
The BEST Desktop Soft Real-Time Scheduler

ScottA. Banachowski andScottA. Brandt

University of California,SantaCruz
E-mail:

�
sbanacho,sbrandt � @cse.ucsc.edu

Abstract

Best-effort CPU scheduling is an attractive model for
desktop computing because it is simple to use. However,
best-effort models do not provide support for applications
with deadlines. Soft real-time schedulers allocate the CPU
for workloads containing soft deadlines by relying on de-
velopers and users to supply timing requirements to the sys-
tem. BEST is an enhanced best-effort scheduler designed
to meet soft real-time deadlines without prior knowledge
of the workload. BEST dynamically detects the periods of
processes, and schedules using estimated deadlines. By as-
signing pseudo-deadlines to non-periodic processes, BEST
provides good response time to all applications while meet-
ing deadlines of soft real-time applications. This paper dis-
cusses the work-in-progress on the BEST scheduler imple-
mentation.

1. Introduction

It is importantthatdesktopCPUschedulerssupport soft-
realtimeprocessingnow thatmultimediaapplications have
become ubiquitouson desktopcomputers.They mustalso
gracefully handlemixes of applications with different tim-
ing requirements. The best-effort scheduling provided by
desktopsystemsis easyto use,providesareasonable trade-
off betweenfairnessand responsiveness,and imposesno
extra overheadfor specifying applicationresourceneeds.
However, theseschedulers provide no resource or timeli-
nessguarantees,limiting their ability to support applica-
tions with deadlines [10]. To bettersupport soft real-time
applications, while recognizing that the best-effort model
permeatesdesktopcomputing for very good reasons, we
aredeveloping theBest-effort scheduler Enhancedfor Soft
real-timeTime-sharing(BEST). BEST transparently pro-
videssignificantlyimprovedsupport for periodic soft real-
time (SRT) processeswhile retainingthewell-behavedde-
fault characteristicsof best-effort schedulers.

By observing the times at which processesenter the
readyqueue,BESTdynamically estimatesaperiod for each
process exhibiting periodic behavior, assignsappropriate

pseudo-periods for non-periodic processes,andschedules
all processesusingearliestdeadline first (EDF) [7]. This
booststhe performance of periodic processeswhile pre-
servingthebehavior of traditional best-effort schedulersfor
non-periodic processes. The result is a multi-classbest-
effort scheduler thathandlesCPU-intensive, I/O-intensive,
andperiodic SRT processesusinga singlescheduling algo-
rithm. Ourpreliminaryresultsdemonstratethatwithout any
a priori knowledgeof theSRT applications,BESToutper-
formstheLinux scheduler in handling SRT processes,out-
performs real-timeschedulers in handling best-effort pro-
cesses,andsometimesoutperforms both.

Section2 discussesthe designand implementation of
BEST, Section3 presents our preliminary results,andSec-
tion 4 presentssomeconcluding remarks.

2. Design and Implementation

Soft real-time schedulersexist [1, 3, 4, 5, 6, 9, 11, 12],
but they impose constraints on developersand usersthat
limit their practicality in generic desktopenvironments;
they require applications to interfacewith special-purpose
routines and, like most real-timesystems,they generally
require specifications of application resourceusageand
period—numbers thatcanbedifficult or impossibleto ob-
tainfor genericdesktopapplicationsonwidelyvaryingplat-
forms. Consequently, despitethelack of directsupport for
suchapplications, best-effort scheduling remains the pre-
ferred model for most multimediaapplicationdevelopers
andusers.

Accordingly, in developingtheBESTscheduler wehave
thefollowing designgoals:

1.One scheduler should handle all three processtypes—
CPU-bound, I/O-bound,andSRT.

2.Neitherusersnordevelopersshouldneedto providea pri-
ori informationabout theprocessesto beexecuted.

3.The default behavior of the schedulershouldbe reason-
able:�

SRT processesshouldreceivehighestpriority, followed
by I/O-bound processes,and then finally CPU-bound
processes,but noprocessshould starve.

�����	�
��������
�������
���
���� �������! "��#��$���%�&��
'�(� �) "� ��#�����#��&*,+(-/.�������
,01���(����23���
�2&.	� "� 2&
���� �����%��4�
�����
���
Process Ave. Period (ms) Std. Dev. CPU Usage
mpeg play(24 frame/s) 42.3 9.2 13.0%
mpeg play(30 frame/s) 34.6 13.1 15.9%
mpg123(128 kbit/s) 160.2 31.7 2.2%
mpg123(128 kbit/s) (differentmp3) 160.2 31.8 2.2%

�
Thepriority assignedto SRT processesshouldbebased
on classicalreal-time scheduling results, i.e. priority
shouldbebasedonrateor deadline requirements.�
Increasing the load of an under-loadedsystemshould
not degradetheperformance of existing processes,and
performanceshoulddegrade gracefully as the system
becomesoverloaded.

4.The scheduler shouldbe suitablefor useas the default
scheduler in general-purposedesktopsystems:�

It shouldbeefficient.�
Purebest-effort performanceshouldbe comparableto
that of best-effort schedulers, pure real-time perfor-
manceshouldbecomparableto thatof real-timesched-
ulers,andtheperformancewith bothtypesof processes
shouldbe betterthanthat of eitherbest-effort or real-
timeschedulers.�
It shouldallow usersto increaseor decreasetheperfor-
manceof individual applicationsasdesired.

BEST is basedin part on the assumptionthat SRT pe-
riods can be determined by observing the times at which
processesenterthereadyqueue. WeinstrumentedtheLinux
kernelto recordtheentrytimeof somesingle-threadedmul-
timedia processesand found that theseprocessesdid ex-
hibit measurableperiodic behavior (Table1). Furthermore,
becauseof data-dependent performancesdifferences,no a
priori specificationis likely to beableto fully capture this
information,evenfor asingleplatform—dynamic detection
of periods is likely to betheonly technique thatwill work
in general.

We have implemented a prototype BEST scheduler in
Linux. Like otherUNIX schedulers [2, 8], it dynamically
calculatesprocesspriorities,but BESTusesanevensimpler
algorithm thantheLinux scheduler: everyprocessis givena
deadline (dynamicallyrecomputedasappropriate), andthe
readyprocesswith theearliestdeadline is executednext.

In ourpreliminary implementationof BEST, eachappli-
cation’s period is calculatedeachtime it entersthe ready
queue. Thecurrent period is thetimeelapsedsincethepro-
cesslast enteredthe readyqueue and the effective period
is a weighted average of the current period andthe previ-
ouseffective period. A process’s next deadlineis simply
thecurrent timeplusits effectiveperiod. A running process

alsohasadeadlinetimerthatlimits theamount of CPUtime
it may receive before its current periodic deadlineis reset.
Everytimeaprocessis scheduled, it executesuntil eitherits
deadlinetimerexpires,it blocks,or it is preempted.If apro-
cess’s deadline timerexpiresbefore it blocks, its next dead-
line is delayedto slightly beyond themaximum period—in
effect loweringthepriority of any processthatrunspastits
deadline.This ensuresthatprocesseswith detectedperiods
or shortCPUburstswill haveearlierdeadlineswhile CPU-
bound processeswill have laterdeadlines.

3. Results

We comparedtheperformanceof BESTwith theLinux
scheduler(Linux) anda staticpriority-driven RateMono-
tonicscheduler (RM). As with all real-timeschedulers,RM
requires a priori knowledgeof application periods,while
Linux andBEST do not. While running combinationsof
CPU-intensive andperiodic SRT processes,we measured
the progressof all processesand the number of missed
deadlinesincurredby periodic processes.Two syntheticap-
plicationswereusedin theexperiments:loop, a best-effort
processthatendlesslyconsumesCPU,andperiodic, anSRT
processwith a periodic deadline.

Figure1 showstheperformanceof Linux andBESTrun-
ning one best-effort process(loop) and one SRT process
(periodic, with 55)6 secondperiodand 7�8�9 CPUusage).Be-
causeLinux providesapproximatelyequal amountsof CPU
to eachapplication, andtheSRT processrequires lessthan: 8�9 (it’s nominal fair share),Linux meetsall application
deadlines. Similarly, BEST meetsall deadlinesand pro-
videsthesameamount of resourcesto eachapplication as
Linux.

Figure 2 shows the performanceof Linux, BEST, and
RM with onebest-effort process(loop) andoneSRT pro-
cess(periodic,with 55'6 secondperiod and ;$8�9 CPUusage).
Herewe seethatLinux providesapproximately

: 8�9 of the
availableCPUcyclesto eachprocess,causingtheSRT pro-
cessto miss <	=�9 of its deadlines.By contrast,RM provides
theSRT processwith ;$8�9 of theavailablecycles,enabling
it to meetall of its deadlineswhile still allowing the best-
effort processto progressat a reasonable rate. In this case,
BEST providesexactly the sameperformance asRM, but
withoutany a priori informationabout theapplications.

0

5

10

15

20

25

30

35

40

0 10 20 30 40 50 60

pr
og

re
ss

 (
C

P
U

 s
ec

on
ds

)

>

time (seconds)

Linux Scheduler

loop
periodic (0.1s 40%)

0

5

10

15

20

25

30

35

40

0 10 20 30 40 50 60

pr
og

re
ss

 (
C

P
U

 s
ec

on
ds

)

>

time (seconds)

BEST Scheduler

loop
periodic (0.1s 40%)

?�� ��.���
����@�� #$.BAC��#��ED,FHG��/��.�#�#�� #$�&IJ��K	� ���	�&��#��&IML�K	��
��%� ����� 4NI 55'6 ��
�4���#��O��
��%� ����� 7�8�9 *,+(-/.�������
�K

0

5

10

15

20

25

30

35

40

45

0 10 20 30 40 50 60

pr
og

re
ss

 (
C

P
U

 s
ec

on
ds

)

>

time (seconds)

Linux Scheduler

loop
periodic (0.1s 70%)

0

5

10

15

20

25

30

35

40

45

0 10 20 30 40 50 60

pr
og

re
ss

 (
C

P
U

 s
ec

on
ds

)

>

time (seconds)

BEST Scheduler

loop
periodic (0.1s 70%)

0

5

10

15

20

25

30

35

40

45

0 10 20 30 40 50 60

pr
og

re
ss

 (
C

P
U

 s
ec

on
ds

)

>

time (seconds)

Rate Monotonic Scheduler

loop
periodic (0.1s 70%)

?�� ��.���
�L��@�� #$.BA(��D,F(G�������#��EP,QSR&� 'TEIM��K$� �����&��#��EIJL�K	��
���� ���	� 4UI 55'6 ��
�4���#��O��
���� ����� ;$8�9 *,+H-S.�������
�K

BecauseLinux is unawareof resource requirementsor
deadlines,its well-intentionedscheduling decisionscanre-
sult in someprocessesmissingdeadlinesthat could have
otherwisebeenmet. For example, with onebest-effort and
two SRT processes,eachof which requireV�8�9 of theCPU
(onewith a periodof 55)6 of a secondandthe otherwith a
periodof W second)Linux will causetheSRT processesto
misssomedeadlineseventhough afeasiblescheduleexists.
Similarly, RM is generallyunabletofindafeasibleschedule
whenthe SRT applications collectively usebetweenabout;	8�9 and W�8�8�9 of the CPU andhave non-harmonic peri-
ods [7]. Becauseit makes its low-level schedulingdeci-
sionsusingEDF, BEST correctly handlesthesesituations
(notshown here)andmeetsall applicationdeadlines.

An importantquestionabout any SRT scheduler is how
it performswhentheSRT applicationscollectively require
more than W�8�8�9 of the CPU. Figure3 shows the perfor-
manceof Linux, BEST, andRM with onebest-effort pro-
cess(loop) andthreeSRT processes(periodic with W sec-
ond period, periodic with 5X secondperiod, and periodic
with 55)6 secondperiod, eachrequiring 7�8�9 of the CPU);
no scheduler canmeetall of the deadlinesin this overbur-
denedsituation.Linux giveseachprocessroughly 5Y of the

CPU, allowing the best-effort processto make very good
progressbut causingtheSRT processesto miss =�Z�9 , =�V�9 ,
and W�=�9 of their deadlines,respectively. RM meetsall of
thedeadlinesfor the two SRT processeswith shorterperi-
ods,but misses=�Z�9 of the deadlines for the SRT process
with thelongestdeadlineandstarvesthebest-effort process
completely. BESTembodiesthebestcharacteristicsof both
schedulers, distributing and minimizing the misseddead-
linessomewhat(;(W�9 ,

: 9 , and <�9 respectively) while still
allowing thebest-effort processto make reasonable, if not
stellar, progress.

4. Conclusion and Future Work

Our preliminary experimentsshow thatBESTmeetsits
basicpurpose:enhancing theperformanceof periodic pro-
cesseswhile capturing the benefitsof a best-effort model.
BEST performs as well as or better than the Linux and
RM schedulers in handlingbest-effort, soft real-time,and
a combinationof the two typesof processes,without any
a priori knowledgeof theapplications. However, we have
yet to achieveall of thegoalswe setforwardfor thesched-
uler, andhave not yet fully examined the performanceof
our preliminary implementation. Our ongoing work aims

0

5

10

15

20

25

30

0 10 20 30 40 50 60

pr
og

re
ss

 (
C

P
U

 s
ec

on
ds

)

>

time (seconds)

Linux Scheduler

loop
periodic (1.0s 40%)
periodic (0.5s 40%)
periodic (0.1s 40%)

0

5

10

15

20

25

30

0 10 20 30 40 50 60

pr
og

re
ss

 (
C

P
U

 s
ec

on
ds

)

>

time (seconds)

BEST Scheduler

loop
periodic (1.0s 40%)
periodic (0.5s 40%)
periodic (0.1s 40%)

0

5

10

15

20

25

30

0 10 20 30 40 50 60

pr
og

re
ss

 (
C

P
U

 s
ec

on
ds

)

>

time (seconds)

Rate Monotonic Scheduler

loop
periodic (1.0s 40%)
periodic (0.5s 40%)
periodic (0.1s 40%)

?�� ��.���
�[��@�� #	.BA���D,FHG�������#��OP,QSR&� "TEIM��K	� �����EIML�K	��
���� ����� 4�I W ��
�4���#��O��
���� ����� 7�8�9 *,+H-\.�������
�K�IM[�K	�	
���� ����� 4�I 5X ��
�4���#��O��
���� �����7�8�9 *,+(-/.�������
�K	��#��&IM]�K	��
���� ����� 4�I 55)6 ��
�4���#��E��
���� ����� 7�8�9 *,+H-\.�������
�K

to further develop the BEST scheduler, analyzeits perfor-
mancewith a variety of realistic workloads,and develop
a final implementation tunedfor optimal desktopperfor-
mance.To createmorerealisticworkloads,wewill usereal
singleandmulti-threadedSRT applications andstressthe
scheduler with fluctuatingworkloads.Wewill alsoexamine
thebest-effort andreal-timebehavior in moredetail— we
believe that BEST will exhibit comparableresponsiveness
to the default Linux scheduler andwill have significantly
betterjitter performance,but we have yet to measureeither
of theseimportant characteristics.

We alsoplanto examine theimpactof changing thepri-
oritiesof best-effort andSRT processes,bothmanuallyvia
“nice” andautomatically insidethescheduler. It is our be-
lief thatvia priority wecanadjustboththerelativeprogress
of thebest-effort processesandthemisseddeadlinecharac-
teristicsof theSRT processes.More generally, we believe
thatby automaticallyadjustingthepriorities of thevarious
processeswe canadaptthe systemto provide any missed-
deadlinebehavior andany ratioof best-effort to SRT perfor-
mancedesired.In sodoing, weshouldbeableto spreadout
the misseddeadlines across the SRT processes,minimize
the misseddeadlinesof moreimportant processes,or pro-
vide good progressto moreimportantbest-effort processes
while still meetingimportantSRT deadlines,asdesired.

References

[1] A. Bavier andL. L. Peterson.BERT: A scheduler for best
effort and real-time tasks. TechnicalReport TR-587-98,
PrincetonUniversity, Aug. 1998.

[2] M. Beck, H. Böhme,M. Dziadzka, U. Kunitz, R. Magnus,
andD. Verworner. Linux Kernel Internals. AddisonWesley
Longman,2ndedition,1998.

[3] S.BrandtandG. Nutt. Flexible soft real-timeprocessingin
middleware.Real-Time Systems, 2001. to appear.

[4] K. J. Duda and D. R. Cheriton. Borrowed-virtual-time
(BVT) scheduling:Supportinglatency-sensitive threadsin a

general-purposescheduler. In Proceedings of the 17th ACM
Symposium on Operating System Principals, Dec.1999.

[5] K. Jeffay andD. Bennett. A rate-basedexecutionabstrac-
tion for multimediacomputing. In Proceedings of the 5th
International Workshop on Network and Operating System
Support for Digital Audio and Video, Apr. 1995.

[6] M. Jones,J. B. III, and A. Forin. An overview of the Ri-
alto real-timearchitecture.In Proceedings of the 7th ACM
SIGOPS European Workshop, pages249–256,Sept.1996.

[7] C. L. Liu andJ.W. Layland.Schedulingalgorithmsfor mul-
tiprogramingin a hard-real-timeenvironment. Journal of
the Association for Computing Machinery, 20(1):46–61,Jan.
1973.

[8] M. K. McKusick,K. Bostic,M. J.Karels,andJ.S.Quarter-
man. The Design and Implementation of the 4.4BSD Oper-
ating System. Addison-Wesley Publishing,1996.

[9] C. W. Mercer, S.Savage,andH. Tokuda.Processorcapacity
reserves: Operatingsystemsupportfor multimediaapplica-
tions. In Proceedings of the IEEE Internation Conference
on Multimedia Computing and Systems, pages90–99, May
1994.

[10] J. Nieh, J. G. Hanko, J. D. Northcutt, and G. A. Wall.
SVR4UNIX schedulerunacceptablefor multimediaapplica-
tions. In Proceedings of the Fourth International Workshop
on Network and Operationg System Support for Digital Au-
dio and Video, 1993.

[11] J.NiehandM. Lam.Thedesign,implementationandevalua-
tion of SMART: A schedulerfor multimediaapplications.In
Proceedings of the Sixteenth Symposium on Operating Sys-
tem Principals, Oct.1997.

[12] H. Tokuda,T. Nakajimi, andP. Rao. Real-timeMach: To-
wards a predictablereal-time system. In Proceedings of
USENIX Mach Workshop, Oct.1990.

