
Toward a Taxonomy of Time-Constrained Applications

Scott Banachowski and Scott A. Brandt
University of California, Santa Cruz

E-mail: {sbanacho,sbrandt }@cs.ucsc.edu

Abstract

We are developing a taxonomy for classifying appli-
cations based on their time constraints. The taxonomy is
based on three components that capture the key characteris-
tics between different classes of applications: the process’s
execution behavior, its timing constraints, and the level of
guarantee it is willing to accept from the system. The tax-
onomy is useful for two reasons: it provides a survey of
the types of existing applications, and it is a tool for under-
standing how to develop integrated schedulers that handle
multiple classes of applications simultaneously.

1 Introduction

Computer systems continue to grow in both capability
and complexity. Embedded, special-purpose and general-
purpose systems are expected to simultaneously handle a
variety of application workloads. Our research focuses
on integrated CPU scheduling of different classes of time-
sensitive applications. Aclassis a set of applications shar-
ing similar timeliness constraints. To address the large num-
ber of existing classes (culled from real-time research liter-
ature), it is useful to be able to describe and compare dif-
ferent sets of timeliness constraints. The paper describes a
taxonomy for classifying different types of applications.

2 Classification of Applications

Applications belong to one of threefamilies: hard real-
time (HRT), soft real-time (SRT), and best-effort (BE).
Generally, these terms describe the criticality of time con-
straints or the nature of guarantee required from an oper-
ating system. To create a taxonomy that is flexible in de-
scribing different classes of applications, it is necessary to
identify more specific descriptions of the types of process-
ing models, constraints, and guarantees.

2.1 Processing Families

Hard real-time processes have timeliness constraints that
must be met—not meeting a constraint is considered an er-
ror, in some cases leading to catastrophic failure of the sys-

tem. A guaranteeis a contract between a process and the
system that a constraint will be met. A hard real-time sys-
tem is one designed specifically to make and meet guar-
antees of hard real-time processes. When a hard real-time
system runs an HRT task, a guarantee is implied. Admis-
sion control or off-line feasibility checks are the traditional
methods to negotiate guarantees in a hard real-time system,
and are based on the worst-case execution requirements.

Soft real-time processes have timeliness constraints, but
failing to meet constraints leads to performance degradation
instead of error. For example, a video-conferencing appli-
cation tolerates dropped frames without severely impeding
a conversation, but many missed frames or delays is dis-
tracting. Often, the requirements of a soft real-time task are
characterized with average-case rather than worst-case es-
timates [17]; a guarantee may ensure that a task performs
well on average, assuming it may accept degradation in the
worst case. A soft real-time system is one that specifically
supports one or more classes of soft real-time processes,
usually attempting to maximize an aspect of system perfor-
mance.

Best-effort processes have no timeliness constraints, and
execute with whatever resources are available to them. A
best-effort system is one that makes no guarantees to pro-
cesses. The goal of most BE systems (such as UNIX and
Windows platforms) is general-purpose time-sharing, based
on maintaining fair resource allocation with good response
time.

2.2 Classes of Processes

Each processing family has different timing constraints.
More importantly, the way that applications wish to ex-
press these constraints to an operating system may differ,
as may the guarantees they are willing to accept from the
system. Even applications of the same family may differ
in the information the system must know in order to prop-
erly schedule them. For example, real time task’s temporal
constraints may be strictly deadline-based when processing
a frame of data, or rate-based when keeping a buffer from
under-flowing. To classify tasks, we have developed a tax-
onomy, where each class is described by a three-tuple of
components:

1. The processing behavior of the application. The behav-
ior describes how and when the process uses the CPU re-
source, without regard to any specific timeliness require-
ments. Table 1 lists the types of behaviors.

2. The parameters used to specify requirements. The re-
quirements are the specific constraints that applications
require from operating systems. The way constraints are
represented (for example in units of time) or the interfaces
used to communicate them to a system vary depending on
the implementation. Table 2 lists the types of parameters.

3. The guarantee that the process is willing to accept from
the operating system as a criteria for executing. Table 3
lists the types of guarantees.

2.3 Family Taxonomies

A class of an application is identified by the three com-
ponents that describe its execution model, constraint model,
and guarantee requirement. Using the components above,
we may now distinguish which classes of applications be-
long to each of the three processing families:

Best-effort Members of the best-effort family of applica-
tions may use any execution model, may specify any type
of constraint, but never require any guarantees from the
operating system.

BE := any-any-NONE

Soft real-time Members of the soft real-time family of ap-
plications use any execution model except for IO and
CPU. They may specify any type of constraint, and al-
though they may require some guarantee in order to run,
it is never strict.

SRT := [PERIODIC|RATE|APERIODIC|SPORADIC]-

any-[NONE|MINIMUM|AVERAGE]

Hard real-time Members of the hard real-time family of
applications use any execution model except for IO, CPU
or APERIODIC (aperiodic applications cannot be sup-
ported because unbounded arrival rates make guarantees
impossible). Constraints include worse case estimates or
require continuous resource and strict guarantees, except
for the imprecise model which allows minimum guaran-
tees.

HRT := ([PERIODIC|RATE|SPORADIC]-

[DEADLINE+WCE|RATE]-STRICT) |

([PERIODIC|RATE|SPORADIC]- {DEADLINE}-

MINIMUM)

3 Class Equivalence

With the creation of a taxonomy, we plan to supply rules
for scheduling different classes using the same or similar

algorithms, i.e. for treating different classes equivalently for
scheduling purposes (often independently of the scheduling
algorithm). The following theorem is adapted from the HLS
framework [16].

Theorem 1 Any schedule that guarantees a rate x over in-
terval y to a task of type a-RATE-b will also guarantee that
a task of type a-DEADLINE+WCE-b with a worst-case ex-
ecution time x and deadline y meets its deadline.

Proof: If a process is given of continuous guarantee ofx units
in every interval of length intervaly, then any job with release
time r and absolute deadliner +y will receive at leastx units
before its deadline.

Theorem 1 demonstrates orthogonal properties of dif-
ferent classes. Showing that a scheduler may treat classes
equivalently simplifies the creation of systems that support
multiple classes. Applying the above theorem lets us exe-
cute the two classes on the same scheduling algorithm.

The inverse of the above theorem is also true, but re-
quires a transformation of constraints:

Theorem 2 Any schedule that guarantees that a task of
type a-DEADLINE+WCE-b with a worst-case execution
time x and deadline y will meet its deadline will also guar-
antee that a task of type a-RATE-b will meet a guarantee of
rate x over interval2y−x.

Proof: If a process meets deadlines requiringx over every
period ofy, there isn’t a guarantee that it will receivexover any
intervaly, only for intervals beginning at the periodic release
time. However, in the worst case, a periodic processes may
receive all of its processing at the beginning of its first period,
and at the end of the subsequent period. Thus over any interval
of 2y−x, it must receive at leastx.

Like the above, in many cases we expect classes to be
equivalent only after a transformation of constraints:

Theorem 3 Any schedule that provides an imprecise guar-
antee of x units to a task T1 of type with PERIODIC-
DEADLINE-MINIMUM can also a schedule a task T2

of typePERIODIC-DEADLINE+ACE-AVERAGE, by con-
verting the average use estimate to an imprecise guarantee.

Proof: Part ofT2’s constraint is a specification of the average
case distribution of CPU usage for each period. Knowing the
distribution, enough CPU per period may be reserved so that
on average, the process will meet its deadline. For example, if
the mean is close to the median, and the task receives at least
a minimum CPU equal to its mean, then it will meet half of its
deadlines. An imprecise guarantee can ensure that it receives
a minimum of CPU each period, therefore by converting the
constraints ofT2 to the imprecise constraint ofT1 the process
will receive an average guarantee.

Table 1. Types of Processing Behavior
Type Description
CPU A CPU-bound task consumes long bursts of CPU without interruption, such as a scientific applica-

tion that does complicated mathematical computations.
IO An IO-bound task spends more time waiting for input than consuming CPU. A command shell is an

example; it mostly waits for keystrokes that usually require little computation to process.
PERIODIC A periodic task consumes CPU at fixed, periodic intervals. An application that periodically sends a

control signal to a plant is an example.
RATE A rate-based task proceeds according to a fixed rate, consuming roughly the same amount of CPU

during any interval of its execution. Network packet processing for fixed-rate stream of a router is
an example.

APERIODIC An aperiodic task releases job at an irregular rate. An example is an interrupt that services a device
that is triggered by an external, random event.

SPORADIC A sporadic task releases jobs at an irregular rate; unlike an aperiodic task, the rate is bounded. A
keyboard interrupt is triggered at an irregular rate, but is bounded by the speed of the keyboard bus.

Table 2. Types of Processing Constraints
Type Description
NONE No constraint, although most multi-tasking systems support at minimum a relative time-sharing

priority, such as the processnice parameter settable in UNIX-based operating systems. It allows
adjustment above or below the default “fair-share” of CPU assigned to processes.

DEADLINE A task may specify a deadline for each job without knowing its the execution time of jobs (a video
player where the execution time is data dependent, for example); in this case the only time constraint
is that each job finishes before its deadline. In many cases, for periodic processes deadline is the
same as period. Without knowing anything about execution time, it is impossible to know if a task
is schedulable.

DEADLINE+WCE If both the period and worst-case execution of any job of a task is known, task constraints may be
used for hard guarantees. This constraint type is used to check for schedulability in the periodic task
model [11].

DEADLINE+ACE For variable period workloads, such as media in which the processing depends on the content of the
data, the average case execution time of jobs may be known (also known as a variable processing
time class [5]). Knowing a model of the variability, it is possible to provide some probabilistic
guarantees [6, 17]

RATE The task must make a fixed amount of progress during any fixed-length, but arbitrarily positioned,
time interval [8] (also called the continuous class [10]). Alternately, an equivalent specification is
expressed using an interval and a percentage of CPU [14].

FIRM The task must meetm out ofk deadlines [2, 7].
{DEADLINE} An imprecise constraint specification states a mandatory deadline constraint for each job, with op-

tional deadlines associated with subprocesses that may be met in best effort fashion [12].
any+u() Any of the above constraints may be paired with a utility function that associates a value with

meeting the constraint. Utilities functions may consist of a fixed value or be represented as a time-
dependent curve [9, 13].

{any+u()} Any of the above parameters may be specified as of set of multiple constraints—these applications
adapt to available resources by adjusting their constraints. These systems adapt allowing the system
allowing dynamic QoS control [3, 15, 18].

Table 3. Types of Processing Guarantees
Type Description
NONE The task is able to run without any guarantee. This is provided by best-effort systems, and many

SRT real-time applications are willing to accept it; obviously, HRT applications cannot.
MINIMUM The task may run only if it receives a minimum amount of resource. This guarantee supports impre-

cise constraints and many SRT applications.
AVERAGE The task is willing to except a reservation in which constraints are not met all the time, but are met

on average. Most SRT systems provide these kinds of guarantees [1, 4, 6, 17].
STRICT The task may only run if it is guaranteed to meet all timeliness constraints. Hard real-time systems

are designed to provide this type of guarantee.

The future work is to establish an entire set of rules and
transformations for identifying equivalent ways to schedule
many types of classes.

4 Conclusion

The taxonomy provides a way to describe the multiple
classes of time-constrained applications taken from both lit-
erature and experience. To complete the taxonomy we must
identify any missing types and a full set of equivalence
classes like those discussed above. We will also develop
flexible operating system interfaces for processes to specify
their processing constraints in a general way.

References

[1] A. K. Atlas and A. Bestavros. Statistical rate monotonic
scheduling. InProceedings of the 19th IEEE Real-Time Sys-
tems Symposium (RTSS 1998), Madrid, Spain, Dec. 1998.
IEEE.

[2] G. Bernat, A. Burns, and A. Llamosı́. Weakly hard real-time
systems.IEEE Transactions on Computers, 50(4):308–321,
Apr. 2001.

[3] G. C. Buttazzo, G. Lipari, M. Caccamo, and L. Abeni. Elas-
tic scheduling for flexible workload management.IEEE
Transactions on Computers, 51(3):289–302, Mar. 2002.

[4] H. Chu and K. Nahrstedt. A soft real time scheduling server
in UNIX operating system. InEuropean Workshop on Inter-
active Distributed Multimedia Systems and Telecommunica-
tion Services, Sept. 1997.

[5] H. Chu and K. Nahrstedt. CPU service classes for multi-
media applications. InProceedings of the 1999 IEEE Inter-
national Conference on Multimedia Computing and Systems
(ICMCS ’99), June 1999.

[6] M. K. Gardner and J. W. Liu. Analyzing stochastic fixed-
priority realtime systems. InProceedings of the Fifth Inter-
national Conference on Tools and Algorithms for the Con-
struction and Analysis of Systems, Joint European Confer-
ences on Theory and Practice of Software, volume 1579 of
Lecture Notes in Computer Science, pages 45–58. Springer-
Verlag, Mar. 1999.

[7] M. Hamdaoui and P. Ramanathan. A dynamic priority as-
signment technique for streams with (m,k)-firm deadlines.
IEEE Transactions on Computers, 44(12):1443–1451, Apr.
1995.

[8] K. Jeffay and D. Bennett. A rate-based execution abstrac-
tion for multimedia computing. InProceedings of the Fifth
International Workshop on Network and Operating System
Support for Digital Audio and Video, Apr. 1995.

[9] E. D. Jensen, C. D. Locke, and H. Tokuda. A time-driven
scheduling model for real-time operating systems. InPro-
ceedings of the 6th IEEE Real-Time Systems Symposium
(RTSS 1985), Dec. 1985.

[10] M. B. Jones, D. Roşu, and M.-C. Roşu. CPU reservations
and time constraints: Efficient, predictable scheduling of in-
dependent activities. InProceedings of the 16th ACM Sym-
posium on Operating Systems Principles (SOSP ’97), pages
198–211, Oct. 1997.

[11] C. L. Liu and J. W. Layland. Scheduling algorithms for mul-
tiprogramming in a hard-real-time environment.Journal of
the Association for Computing Machinery, 20(1):46–61, Jan.
1973.

[12] J. W. Liu, K. Lin, W. Shih, A. C. Yu, J. Chung, and W. Zhao.
Algorithms for scheduling imprecise computations.IEEE
Computer, 25(5):58–68, May 1991.

[13] C. D. Locke. Best-Effort Decision Making for Real-Time
Scheduling. PhD thesis, Carnegie-Mellon University, May
1986.

[14] C. W. Mercer, S. Savage, and H. Tokuda. Processor capac-
ity reserves: Operating system support for multimedia ap-
plications. InProceedings of the 1994 IEEE International
Conference on Multimedia Computing and Systems (ICMCS
’94), pages 90–99, May 1994.

[15] R. Rajkumar, C. Lee, J. Lehoczky, and D. Siewiorek. A re-
source allocation model for QoS management. InProceed-
ings of the 18th IEEE Real-Time Systems Symposium (RTSS
1997), Dec. 1997.

[16] J. Regehr and J. A. Stankovic. HLS: A framework for com-
posing soft real-time schedulers. InProceedings of the 22nd
IEEE Real-Time Systems Symposium (RTSS 2001), pages 3–
14, London, UK, Dec. 2001. IEEE.

[17] T.-S. Tia, Z. Deng, M. Shankar, M. Storch, J. Sun, L. Wu,
and J. W. Liu. Probabilistic performance guarantee for real-
time tasks with varying computation times. InProceedings
of the Real-Time Technology and Applications Symposium
(RTAS95), pages 164–173, May 1995.

[18] H. Tokuda and T. Kitayama. Dynamic QoS control based
on real-time threads. InProceedings of the Fourth Interna-
tional Workshop on Network and Operating System Support
for Digital Audio and Video, pages 114–123, 1993.

