The BEST Desktop Soft Real-Time Scheduler

ScottA. Banachavski andScottA. Brandt

University of California, SantaCruz
E-mail: {sbanacho, sbrandt }@se. ucsc. edu

Abstract

Best-effort CPU scheduling is an attractive model for
desktop computing because it is simple to use. However,
best-effort models do not provide support for applications
with deadlines. Soft real-time schedulers allocate the CPU
for workloads containing soft deadlines by relying on de-
velopers and usersto supply timing requirementsto the sys-
tem. BEST is an enhanced best-effort scheduler designed
to meet soft real-time deadlines without prior knowledge
of the workload. BEST dynamically detects the periods of
processes, and schedules using estimated deadlines. By as-
signing pseudo-deadlines to non-periodic processes, BEST
provides good response time to all applications while meet-
ing deadlines of soft real-time applications. This paper dis-
cusses the work-in-progress on the BEST scheduler imple-
mentation.

1. Introduction

It is importantthatdesktopCPUschedules suppot soft-
realtime proeessingnow thatmultimedia applicatiors have
becone ubiqutous on desktopcomputers. They mustalso
gracefilly handlemixes of applicatiors with differenttim-
ing requrements. The best-efort schedulilg provided by
desktopsystemss easyto use providesareasonale trade-
off betweenfairnessand resposiveness,andimposesno

extra overheadfor specifyirg applicationresourceneeds.

However, theseschediers provide no resouce or timeli-
nessguaratees,limiting their ability to suppot applica-
tionswith deadlins [10]. To bettersuppot soft real-time
applicatins, while recogizing that the best-efort model
permatesdesktopcompuing for very good reasos, we
aredeveloping the Best-efort schedule Enharcedfor Soft
real-time Time-sharing(BEST). BEST transparetty pro-
videssignificantlyimproved support for periadic soft real-
time (SRT) processewvhile retainingthe well-behaed de-
faultcharactdstics of best-efort schedules.

By obsening the times at which processesnter the
readyqueue BESTdynanically estimates periad for each
process exhibiting periodc behaior, assignsappopriate

pseudeperiods for nonperiodc processesand schedules
all proesseausing earliestdeadlire first (EDF) [7]. This
booststhe performarce of periodc processeswhile pre-
servingthebehaior of traditioral best-efort schediersfor
nonperiodic processes. The resultis a multi-classbest-
effort schedule thathandlesCPU-intensie, I/O-intensve,
andperiadic SRT processesisinga singleschedling algo-
rithm. Our preliminaryresultsdemastratehatwithout any
a priori knowledgeof the SRT applications, BEST outpe-
formsthe Linux schedler in handing SRT processesyut-
perfams real-timeschedules in handing best-efort pro-
cessesandsometime®utperforns both.

Section?2 discusseghe designand implemertation of
BEST, Section3 presets our preliminary results,andSec-
tion 4 presentsomeconcludng remarls.

2. Design and I mplementation

Soft real-time schedulerexist [1, 3, 4, 5, 6, 9, 11, 12],
but they impose constraits on developersand usersthat
limit their practicality in generic desktopervironments;
they requre applications to interfacewith special-pgose
routines and, like most real-time systems they geneally
require specificatios of applicationresourceusageand
period—numbaes that canbe difficult or impossibleto ob-
tainfor generiadesktopapgicationsonwidely varying plat-
forms. Conseqantly, despitethe lack of directsuppot for
suchapplicatiors, best-efort schedulig remairs the pre-
ferred modé for most multimediaapplicationdevelopers
andusers.

Accordngly, in devdlopingthe BEST schedier we have
thefollowing designgods:

1.0ne schedler should hande all three processtypes—
CPU-bouml, I/O-bowund, andSRT.

2. Neitherusersnordevelopersshouldneedo provide a pri-
ori informationabou theprocesseto be executed

3.The defaut behaior of the schedulershouldbe reason
able:

o SRT proesseshouldreceve highestpriority, followed
by 1/0-bound processesand then finally CPU-bounl
processedyut no proessshoud stane.

Table 1. Average period, standard deviation, and CPU usage for sample multimedia processes.

Process

Ave. Period (ms)

Std. Dev. CPU Usage

mpeg-play (24 frame's)

mpeg-play (30 framée's)
mpgl23(128 kbit/s)

mpgl23 (128 kbit/s) (differentmp3

42.3 9.2 13.0%
34.6 13.1 15.9%
160.2 31.7 2.2%
160.2 31.8 2.2%

e Thepriority assignedo SRT processeshouldbebased
on classicalreal-time schedling results, i.e. priority
shouldbebasedn rateor deadlire requiements.

e Increaing the load of an uncer-loadedsystemshould
not degrade the performane of existing proceessesand
perfamanceshoulddegrace gracdully as the system
beconesoveloaded.

4.The schedule shouldbe suitablefor use as the default
schedulein gener&purposedesktopsystems:

o It shouldbeefficient.

e Purebest-efort perfomanceshouldbe comparableto
that of best-efort schediers, pure real-time perfa-
manceshouldbe compaableto thatof real-timesched-
ulers,andthe performarce with bothtypesof processes
shouldbe betterthanthat of either best-efort or real-
time schedulers.

e |t shouldallow usersto increaseor decreaethe perfa-
manceof individual applicatimsasdesired

BEST is basedin parton the assumptiorthat SRT pe-
riods can be determired by observimg the times at which
processeenterthereadyquete. We instrumenedtheLinux
kernelto recordtheentrytime of somesingle-theadednul-
timedia processesand found that theseprocessedlid ex-
hibit measuableperiodc behaior (Tablel). Furthemore,
becausef data-&penant perfaamancediffererces,no a
priori specificationis likely to be ableto fully captue this
information,evenfor asingleplatform—dynanic detection
of periods is likely to be the only technique thatwill work
in general.

We have implemente a prototype BEST schedier in
Linux. Like otherUNIX schedules [2, 8], it dynanically
calculateprocesspriorities,but BESTusesanevensimpler
algorithm thantheLinux schedule everyprocessis givena
deadlire (dynamicallyreconputedasappopriate) andthe
readyproceswith theearliestdeadlire is execuednext.

In our preliminary implemenation of BEST, eachappli-
cation’s periodis calculatedeachtime it entersthe ready
guete. Thecurrent period is thetime elapsedsincethepro-
cesslast enteredthe readyquete and the effective period
is a weighted average of the currert periad andthe previ-
ous effective period A processs next deadlineis simply
thecurren time plusits effective period A runring process

alsohasadeadlire timerthatlimits theamoun of CPUtime
it may receve befae its current periadic deadlineis reset.
Everytime aproassis scheduledit exeaitesuntil eitherits
deadlindimerexpires,it blocks,orit is preenpted.If apro-

cesss deadlire timer expiresbefaeit blocks, its next dead

line is delayeduo slightly beyond the maxinum period—in

effectloweringthe priority of ary processthatrunspastits

deadline.This ensureghatprocesseswith detectecperiads
or shortCPU burstswill have earlierdeadlireswhile CPU-
bourd processewvill have laterdeadlines.

3. Reaults

We comparedthe performarce of BEST with the Linux
scheduler(Linux) anda static priority-driven Rate Mono-
tonicschedler (RM). As with all real-time schedlers,RM
requires a priori knowledgeof application periods,while
Linux and BEST do not. While runring combnationsof
CPU-intenste and periodc SRT processes,we measurd
the progressof all processesand the nunmber of missed
deadlinesncurredby periodc processesTwo syntheticap-
plicationswereusedin the experiments:loop, a best-efort
processhatendlesslycorsumesCPU,andperiodic, anSRT
proceswwith aperiodc deadlire.

Figurel shavstheperfamanceof Linux andBESTrur:
ning one best-efort process(loop) and one SRT process
(periodc, with 11—0 secondperiodand40% CPUusage)Be-
causd.inux providesapprximatelyequal amouwuntsof CPU
to eachapplicationp andthe SRT procesgequreslessthan
50% (it's nominalfair share),Linux meetsall applicatin
deadlines. Similarly, BEST meetsall deadlinesand pro-
videsthe sameamount of resource$o eachapplication as
Linux.

Figure 2 shows the perfamanceof Linux, BEST, and
RM with onebest-efort procesgloop) andone SRT pro-
cesqpeliodic, with % secondperiad and70% CPUusage)
Herewe seethatLinux providesappoximately50% of the
availableCPU cyclesto eachprocesscausinghe SRT pro-
cesdo miss29% of its deadines. By contrastRM provides
the SRT pracesswith 70% of theavailablecycles,enablirg
it to meetall of its deadlineswhile still allowing the best-
effort processto progressat a reasonale rate. In this case,
BEST provides exactly the sameperformarce as RM, but
withoutary a priori informationabou theapplicatiors.

Linux Scheduler

BEST Scheduler

IS
o

w
@

w
=}
T

N
a
T

progress (CPU seconds)
T N
(4 o
T T

-
o
T

&
T

o

T

periodic (0

!

T

!

IoopY
1S 40%) -

!

!

!

!

40

4 35 |

30 -

25

20

15 -

L
progress (CPU seconds)

10

T

periodic (0.1s 40%,

!

T

!

T

T

loop ——

!

!

! !

10

20

30 40

time (seconds)

50

60

10

20

30

40

time (seconds)

50 60

Figure 1. Linux and BEST running (1) loop and (2) periodic(% second period, 40% CPU usage)

Linux Scheduler
45 T T T T

loop
periodic (0.1s 70%) -------

25

20

progress (CPU seconds)

=
o
T

! ! ! !

!

!

BEST Scheduler

BONON W W
o o o o o

progress (CPU seconds)

.
S)

o w

0 10 20 30 40
time (seconds)

50

60

T

T

loop
periodic (0.1s 70%) -------

!

!

! !

!

!

progress (CPU seconds)

o w

10

20

30 40
time (seconds)

50

60

BONON W W
o o o o o

.
S)

o w

Rate Monotonic Scheduler

Y " loop —— T P
periodic (0.1s 70%) -------

! ! ! ! ! !

10 20 30 40 50 60
time (seconds)

Figure 2. Linux, BEST, and RM with (1) loop and (2) periodic (;5 second period, 70% CPU usage)

Becausd.inux is unavare of resouce requrementsor
deadlires,its well-intentiored scheduliig decisionscanre-
sult in somepraocessegmissingdeadlinesthat could have
otherwisebeenmet. For exanple, with onebest-efort and
two SRT processesgachof which require30% of the CPU
(onewith a period of % of a secondandthe otherwith a
periodof 1 second)Linux will causethe SRT processedo
misssomedeadlireseventhoud afeasibleschedulexists.
Similarly, RM is gererallyunableto find afeasibleschedule
whenthe SRT applicatios collectively usebetweerabout
70% and100% of the CPU and have northarmanic peri-
ods[7]. Becauset makesits low-level schedulingdeci-
sionsusing EDF, BEST correctly handlesthesesituations
(notshavn here)andmeetsall applicationdeadlires.

An importantquestion abou ary SRT schedier is how
it perfamswhenthe SRT applicdions collectively require
more than100% of the CPU. Figure 3 shaws the perfa-
manceof Linux, BEST, andRM with onebest-efort pro-
cess(loop) andthreeSRT processegpeliodic with 1 sec-
ond period periodc with 1 secondperiod, and periadic
with % secondperia, eachrequiing 40% of the CPU);
no schedler canmeetall of the deadliresin this overkur-
denedsituation. Linux giveseachprocessroughy % of the

CPU, allowing the best-efort processto make very goad
progessbut causingthe SRT processefo miss98%, 93%,
and19% of their deadlinesyespectidy. RM meetsall of
the deadlinedor the two SRT processeswith shorterperi-
ods, but misses98% of the deadlins for the SRT process
with thelongestdeadlineandstanesthe best-efort process
completely BESTembodesthebestcharactdsticsof both
schedules, distributing and minimizing the misseddead
linessomeavhat(71%, 5%, and2% respectiely) while still
allowing the best-efort processo make reasonhle, if not
stellat progeess.

4. Conclusion and Future Work

Our preliminary experimentsshowv that BEST meetsits
basicpurpose: enhaweing the perfamanceof periodc pro-
cessewvhile captuing the benefitsof a best-efort mocel.
BEST performs as well as or betterthan the Linux and
RM schedules in handlingbest-efort, soft real-time,and
a combination of the two typesof processeswithout ary
a priori knowledgeof the applications. However, we have
yetto achieve all of the goalswe setforwardfor the sched-
uler, and have not yet fully examired the perfomanceof
our prelimnary implenmentation. Our ongping work aims

Linux Scheduler

W
o
W
o

BEST Scheduler

Rate Monotonic Scheduler

W
o

T T T T T T

oop
periodic (1.0s 40%)
periodic (0.5s 40%) -------- i}
periodic (0.1s 40%)

T

oop
periodic (1.0s 40%)
periodic (0.5s 40%)
periodic (0.1s 40%)

N
3}
T
N
3}
T

N
o
T
L
N
o
T

=
3}
T
L
=
3}
T

=
o
T
L
=
o
T

progress (CPU seconds)
progress (CPU seconds)

o
T
L
o
T

= ! ! ! ! ! ! =

T T | T T T T
periodic (1.0s 40%)
periodic (0.5s 40%) -------- .
periodic (0.1s 40%)

L
B = N N
o 3} o 3}
T T T T
\
L L L

L
progress (CPU seconds)

L
o
T

0 10 20 30 40 50 60 0
time (seconds)

10 20

30
time (seconds)

40

30 40 50 60
time (seconds)

50 60 0 10 20

Figure 3. Linux, BEST, and RM with (1) loop (2) periodic (1 second period, 40% CPU usage) (3) periodic (% second period,
40% CPU usage) and (4) periodic (% second period, 40% CPU usage)

to further develop the BEST schedier, analyzeits perfa-
mancewith a variety of realistic workloads, and develop
a final implemenation tunedfor optimal desktopperfa-
mance.To createmorerealisticworkloads,we will usereal
single and multi-threaled SRT applications and stressthe
schedulewith fluctuatingworkloads.We will alsoexamine
the best-efort andreal-timebelavior in moredetail— we
believe that BEST will exhibit compaableresposiveness
to the defadt Linux schedler andwill have significantly
betterjitter perfomance put we have yetto measuresither
of thesemportari charactestics.

We alsoplanto examire theimpactof charging the pri-
orities of best-efort andSRT processeshothmanuallyvia
“nice” andautomaically insidethe schedler. It is our be-
lief thatvia priority we canadjustboththerelative progess
of the best-efort proeessesindthemisseddeadlinechaac-
teristicsof the SRT proesses.More geneally, we believe
thatby automaticallyadjustingthe priorities of the various
processeswe canadaptthe systemto provide ary missed-
deadlire behaior andary ratio of best-efortto SRT perfa-
mancedesired.In sodoing, we shouldbeableto spreacut
the misseddeadines acrssthe SRT processesminimize
the misseddeadlinesof moreimportan processesor pro-
vide goad progessto moreimportantbest-efort processes
while still meetingimportantSRT deadines,asdesired.

References

[1] A. Bavier andL. L. Peterson.BERT: A schedler for best
effort and real-time tasks. Technical Report TR-587-98,

PrincetonUniversity, Aug. 1998
M. Beck, H. Bohme,M. Dziadzka U. Kunitz, R. Magrus,

andD. Verworner Linux Kernel Internals. AddisonWesley

Longman,2ndedition,1998.
S.BrandtandG. Nutt. Flexible soft real-timeprocessingn

middlevare. Real-Time Systems, 2001. to appea.
K. J. Duda and D. R. Cheriton. Borrowed-virtual-time

(BVT) scheduling:Supportinglateng/-sengtive threadsn a

(2]

(3]
(4]

[5]

[6]

[7]

(8]

9]

[10]

[11]

[12]

general-pgoosescheduler In Proceedings of the 17th ACM

Symposium on Operating System Principals, Dec.1999.
K. Jefay andD. Bennett. A rate-basedxecutionabstrac-

tion for multimediacompuing. In Proceedings of the 5th
International Workshop on Network and Operating System

Support for Digital Audio and Video, Apr. 1995.
M. Jones,J. B. lll, andA. Forin. An overview of the Ri-

alto real-timearchitecture. In Proceedings of the 7th ACM

S GOPS European Workshop, page249-256, Sept.199%.
C.L. Liu andJ.W. Layland. Schedulingalgorithmsfor mul-

tiprogramingin a hard-real-timeervironment. Journal of
the Association for Computing Machinery, 20(1):46-61,Jan.

1973
M. K. McKusick, K. Bostic,M. J.Karels,andJ. S. Quarter

man. The Design and Implementation of the 4.4BSD Oper-

ating System. Addison-Weésley Publishing,199.
C.W. Mercer S. Savage,andH. Tokuda. Processocapacity

resenes: Operatingsystemsupportfor multimediaapplica-
tions. In Proceedings of the |IEEE Internation Conference
on Multimedia Computing and Systems, pages90-9, May
1994

J. Nieh, J. G. Hanlo, J. D. Northcutt, and G. A. Wall.
SVRA4UNIX schedllerunaceptableor multimediaapplica-
tions. In Proceedings of the Fourth International Workshop
on Network and Operationg System Support for Digital Au-

dio and Video, 1993
J.NiehandM. Lam. Thedesignjmplementatiorandevalua-

tion of SMART: A schedulefor multimediaapplicationsIn
Proceedings of the Sxteenth Symposium on Operating Sys-

tem Principals, Oct. 1997.
H. Tokuda, T. Nakajimi, andP. Rao. Real-timeMach: To-

wards a predictablereal-time system. In Proceedings of
USENIX Mach Workshop, Oct. 1990.

