemented the
BEBS algorithm, and evaluated its performance (presented
in Sections 5 and 6).

Our system uses a single server for each best-effort pro-
cess. Maintaining a server requires an extra storage of 17
32-bit words in each process’s state structure. A larger over-
head is the periodic computation of server parameters, as
these values may change due to either the system state or
task behavior. These changes incur only simple math oper-
ations, as described above, all implemented as integer oper-
ations.



The RBED theory [3] allows parameters to be changed
(within bounds) at any time, without violating EDF con-
straints. However in practice, they are calculated only at
job releases, and not necessarily at every release; we lazily
avoid recomputing them whenever possible. There are three
variables affecting server parameters: the active best-effort
load L (which changes as best-effort tasks enter, leave or
sleep), the best-effort bandwidth UBE (which changes as
hard real-time tasks enter or leave), and the task’s eavg (a
function of execution behavior). The first two variables af-
fect the available bandwidth. When the best-effort band-
width is reduced, servers sharing this bandwidth reduce
their utilization; this occurs aggressively to prevent over-
load. This also requires some care to prevent temporary
overload, so the first instance of a newly introduced task
may be delayed briefly if required. However, the inverse
case occurs lazily, so that the schedule has some slack when
the available bandwidth increases—this means load fluctu-
ations do not always require parameters to be recomputed.
Slack reclaiming ensures that even when the entire CPU is
not allocated, contending tasks still fairly share the avail-
able CPU. Changes triggered by the average execution time
of a task also occur with some hysteresis, to prevent recal-
culating parameters too frequently.

5. Prototype implementation

We implemented EDF in the Linux 2.6.8.1 kernel. We
chose Linux because its source code is free and it in-
cludes device support, file-systems, and a wide assortment
of tools and applications. It is important to note that many
components, such as the virtual memory system, are not
constraint-aware and do not provide the predictability re-
quired by hard real-time applications. It is also difficult to
account for CPU consumed by system and interrupt pro-
cessing, which steal cycles from running tasks. Neverthe-
less, the benefits of using the rich environment provided by
Linux outweigh these issues for our proof-of-concept im-
plementation.

To aid in EDF scheduling in Linux, we added a low-
overhead high-resolution timer (using the Pentium’s APIC
timer, similarly to firm timers [10]) so that tasks cannot
overrun CPU allocations that are finer than the kernel clock
resolution. We also implemented several task queues for
efficiently managing tasks of different states. Because the
EDF queue is sorted, scheduler selection time is O(1), but
queue insertion is linear with the number of active tasks.
Section 6 shows that this overhead is not significantly worse
than Linux.

By default, processes are best-effort upon creation and
managed in EDF by a BEBS server. Real-time tasks may
use the EDF scheduler directly; we modified the standard
sched setscheduler system trap as an interface for setting a
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Figure 5. Hackbench benchmark results. Hackbench
provides an estimate of system overhead when com-
paring different kernels.

periodic deadline and bandwidth reservation for real-time
processes. The system prevents overload by rejecting a re-
quest to reserve a bandwidth ui if (ui +URT +UBE,min) > 1,
where URT is the total bandwidth reserved by real-time
tasks, and UBE,min is the minimum bandwidth set aside for
best-effort processing. If the real-time task is admitted, then
URT = URT + ui and UBE = UBE − ui, which will trigger a
change to best-effort task parameters, as described in Sec-
tion 4.4.

6. Performance results

We tested BEBS to verify that it is practical for general-
purpose workloads. Our test machine is an Intel P3 1 GHz
processor. We used a combination of in-kernel traces and
instrumented applications to make our measurements.

It is difficult to appraise best-effort scheduling algo-
rithms because the meaning of “best-effort” is subjective.
While a goal of time-share scheduling is to remain re-
sponsive, deciding quantitatively how responsive is diffi-
cult, especially when it trades-off with other qualities such
as overhead and fairness. In this section, we use Linux as
the control, so we implicitly assume that Linux provides
“good” best-effort service. Our goal is to show that BEBS
matches or exceeds Linux’s performance. This assumption
that Linux provides good performance is based on the fact
that it has many users, some of whom must be reasonably
satisfied.2 Whenever appropriate, settable parameters in the
BEBS matched those of Linux to make performance simi-
lar. For example, the maximum budget per period in BEBS

2A recent statistical estimate by the Linux Counter Organization places
this number at 18 million users.



equals the maximum time-slice in Linux.
The Hackbench [21] macro-benchmark is typically used

to evaluate the performance of Linux kernel development
patches. The benchmark creates multiple groups of pro-
cesses (each group with 20 clients and 20 servers), and mea-
sures the time for all groups to complete a series of send
operations between clients and servers. As a result, it incurs
many context switches. Hackbench is useful for comparing
kernels because the workload is the same during each test
and so performance differences must be attributed to differ-
ences in kernel implementations. Figure 5 compares BEBS
to both the new and old versions of Linux. The only dif-
ference between BEBS and the Linux 2.6 kernel on which
it is implemented is the scheduler, so any performance dif-
ference is attributed to scheduling algorithms. We see that
BEBS incurs slight overheard compared to Linux 2.6. Both
of BEBS and Linux 2.6 may have advantages over the older
Linux 2.4, but we conclude that BEBS’s overhead is in an
acceptable range for general-purpose systems.

Figure 5 demonstrates that the overhead of BEBS with
an EDF scheduler is sufficient for our general-purpose use.
In keeping with general-purpose scheduling goals, we must
also demonstrate that the scheduler is more responsive to
interactive tasks than compute-bound tasks. In order to do
this, we measure the time it takes different kinds of user
tasks to respond to an event.

We created a task that sets the system hardware’s real-
time clock (RTC) to signal an interrupt in the future. We
then measured responsiveness as the time between the oc-
currence of the hardware interrupt, and the time it takes the
user task to discover that the interrupt occurred. We ran this
task as either interactive or compute-intensive to compare
the performance in the scheduler. By design, interactive
tasks should exhibit better response times.

In interactive mode, the task sets the one-shot interrupt
for a random time in the future, then does a blocking read
on the RTC device. When the interrupt occurs, the task
unblocks and is put into the running state to be scheduled.
When scheduled, it records the time elapsed since the ker-
nel received the interrupt. It repeats the measurement un-
til the average converges (to 95% confidence of 10% half-
width). In compute mode the task does the same, but in-
stead of blocking, it polls the device for the event so that
it consumes CPU as it waits for the event. If the task is
scheduled when the interrupt occurs, polling discovers the
event quickly. However, if the task is not running when
the interrupt occurs, it must wait until it is scheduled again
to discover it; since it does not have the high priority of
an interactive task, it may take longer to discover. This al-
lows us to measure the responsiveness of either interactive
or compute-intensive tasks.

Figure 6(a) shows the response time of the compute-
bound task as a function of the number of currently running

extra tasks. As more tasks run concurrently, the average re-
sponse time increases because the task must share the pro-
cessor. The Linux policy for compute-bound tasks is that
they share the processor fairly. BEBS performs similarly to
Linux, also conforming to the time-share policy.

Figure 6(b) show the average response times of the in-
teractive task running with no other tasks, and with 5 ex-
tra compute-intensive tasks. In keeping with the time-share
principle, the compute-intensive load does not significantly
hinder the responsiveness of the interactive task. BEBS per-
forms the same as Linux.

In Figure 7 we repeated the response tests with periodic
real-time tasks running in the background. In Linux, real-
time tasks have fixed-priority, and always preempt best-
effort tasks. In our scheduler, the real-time tasks run under
EDF principle, along with the best-effort tasks which use
BEBS. In each test, there was a also a compute-intensive
task running. Real-time tasks were added with periods 15,
30, 45, and 60 ms, respectively, and each real-time task re-
quires 15% CPU bandwidth. In Figure 7(a) the test task is
CPU-intensive, sharing the CPU unused by real-time tasks
with the other greedy tasks. In BEBS, the task are much
more responsive. In Figure 7(b) the test task is interactive,
and in BEBS responds much quicker than Linux, where the
task is always preempted by real-time tasks.

It is interesting to note that the previous test is an indica-
tion of how any algorithm in which the scheduling of real-
time tasks take precedence over non-real-time tasks will
perform. RTLinux, POSIX, and many hierarchical sched-
ulers take this approach, and it is our hypothesis that this
approach is bad for general-purpose systems.

It is difficult to directly compare the best-effort perfor-
mance of IRIS to BEBS because they treat non-real-time
tasks differently. In IRIS, users must assign non real-time
tasks a static bandwidth and reservation granularity. BEBS
alleviates this step, letting the run-time behavior of a task
determine its bandwidth settings. If the parameters of a
task in IRIS are not set correctly, it may perform poorly;
therefore it is relatively easy to create a straw-man IRIS that
won’t work as well as BEBS with some workloads. On the
other hand, if IRIS parameters are set appropriately for the
task, it should in theory perform similar to BEBS.

We repeated the responsiveness experiments using a
naive implementation of IRIS. We assigned all tasks a static
bandwidth and period by dividing the CPU equally and set-
ting all servers to the same period (either 40 ms or 100 ms).
In the compute-intensive case shown in Figure 8(a), the
IRIS servers were more responsive than BEBS. However,
compute-intensive tasks do not need such responsiveness
under a time-share discipline. On the other hand, Fig-
ure 8(b) shows that the IRIS interactive task performed ex-
tremely poorly when competing with compute-bound tasks.
This is not the fault of the IRIS algorithm, but of poorly as-
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Figure 9. A view of applications running in the inte-
grated environment.

signed server parameters. If an aperiodic server approach
is applied to all tasks in a general-purpose system, as we
propose, it is necessary for the system to automatically set
the server parameters, or otherwise it will default to such a
naive approach. This is the intuition behind BEBS’s opera-
tion.

We evaluated BEBS while running a mix of real-time,
best-effort periodic, and greedy best-effort processes simul-
taneously. Figure 9 shows the utilization of tasks over time.
The real-time task, which enters at time 20, receives isola-
tion from other tasks, maintaining constant utilization in ac-

cordance with its reservation of 40%. The best-effort tasks
share the available processing, relative to how greedily they
consume CPU. The periodic soft real-time task, which joins
the system at time 30, consistently requires less than its
share of CPU and it meets all its deadlines.

7. Conclusion

Real-time support in best-effort systems is generally
cumbersome and ad hoc, often involving hierarchical sched-
ulers, and generally yields poor best-effort performance,
especially while real-time processes are executing. We
present BEBS, an aperiodic server with a strong focus on
best-effort performance, that integrates with a real-time
scheduler. Performance in BEBS is shown to be comparable
or better to standard best-effort schedulers such as Linux,
and more appropriate at meeting time-share design goals
than CBS and IRIS. Furthermore, BEBS also provides inte-
gral support for soft real-time processes, yielding SRT per-
formance much better than that of typical best-effort sched-
ulers without any a priori knowledge about process timing
or resource usage requirements. Taken together, these ca-
pabilities provide a powerful argument for using a real-time
scheduler as the heart of a best-effort system.

This system is part of an ongoing project to create
scheduling frameworks that simultaneously handle a wide
variety of different timing constraints. There is much fu-
ture work: we would like provide native support for multi-
threaded applications, include SMP processing, develop
middleware support for other classes of applications, and
add real-time support for the file, network, and memory sys-
tems.
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