
UNIVERSITY OF CALIFORNIA

SANTA CRUZ

USING THE BEST-EFFORT SCHEDULING MODEL TO SUPPORT SOFT
REAL-TIME PROCESSING

OR

BEST DOES BETTER

A report submitted in partial satisfaction of the
requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER SCIENCE

by

Scott A. Banachowski

August 2002

Copyright c
�

by

Scott A. Banachowski

2002

Using the Best-effort Scheduling Model to Support Soft Real-time Processing

Scott A. Banachowski

Abstract

Algorithms for making timely CPU allocations to soft real-time processes exist, yet

best-effort scheduling algorithms remain an attractive model for developers and users. Best-effort

scheduling is easy to use, provides a reasonable trade-off between fairness and responsiveness, and

imposes no overhead for specifying resource demands. However, best-effort schedulers provide no

resource guarantees, limiting their ability to support processes with timeliness constraints. React-

ing to a need for better support of soft real-time multimedia applications while recognizing that the

best-effort model permeates desktop computing for good reason, we have developed a technique

for inferring soft-real time behavior from executing processes. We have created two schedulers

based on this technique, the Best-Effort scheduler enhanced for Soft Real-Time (BEST) and a

rate-controlling scheduler (BEST-RATE), that combine desirable aspects of both best-effort and

soft real-time scheduling. BEST provides the well-behaved default characteristics of best-effort

schedulers while significantly improving performance of periodic soft real-time processes. BEST

schedules using estimated deadlines based on the dynamically detected periods of processes, and

assigns pseudo-periods to non-periodic processes to allow for good response time. BEST-RATE,

developed to overcome lack of fairness in BEST, provides timely allocation to periodic processes

while providing equal resource allocation among all processes. This paper discusses a Linux im-

plementation of the BEST and BEST-RATE schedulers and presents results demonstrating that

they outperform the Linux scheduler in handling soft real-time processes, and outperform real-

time schedulers in handling mixed workloads of soft real-time and best-effort processes.

iv

Acknowledgments

I thank Scott Brandt for his advice, mentoring, friendship, and his displays of “Midwest

heroism.” I also thank Darrell Long, Ethan Miller, and the UCSC Computer Systems Lab for

their support over the last two years, especially Zachary Peterson for reviewing drafts of this paper

and co-conspiring to make the lab fun. I am especially grateful for the technical discussions of

this research with Hermann Härtig at the Dresden University of Technology, Lonnie Welch at

the University of Ohio, and their respective research groups, who contributed valuable feedback.

Randal Burns provided me with insight into the world of research. On a personal note Denise Lum

and my parents contributed to this work, if not in the technical details, then in spirit.

v

Contents

Abstract iii

Acknowledgments iv

List of Figures vii

List of Tables viii

1 Introduction 1
1.1 Related Work . 5

1.1.1 Traditional Real-time Scheduling . 5
1.1.2 Multi-level Scheduling . 6
1.1.3 Proportional-share Scheduling . 7
1.1.4 The State of SRT Scheduling . 9

2 Multimedia Properties 10
2.1 Multimedia Properties . 11

2.1.1 Soft real-time models . 11
2.1.2 Video-stream properties . 13

2.2 Workload Simulator Implementation . 15
2.2.1 Settable parameters . 17
2.2.2 Simulator output . 19

3 The BEST Scheduler 21
3.1 Design Goals . 22
3.2 Linux Scheduler Overview . 23
3.3 BEST Scheduler Details . 24

3.3.1 Period detection . 25
3.3.2 Confidence . 26
3.3.3 Other changes . 27
3.3.4 Tuning the scheduler . 28

3.4 Experimental Results . 28
3.4.1 The Linux scheduler simulator . 29

vi

3.4.2 Interpretation of results . 30
3.5 Limitations of BEST . 40

4 The BEST-RATE Scheduler 44
4.0.1 Design Goals . 44
4.0.2 BEST-RATE Scheduler Details . 45
4.0.3 Setting deadlines . 46

4.1 Experimental Results . 47

5 Future Work and Conclusion 53
5.1 Future Work . 54
5.2 Conclusion . 56

Bibliography 58

vii

List of Figures

2.1 For each MPEG frame of a video (action movie excerpt), this graph shows the
processing time of the frame. 15

2.2 This histogram shows the distribution of processing times for each frame type of
the data shown in Figure 2.1. 17

2.3 For each synthetically generated frame, this graph shows the processing time. . . . 20
2.4 This histogram shows the distribution of processing times for each frame type of

the data shown in Figure 2.3. 20

3.1 Linux and BEST schedulers running (1) best-effort and (2) srtsim 25fps 50%. . . . 31
3.2 Linux and BEST schedulers with (1) best-effort, (2) SRT 25fps 31% and (3) srtsim

33fps 28%. 32
3.3 Linux, BEST and RM schedulers running (1) best-effort and (2) srtsim 25fps 62.5%. 33
3.4 Linux, BEST and RM schedulers running (1) best-effort, (2) srtsim 25fps 41%,

and (3) srtsim 33fps 40%. 35
3.5 BEST and RM schedulers running (1) srtsim 13fps 30%, (2) srtsim 19fps 30%,

and (3) srtsim 62fps 31%. 36
3.6 Linux, BEST, and RM schedulers with (1) best-effort, (2) srtsim 25fps 62.5%, and

(3) srtsim 33fps 62.5%. 38

4.1 Linux and BEST-RATE running (1) best-effort and (2) srtsim 25fps 50%. 48
4.2 Linux and BEST-RATE schedulers running (1-3) 3 best-effort processes and (4)

srtsim 25fps 25%. 49
4.3 Linux and BEST-RATE running (1) best-effort (w/ nice 10) and (2) srtsim 33fps

67%. 50
4.4 BEST and BEST-RATE schedulers with (1) best-effort, (2) srtsim 25fps 50% and

(3) srtsim 50fps 50%. 51

viii

List of Tables

2.1 Average period, standard deviation, and CPU usage for sample multimedia processes. 12
2.2 Summary of I-Frame only MPEG statistics. 15
2.3 Summary of MPEG with I,P and B statistics. 16
2.4 Statistics used to generate synthetic video streams. 18
2.5 Summary synthetic MPEG video stream. 19

3.1 Summary of percentage of deadlines missed for all experiments. 39

4.1 Summary of percentage of deadlines missed for all experiments. 52

1

Chapter 1

Introduction

Schedulers for conventional desktop operating systems use a best-effort policy. The goal

of a best-effort scheduler is to provide adequate progress and fairness to applications by distribut-

ing CPU bandwidth and scheduling latency equally among competing processes. As the name

“best-effort” implies, the scheduler provides no facilities for making or meeting CPU allocation

reservations for processes. Because best-effort schedulers provide no guarantees of CPU band-

width, processes with timeliness constraints may or may not receive the timely allocation of CPU

required to meet deadlines.

In the best-effort model, both latency and progress of an application depend on the pro-

cessor load. A scheduler that allocates CPU time-slices to processes in a round-robin fashion is an

example of a best-effort policy; once a process executes for a time-slice, it must wait the duration

of the combined time-slices of all other processes before proceeding. Multi-level feedback queues,

commonly used in both UNIX-based and Windows systems [12, 26], improve on round-robin by

first servicing processes that incurred I/O delay, effectively trading their scheduling latency for I/O

latency. Although this strategy helps balance the fairness of overall latency, it does not ensure that

2

a process will meet any particular timeliness goals.

Conventional desktop operating systems do not directly support the scheduling needs of

real-time applications because they use the best-effort scheduling model. The model is attractive

because it is simple and easy to use; applications do not require special interfaces to the operating

system for reserving CPU bandwidth, and the system need not incorporate admission control or

service guarantees. Clearly a desktop operating system is not a desirable platform for hard or firm

real-time applications, in which a failure to meet a deadline is considered a failure of the system.

However, a soft real-time application does not require all deadlines to be met; a missed deadline

leads to undesirable degradation of performance, but not catastrophic failure.

The popularity of multimedia applications such as audio and video players for desktop

workstations is a testament to the capability of best-effort systems to satisfactorily execute soft

real-time applications. However without service guarantees, the performance of soft real-time

applications degrades in the presence of scheduling latency. In order to eliminate performance

problems, the user is left adjusting process priorities (via commands like nice that scale time-

slices), or setting static real-time priorities. Scaling time-slices reduces the impact of scheduling

latency but does not eliminate it, and is intrusive because it requires intervention from the user. Us-

ing static real-time priorities is inadequate for handling continuous sound or video [29]; it violates

the best-effort model causing pathologies due to unfairness (lower priority processes may never

make progress), and it requires workload-dependent tuning which is difficult, especially when the

workload is as dynamic and unpredictable as on a desktop system.

The result of research in desktop soft real-time schedulers is several systems that provide

support for mixed workloads consisting of multimedia applications and applications without time-

liness requirements (best-effort processes), discussed further in Section 1.1. These systems require

3

applications to interface with special-purpose soft real-time routines to provide runtime parameters

such as resource usage and periodic deadline. Although they address lack of timeliness, they lose

one primary advantage of the best-effort model by requiring a priori specifications of application

resource and timeliness needs. The interface to the scheduler is exposed, meaning that either the

application programmers or the users must interact and negotiate with the scheduler to control the

scheduling policies. By doing so, the programming or run-time model loses generality, restricting

the portability of applications. In addition, it is often difficult to characterize the resource needs of

applications in advance because performance may vary on different systems.

In this report, we consider using the best-effort model to support applications with pe-

riodic deadlines. Previous research on the Dynamic QoS Level Resource Management (DQM)

system demonstrates that it is possible to robustly execute soft real-time applications on best-effort

systems [6, 7, 8]. This system uses a middleware framework that allows applications to dynam-

ically adjust their resource usage based on the available resources. By adjusting resource usage

such that the set of running applications use less than 100% of the available resources, a best-effort

scheduler is able to provide reasonable soft real-time performance.

Like other soft real-time systems, the DQM system has several issues that limit its ulti-

mate utility in generic desktop environments. Although the DQM system dynamically adjusts to

incorrect or unspecified resource usage estimates, it cannot adapt to incorrect or unspecified appli-

cation periods. Because it is a middleware solution, the performance of soft real-time applications

varies significantly in the presence of best-effort or other applications that do not cooperate with

the middleware resource manager.

This report presents a solution that addresses those issues—BEST, the Best-effort sched-

uler Enhanced for Soft real-time Time-sharing. BEST is a time-sharing scheduler that directly

4

supports multimedia applications while providing adequate progress and response time for best-

effort applications. Current approaches to soft real-time scheduling require special interfaces to

the scheduler—BEST differs by removing software authors’ and users’ awareness of the sched-

uler. BEST dynamically measures process behavior and uses this information to aid in scheduling

decisions. By detecting the rate at which waiting processes enter the run queue, the scheduler

boosts the performance of “well-behaved” periodic processes by increasing their priority, while

preserving the behavior of traditional time-sharing schedulers for non-periodic processes.

The BEST scheduler uses the best-effort model, so no process is refused admission or

provided a service guarantee. This is an attractive model because it incurs no overhead for pro-

grammers or users. Like other best-effort systems, if the user overburdens the system, the user

will experience degraded system performance [32]. However, in the presence of other applications

or heavy (but not overburdened) use, the BEST scheduler effectively meets soft real-time dead-

lines for applications that are well-behaved. And when overburdened, BEST continues to provide

satisfactory progress to all applications.

This report describes an implementation of the BEST scheduler in the Linux kernel and

a variation of the technique, called BEST-RATE, that monitors and controls the rates of running

processes. Chapter 2 describes some properties of soft real-time multimedia applications that

we model to create synthetic workloads for testing the scheduler. Chapter 3 describes the BEST

scheduler implementation, and presents quantitative performance data. Chapter 4 presents the

BEST-RATE scheduler implementation and its performance. Finally, Chapter 5 gives conclusions

with comments on open areas for future research. The remainder of this chapter discusses previous

research on systems that support scheduling for soft real-time applications.

5

1.1 Related Work

Continuous real-time applications require enough processor bandwidth to meet their pe-

riodic deadlines [9]. We classify multimedia applications as soft real-time because, like real-time

processes, they must meet periodic deadlines, but missing an occasional deadline results in dimin-

ished performance rather than outright failure [20].

1.1.1 Traditional Real-time Scheduling

Real-time systems, such as RT-Mach [35], are designed to meet hard deadline con-

straints. Some versions of UNIX support real-time scheduling classes [21], and many systems

adapt the POSIX standard for real-time extensions [18]. In order to ensure predictable behavior,

these systems use strict scheduling policies such as Rate Monotonic (RM) or Earliest Deadline

First (EDF) [24]. These scheduling algorithms require that the worst-case workload is known

when configuring a system. For industrial applications, where systems are typically dedicated to

specific purposes and deadlines are hard, real-time systems are attractive because they may be

tuned to perform predictably. However real-time operating systems are not well-suited for desk-

top use because workload cannot, in general, be predicted. Most multimedia scheduling research

focuses on integrating the desirable features of hard real-time scheduling into general-purpose

systems that have inconsistent workloads; an example is the Nemesis Atropos scheduler, that uses

EDF based on deadlines derived from a process’s specified share of CPU bandwidth [22]. Mul-

tics also provides an EDF scheduler, using desired response time to determine virtual deadlines

of non-real-time processes [28]. Like these systems, BEST schedules by earliest deadline, but

unlike previous systems it automatically detects the periods of processes and assigns appropriate

6

deadlines based on this information, while assigning pseudo-deadlines to non-periodic processes,

and schedules accordingly.

1.1.2 Multi-level Scheduling

One approach for handling a mix of applications divides processes according to type, and

assigns each type to different schedulers; each scheduler uses the policy best suited for its type.

In hierarchical schemes, a lower-level scheduler receives bandwidth allocated by the higher-level

scheduling policy. For example, in Real-Time Linux [39], the Linux kernel executes as the lowest

priority task in a real-time scheduler alongside the other higher priority real-time tasks. POSIX

extensions also implement hierarchical scheduling—the real-time classes defer to the time-sharing

class when no real-time process is ready to execute.

Researchers use several techniques of adapting multi-level scheduling to the needs of

soft real-time systems. Taking advantage of the POSIX multi-level scheduling classes, user pro-

cesses may schedule soft real-time processes by dynamically altering their priorities [13, 23],

thereby removing soft real-time scheduling decisions from the kernel. Some more sophisticated

approaches to hierarchical scheduling include the SFQ algorithm, which proportionally shares

bandwidth among the levels so that time-critical applications receive adequate resources [16], and

CPU Inheritance Scheduling [15], which allows scheduling threads to donate processing to other

scheduler threads in flexible arbitrary arrangements of hierarchies. The Vassal project [12] adds

a system interface that allows users to install their own schedulers. Another method applied to

soft real-time is middleware resource management1 . Middleware managers monitor a system’s

resources usage, and provide recommendations to adaptive soft real-time processes. DQM [6]

1While not strictly hierarchical, middleware can be considered a meta-scheduler for participating processes.

7

uses this approach to maximize benefits for scalable soft real-time processes, independent of the

underlying kernel scheduler.

The architectural approach of dividing scheduling into levels creates flexibility for sys-

tems running a mix of applications of differing processing needs; with it comes the problem of

choosing ideal configurations, which as research indicates is not trivial. System architects, and in

some cases users, must make informed decisions for the layout of scheduling hierarchy. For the

BEST scheduler, we do not introduce the complexity of multiple levels of scheduling, and instead

rely on a single algorithm for all processes. The algorithm is designed to minimize latency for

periodic and interactive processes. However, using the scheduler does not preclude integration

into multi-level schemes.

1.1.3 Proportional-share Scheduling

Recognizing the low predictability of general-purpose system workloads and the relaxed

deadline requirements for multimedia applications, a large body of research focuses on creating

new schedulers better suited to a mix of application types. Most systems allocate each process

a share of processing bandwidth, and use an algorithm to assign allotted CPU guarantees within

minimal error bounds. For periodic applications, share is allocated to meet the execution rate

required to meet deadlines. Fair-sharing is enforced so no process inhibits another’s ability to

meet deadlines.

Proportional scheduling systems share similar concepts yet differ in strategy. Here we

briefly mention some systems; this list is not comprehensive. EEVDF [34] calculates a virtual

deadline for each process as a function of measured and allotted share, and schedules according

to EDF; Stride Scheduling [36] uses a similar notion of virtual time. Systems such as BVT [14]

8

and BERT [4] provide enhanced fair-sharing algorithms aimed at increasing the throughput of

deadline-sensitive processes by dynamically reallocating shares on a short-term basis. Some sys-

tems utilize admission control: processes reserve shares, and the scheduler denies admission when

requested reservations are not available [27]. The CM [38] and SMART [30] schedulers provide

feedback to applications so they may adapt to dynamically changing loads, allowing the scheduler

to adjust to higher workloads without resorting to restricting admission.

To meet deadlines, the proportional scheduler must determine the proper share for each

process; a process must somehow specify its rate requirement. In many cases, this information is

built into the process, and upon start-up it notifies the scheduler through a system API. It may be

difficult to determine a desired rate if the speed of the target processor is unknown; abstractions for

specifying rate address this problem [19] (because the abstracted rates are typically not expressed

in units of system clock ticks, clock skew is inevitably introduced). For systems that include

feedback from the scheduler to the process, greater flexibility comes at the expense of even more

demand on application developers. Additionally, some systems provide mechanisms for users to

specify the quality of service they desire from a process, and allow run-time modification of share

assignments through GUIs, placing the burden of scheduling specification on both the developers

and the software users. The BEST scheduler does not need to be informed of processes’ rates,

making the development and use of SRT applications easier. BEST-RATE uses techniques similar

to proportional schedulers by generating deadlines from process rates. Like BEST, BEST-RATE

does not need information about rates; it looks at the past behavior of processes to infer their

execution pattern, and assigns future allocations that reduce relative scheduling latency for those

with periodic deadlines.

9

1.1.4 The State of SRT Scheduling

The scheduling algorithms and systems proposed by researchers support service guaran-

tees that are not possible with best-effort scheduling. However, fully utilizing them involves dif-

ficult decisions provided by system builders, applications developers, and users. System builders

must set appropriate architecture for hierarchies of schedulers. Developers must conform to new

system APIs, reducing the portability of applications. Users must hassle with tuning the schedul-

ing parameters for desired performance; the average desktop user may not be interested in or

capable of accomplishing this task. Our experience suggests that most multimedia applications

only suffer occasional glitches which may be adequately addressed with better best-effort schedul-

ing. The ease and simplicity of best-effort scheduling makes it the most attractive model for many

platforms—by enhancing the performance of soft real-time processes, the users may never notice

the absence of service guarantees.

10

Chapter 2

Multimedia Properties

This chapter describes an application, called srtsim, that simulates properties of pro-

cesses with periodic deadlines. The simulator was developed as part of the BEST research project

to provide test workloads for multimedia, soft real-time or real-time schedulers. Like many syn-

thetic workloads used for experimentation, the application uses statistical information gathered

from actual workloads to generate realistic behavior. We examined the source code of several

multimedia applications, and measured some statistical information about MPEG video streams

to determine feasible simulator behavior and workload generation. The goal of this chapter is to

present properties of multimedia formats and applications that may be useful for others needing to

model systems that run multimedia workloads.

In order to test the performance of a system, it is often desirable to drive it with in-

puts generated from synthetic workloads. When testing schedulers, typical metrics for evaluating

performance include throughput and fairness. However for real-time schedulers, timeliness of

resource allocation is most important. In order to create test scenarios for a desktop-based soft

real-time scheduler, we need applications with periodic deadlines to simulate workloads. The

11

purpose of this simulator, to mimic the variability of frame-to-frame processing time inherent in

multimedia, differs from other real-time workload generators such as Hourglass [31], which is

intended for making fine-grain timing measurements of scheduler performance.

2.1 Multimedia Properties

To test a scheduler we found it easier to write an application that simulates a process

with periodic deadlines rather than use real multimedia applications. This way, the simulator

may create many different workloads without needing to rely on multimedia streams to drive it;

simulation affords the flexibility to vary the periodic deadline and the amount of processing for

each instance of the simulator. Using a simulator also allows easy instrumentation to measure

aspects of performance, such as which deadlines were missed.

To make the simulator behave like actual multimedia applications, we observed the be-

havior of several Linux applications to determine how they synchronized frames and what happens

when a deadline is missed. We also measured statistics of many MPEG movies to extract proper-

ties of the video media useful for generating realistic workloads.

2.1.1 Soft real-time models

We examined two single-threaded public-domain multimedia applications developed for

UNIX systems: a sound player called mpg123 and a video player called mpeg play. We examined

the source code and executed these applications to determine their behavior. We do not include

other software models, such as those that synchronize video and audio during playback, and multi-

threaded applications that provide other services (such as a graphical equalizer displays) in real-

12

Table 2.1: Average period, standard deviation, and CPU usage for sample multimedia processes.

Average Standard CPU
Process period (ms) deviation usage
mpeg play (24 frame/s) (no display) 42.3 9.2 13.0%
mpeg play (24 frame/s) 21.7 21.9 19.3%
mpeg play (30 frame/s) (no display) 34.6 13.1 15.9%
mpeg play (30 frame/s) 17.0 17.4 19.5%
mpg123 (128 kbit/s) (song 1) 160.2 31.7 2.2%
mpg123 (128 kbit/s) (song 2) 160.2 31.8 2.2%

time while playing media, in this study.

The sound player has periodic deadlines, although the software does not adjust its run-

time behavior to adapt to the media; it works by simply keeping the memory used as audio buffers

supplied with data. In the main loop of the program, the program synchronizes by making blocking

write calls to the sound driver in order to play audio samples. When the driver accepts the new

frame of data, the next frame is processed.

The video player software is aware of its periodic deadline, which it determines from the

frame rate of a video stream. It uses functions provided by the operating system to synchronize the

display of frames to its deadline. Before displaying a frame, the player pauses by using the select

call if there exists spare time before the next frame is due. This way the video player displays

frames at the desired frame rate. When there is no spare time, i.e. the frame deadline is missed, the

player resets its next deadline to begin after the late frame is displayed. This way, a late frame does

not reduce the available processing time of future frames. The delay will degrade the overall frame

rate, but as deadlines are soft for desktop media players, this behavior is not considered failure as

it is with hard deadlines.

The BEST scheduler works under the assumption that periodic deadlines are detectable

13

by the operating system kernel. In order to test this assumption we instrumented the Linux kernel

to record entry times to the run queue to the nearest 1
800 of a second, and then ran the multimedia

processes described above. These experiments were executed on a 650 MHz AMD i686 system.

We measured a period of approximately 0.16 seconds when playing sound files (Table 2.1), and

for the video files a period corresponding to the frame rate. Table 2.1 shows the measured periods.

When mpeg play displays frames, it actually enters the run queue twice per frame, once

for frame synchronization and once waiting for a video buffer, then sleeps until it is time to display

the next frame. Because it enters the run queue twice, usually during the same clock tick, the

detected average period is half the actual frame period, and the standard deviation is close to the

average period. When display is disabled, mpeg play processes the file without rendering it. In this

case it does not block waiting for the video frame buffer, and its period is equivalent to its frame

rate. The audio player is not driven by a frame-rate or clock; it repeatedly fills a buffer with audio

data, sleeping for a fixed period between each fill. As expected, it exhibits periodic behavior, but

since the period is not scheduled at a specific rate it has higher variance than the video player.

2.1.2 Video-stream properties

The sound player model is simple: the audio device is supplied with a constant stream

of data which it buffers. Deadlines are not critical for the sound application as long as it supplies

data at a near-constant rate. The video properties are more interesting, because a frame must be

processed and displayed at a constant rate, and the application requires synchronization from the

operating system.

Multimedia is usually transfered and stored in a compressed format, such as MPEG.

Due to compression, the amount of processing for each frame varies. The compression may be

14

spacial (within a frame) or temporal (using information across frames). MPEG video data includes

three types of frames: I-frames (intra-frames) contain information to decode a single stand-alone

frame, while P-frames (predicted frames) and B-frames (bi-directional frames) need to reference

information from previous frames, or from previous and future frames, respectively, in order to

decode an image. The presence of different frame types makes it difficult to predict the amount of

processing needed by a video stream from frame-to-frame.

We examined several MPEG files using mpeg play to capture statistics about the video

streams and to ascertain useful video properties for our own modeling. To generate a simulated

video stream, one should only need to specify a periodic deadline and average rate (or process-

ing time) of CPU consumption. Using these parameters, the simulator may then generate frames

exhibiting the same frame-to-frame statistical variability observed in actual video streams. This

allows easy scaling of frame rate and average CPU usage while maintaining realistic video proper-

ties. We measured the variance of each frame processing time relative to the overall average. We

also determined the breakdown of frame-types in a stream, and the average frame processing time

of each frame relative to the overall average. We find the statistical properties of the media frames

to be consistent with other studies [17]

Three MPEG files we observed consisted only of I-Frames; Table 2.2 summarizes the

statistics we measured. We looked at seven MPEG files that consist of all frame types; Table 2.3

summarizes their statistics. It includes the breakdown of the number and percentage of each frame-

type. Over all frames and each frame type, the table shows the standard deviation and variance

of processing times. It also shows the relative scale of each frame-type, which is the average

processing time for the type divided by the average processing time of all frames. Figure 2.1 shows

the frame processing time of one of the videos (file G, a scene from the Hollywood blockbuster

15

Table 2.2: Summary of I-Frame only MPEG statistics.

Number Average time Standard Percent
File frames consumed (ms) deviation variance
A 253 1.03 0.107 10.3%
B 18 1.29 0.039 3.1%
C 557 0.91 0.115 12.6%

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0 100 200 300 400 500 600 700

T
im

e
to

 p
ro

ce
ss

 fr
am

e
(s

)

Frame number

Frame Processing Times

I-frames
P-frames
B-frames

Figure 2.1: For each MPEG frame of a video (action movie excerpt), this graph shows the pro-
cessing time of the frame.

(Under Siege) on a frame-by-frame basis, and Figure 2.2 is a histogram of the frame-processing

time distribution.

2.2 Workload Simulator Implementation

In this section we describe srtsim, the UNIX soft real-time application simulator based

on the patterns characterized in Section 2.1.2. The simulator is an application with periodic dead-

16

Table 2.3: Summary of MPEG with I,P and B statistics.

Frame Number Percent Average time Standard Percent Relative
File Type frames of total consumed (ms) deviation variance scale
D 1758 – 0.71 1.27 178% –

I 294 16.7% 1.33 2.36 176% 1.87
P 293 16.7% 1.16 1.79 153% 1.64
B 1171 66.7% 0.44 0.08 18.1% 0.62

E 720 – 4.06 1.26 31.0 % –
I 121 16.8% 6.46 0.46 7.2% 1.59
P 120 16.7% 4.84 0.40 8.2% 1.19
B 479 66.5% 3.25 0.12 3.8% 0.92

F 1210 – 2.84 1.09 83.2% –
I 41 3.4% 5.78 0.75 13.0% 2.03
P 81 6.7% 4.25 1.60 37.7% 1.50
B 1088 89.9% 2.62 0.76 29.0% 0.92

G 731 – 2.83 0.92 32.7% –
I 123 16.8% 3.90 0.81 20.7% 1.38
P 122 16.7% 3.49 1.00 28.8% 1.23
B 486 66.5% 2.39 0.53 22.1% 0.85

H 6299 – 2.08 0.58 27.7% –
I 420 6.7% 3.19 0.27 8.6% 1.53
P 1681 26.7% 2.70 0.23 8.4% 1.30
B 4198 66.7% 1.72 0.26 15.2% 0.83

I 625 – 2.59 0.66 25.4% –
I 36 5.8% 4.06 0.27 6.8% 1.56
P 174 27.8% 3.31 0.23 7.0% 1.28
B 415 66.4% 2.17 0.20 9.4% 0.83

J 901 – 2.19 0.50 23.0% –
I 51 5.7% 3.17 0.35 11.1% 1.45
P 250 27.7% 2.76 0.21 7.7% 1.26
B 600 66.6% 1.87 0.19 9.9% 0.85

17

0

10

20

30

40

50

60

0.001 0.002 0.003 0.004 0.005 0.006 0.007

C
ou

nt
s

Time to Process Frame (s)

Distribution of Frame Processing Times

Total
I-frames

P-frames
B-frames

Figure 2.2: This histogram shows the distribution of processing times for each frame type of the
data shown in Figure 2.1.

lines used to generate workloads for evaluating operating system schedulers. Using command line

arguments, it may run in several different modes and allows the user to specify the period of dead-

lines and rate of CPU consumption. It generates workloads based on our evaluation of real video

streams and behaves like a multimedia process, as described in Section 2.1.

2.2.1 Settable parameters

When executing srtsim, the user must specify parameters on the command line. The

program requires, at minimum, the length of the periodic deadline and rate of CPU consumption.

In the default mode, the process strictly consumes the same amount of CPU during each deadline

period. When the process completes its computation, it goes to sleep using the pause command,

using a timer to wake when the next period begins. When a deadline is missed, the process com-

18

Table 2.4: Statistics used to generate synthetic video streams.

Parameter Value
periodic deadline user specified
ave. frame time user specified
frame distribution (I) 16.6%
frame distribution (P) 16.6%
frame distribution (B) 66.6%
ave. I frame time 1.5 � ave. frame time
ave. P frame time 1.25 � ave. frame time
ave. P frame time 0.85 � ave. frame time
std. deviation 10% of frame time

pletes the periodic computation, and like the video player, immediately begins the next period with

the new deadline set relative to the frame start time. Optionally, the user may tell the simulator to

instead abort computations when a deadline is missed, which is useful for modeling other types of

processes such as those with firm deadlines.

The user may optionally tell srtsim to create video frame-time distributions. In this

mode, instead of consuming the same amount of CPU during each period, the time distribution

is modeled after MPEG video streams. It simulates movies either containing only I frames, or

containing all (I, P, and B) frame types. Table 2.4 contains the parameters used to generate the

frame distribution and times. If all frame types are present, then the frame distributions statistically

approximate the values representative of several of the movies we observed (Table 2.3). The

average processing time for each frame type is based on values close to the mean of observed

values; since there is a wide variation in standard deviation in each video, and we chose parameters

that seemed reasonable across all the observed videos.

The simulator randomly generates frame times while executing. For each period, it first

selects the frame type by choosing from a uniform distribution shown in Table 2.4. Then, for each

19

Table 2.5: Summary synthetic MPEG video stream.

Frame Number Percent Average time Standard Percent Relative
File Type frames of total consumed (ms) deviation variance scale
Synth 731 – 2.84 0.76 26.6% –

I 102 14.0% 4.22 0.42 9.9% 1.49
P 120 16.4% 3.53 0.37 10.5% 1.24
B 509 69.6% 2.40 0.25 10.4% 0.84

frame type, the average frame time and standard deviation are used to generate the frame time

from a normal distribution, as observed in the histogram plots (Figure 2.2).

Figures 2.3 and 2.4 show the frame distributions generated for a synthetic video stream

that has the same average frame time as movie G from Section 2.1. When comparing these figures

to Figures 2.1 and 2.2, the synthetic video stream appears to do an adequate job of modeling the

actual video. Table 2.5 summarizes the measured statistics of the synthetic video stream.

2.2.2 Simulator output

For each frame, the simulator records the amount of time is spent processing, the time

the period started and ended, and whether it met its deadline. These statistics are logged while the

program is running, and then printed to the screen when the simulation is completed. The traces

may be used to analyze the performance of the scheduler offline. We use this output to evaluate

the BEST schedulers in Chapter 3 and Chapter 4.

20

0.0015

0.002

0.0025

0.003

0.0035

0.004

0.0045

0.005

0.0055

0 100 200 300 400 500 600 700

T
im

e
to

 p
ro

ce
ss

 fr
am

e
(s

)

Frame number

Frame Processing Times

I-frames
P-frames
B-frames

Figure 2.3: For each synthetically generated frame, this graph shows the processing time.

0

10

20

30

40

50

60

70

80

0.0015 0.002 0.0025 0.003 0.0035 0.004 0.0045 0.005 0.0055

C
ou

nt
s

Time to Process Frame (s)

Distribution of Frame Processing Times

Total
I-frames

P-frames
B-frames

Figure 2.4: This histogram shows the distribution of processing times for each frame type of the
data shown in Figure 2.3.

21

Chapter 3

The BEST Scheduler

The goal of the BEST scheduler is to enhance the performance of soft real-time tasks

by detecting periodic processes and improving their chances of meeting periodic deadlines. Like

most UNIX schedulers [5, 26], it dynamically calculates process priorities. It is aimed at desktop

users who desire better performance from multimedia applications without the complexity of a

system with service guarantees.

The scheduler must decide which programs have periodic deadline requirements by mak-

ing an assumption: applications with periodic deadlines enter a runnable state when they begin a

periodic computation, and upon completion use synchronization primitives (such as timers) to wait

for the beginning of their next period. We predict that by observing the times that a process enters

the queue of runnable processes we can make reasonable guesses about its period. A periodic

process is “well-behaved” if it enters the runnable queue in a predictable pattern. It is possible that

some processes that repeatedly enter the runnable state may be misidentified as having a periodic

deadline even though they do not; in this case, they may benefit from the mistake. This is not a

concern as long as the CPU resource isn’t significantly overburdened, and the scheduler can be

22

tuned to minimize the likelihood of such occurrences.

3.1 Design Goals

In developing the BEST scheduler we had a number of specific design criteria. The

criteria and rationale for the scheduler design are:

1. The same scheduling policy should apply to every application, regardless of its scheduling

needs—a uniform algorithm simplifies scheduling decisions.

2. Neither users or developers need to provide any a priori information about processes.

3. The scheduler will enhance the performance of soft real-time applications.

� Processes that enter the runnable queue in predictable patterns should receive a per-

formance boost by receiving a higher priority based on classical real-time scheduling

results, i.e. the priority boost should be based on measured deadline.

� This algorithm should create a positive feedback loop for well-behaved soft real-time

processes; when processes do not miss deadlines, they have the opportunity to wait for

the next period, increasing the likelihood of consistent patterns.

� The scheduler should be preemptive. Since periodic processes will have high priority

upon waking, this prevents missed deadlines.

4. The default behavior of the scheduler should be reasonable and consistent with general pur-

pose time-sharing schedulers.

� The scheduler should favor interactive processes over CPU-bound processes.

23

� No process should starve. The presence of compute intensive periodic processes can-

not completely hinder the progress of other processes. Processes will receive time

slices that prevent them from monopolizing the CPU and improve overall responsive-

ness.

� When the system is not fully loaded, changes to workload should not effect the perfor-

mance of already executing soft real-time processes. For fully loaded systems, perfor-

mance should degrade gracefully.

3.2 Linux Scheduler Overview

We implemented the BEST scheduling algorithm in both the Linux 2.2 and 2.4 kernels.

We selected Linux as a development platform because it is a popular desktop environment and

source code is readily available. A brief description of the unmodified Linux scheduler is instruc-

tive for understanding the modifications we made.

A function called schedule() allocates the CPU to a process. It loops through all

processes in the runnable queue, and selects the one with highest dynamic priority. The execution

of schedule() is triggered two ways: explicitly when a running process is put to sleep, or upon

return from an interrupt or trap if the running process’s need resched flag is set. For example,

when a process’s time quantum expires, the timer interrupt handler sets its need resched flag.

A function called goodness() calculates dynamic priorities. The dynamic priority

is also interpreted as a time quantum, and decreases for every clock tick the process executes.

When all runnable processes consume their quantum, schedule() loops through all process

state structures (including those not in the run queue), recomputing their dynamic priority using

24

pri � pri � 2 � nice, where nice is a positively scaled user-settable scheduling priority. When this

calculation occurs, a suspended process with a non-zero time quantum receives a priority boost; the

purpose is to increase the responsiveness of interactive processes over CPU-bound processes. For a

program that remains suspended over n calculations, the priority is pri � n ���
	�� 2n � 1
 1 ��� 2n � � nice.

Priority quickly increases, but as n � ∞, pri � 2 � nice, limiting the priority (and time quantum)

from growing too large.

The Linux scheduler implementation is designed to mimic the behavior of a multi-level

feedback queue, and although dynamic priority calculations differ from 4.4BSD (well-documented

by McKusick et al. [26]), the goal of the scheduling policy remains the same: favor I/O-bound

over CPU-intensive processes while allowing no process to starve and providing equal share of the

CPU. The 4.4BSD scheduler differs from Linux by including a time-decaying estimate of the CPU

usage in the priority calculation. The Windows NT scheduler employs a similar technique [12].

3.3 BEST Scheduler Details

The BEST scheduler uses an even simpler algorithm than the Linux scheduler. Every

process has a deadline that is computed when the process enters the runnable queue. The good-

ness() function returns a value such that schedule() selects the runnable process with the

earliest deadline. Since we do not know a process’s deadline, a simple heuristic is used to estimate

its period, and the deadline is set to the expiration of its next period.

25

3.3.1 Period detection

BEST estimates period when a process enters the runnable queue (queue entry is through

a single function called wake up process()). The estimated period Pest is the time that

elapsed since the process previously entered the runnable queue. The new effective period Pn

is calculated by taking a weighted average with the previous period Pn � 1, calculated as Pn �

� Pest � w � Pn � 1 ����� 1 � w � . Adjusting the weight factor w controls how fast the scheduler for-

gets previous behavior. If the period exceeds a maximum value it is truncated, therefore periods

longer than this maximum are not detected. The wake up process() function determines the

process’s next deadline by adding its effective period to the current time; it assumes that period

and deadline is synonymous. The scheduler uses the deadline as a priority when selecting runnable

processes. This function also sets an additional value called the deadline expiration timer. This

timer indicates how much CPU time a process may consume before its deadline is reset. Like

a quantum timer in Linux, the expiration timer value is decremented for every tick the process

executes. The deadline and expiration timer values are stored in the process’s state structure.

Every time a process is scheduled for the CPU it executes until either its deadline expires,

it blocks, or it is preempted by a waking process, at which time schedule() is triggered. Before

selecting the next process for execution, if the current process’s deadline expired, schedule()

sets its next deadline to a time beyond the maximum detectable period—in effect it lowers the

priority of any process that doesn’t leave the runnable queue before its deadline timer expires.

Postponing a deadline to greater than the maximum period ensures that processes with detected

periods will have earlier deadlines. Because a postponed deadline is not recomputed until after the

process is allocated the CPU, starvation is prevented. Once a deadline is set, eventually the process

26

will be scheduled as time advances. The deadline expiration timer for non-periodic processes is

set to the Linux quantum length (which is scaled by the nice priority). By making their deadlines

expire in the same amount of time as a Linux quantum, best-effort processes in BEST behave

similar as in the Linux scheduler.

3.3.2 Confidence

Not every process that repeatedly wakes up is periodic, so an additional step evaluates the

confidence that the estimated period is indeed due to periodic behavior. Confidence is a measure

of the difference between the current measured period, and the nearest multiple of the average

period. (The expression �Pest mod Pn

 Pn � 2 � calculates a confidence value between 0 and Pn � 2,

but in practice we use bit shifts and fixed-point math, yielding a normalized value between 0 and

16). A process is “well-behaved” if its confidence exceeds a threshold. A process that is not

well-behaved receives a best-effort deadline, and expiration timer equal to its Linux time-slice

quantum.

By calculating confidence using a multiple of the period (implicit in the modulo opera-

tion), we elude the effect of detecting an average period that is half the actual period (as observed

in Table 2.1, where we saw that a video player entered the run queue twice per frame). This effect

also helps processes that miss an occasional deadline. When a periodic process misses a dead-

line, it may not sleep and wake up again until a later period, when it successfully completes a

computation on time. This process will still receive a high confidence rating when it does, allow-

ing it another opportunity to meet its next deadline. However, the weighting of its time-decaying

average period will impact its next deadline assignment and subsequent confidence rating. The

coupled effect of this weighting factor and the confidence threshold impact the performance of the

27

scheduler.

3.3.3 Other changes

In order to detect periods of processes with high frame rates, we increased the timer

resolution of Linux by a factor of 8. Linux processes 100 clock ticks per second; for a video

player showing 33 frames/second the average period is 3 ticks, so a measurement error of 1 tick is

a significant percentage of its period. By increasing the timer resolution to 800 ticks per second,

measurements are more finely grained and provide a better estimate of application periods. Inter-

estingly, we found that speeding up the timer increased the throughput of processes by about 5%,

not the intuitive result expected from increasing the frequency of timer interrupt processing. We

do not at present have a satisfactory explanation for this result.

Because the deadline expiration timer is also treated as a interval timer, it limits the

time a process may hold the CPU, similar to the interval timers found is real-time systems such as

Nemesis [22]. In Linux, the default processing time quantum is 0.1 seconds,1 , which is historically

the quantum used in BSD as it provides an ideal responsiveness for interactive processes [26]. The

quantum may be modified between 0.005 and 0.20 seconds by using the UNIX nice facility. In

BEST the default processing quantum is also set to 0.1 second, and scalable within the same

range using nice. In BEST, a running process may be preempted by one with an earlier deadline;

however, similar to Linux, the number of context switches are reduced by disabling preemption

when a current quantum expires in less than 10 milliseconds.

The overall changes to Linux include: adding entries to each process’s state structure (for

keeping track of periods), instrumenting wake up process() to measure period, and changing

1It was 0.2 seconds in versions of Linux � 2.4.

28

goodness() to return a priority appropriate for the BEST scheduler. The changes do effect

the complexity of the scheduling selection algorithm which is Ω � n � with the number of running

processes, however BEST incurs some computation overhead every time a process wakes.

3.3.4 Tuning the scheduler

Several parameters affect the behavior of the BEST scheduler: the maximum period,

the weight used for averaging period measurements, and the confidence threshold. The maximum

detectable period controls the responsiveness of CPU-bound processes in a heavily loaded system,

since their pseudo-deadlines are delayed beyond this period. The averaging weight and confidence

threshold impact the effectiveness of the period detection algorithm.

For the BEST prototype described in Section 3.4, we use a maximum period of 2.56

seconds (with an extra offset of 0.1 second added to the deadline of CPU-bound processes), a

weighting average of 1
3 , and a generous threshold that allows any confidence level greater than

0 to pass. These defaults work well in our experiments where all processes were our synthetic

load generators and we found that changing their values had little impact; we expect these tuning

parameters to be more significant when stressed by less “well-behaved” workloads.

3.4 Experimental Results

To examine how well the BEST scheduler meets the design criteria set forth in Sec-

tion 3.1 we conducted a set of experiments comparing the performance of the BEST scheduler

with that of the Linux scheduler and a Rate Monotonic (RM) scheduler. We chose RM as a

representative real-time scheduler because the POSIX standard specifies a scheduling class with

29

static priorities capable of supporting RM scheduling. Note that the calculation of priorities for

RM scheduling requires knowledge of application periods while the default Linux scheduler and

BEST do not.

While running combinations of greedy (CPU-intensive) and periodic (soft real-time)

processes together for 100 seconds, we measured the throughput of all processes and the number

of missed deadlines for periodic processes. Two synthetic applications were used in the experi-

ments. The processes called best-effort endlessly consumes CPU bandwidth by crunching math

operations. This process is an adversary to soft-real time programs, because it creates load for the

CPU and always remains in the runnable queue. The soft real-time application, srtsim, is described

in Chapter 2. We characterize it using two parameters, a frame rate and a percentage; the dead-

line for each frame is the inverse of frame rate, and the percentage is the average amount of CPU

bandwidth it must consume, on average, for each frame in order to meet the deadline. If srtsim

completes before a deadline it pauses until the beginning of the next period, and if not it records a

missed deadline and starts the next period’s computation.

3.4.1 The Linux scheduler simulator

The original performance of BEST was evaluated using experiments conducted on a

200 MHz Pentium Pro, and these results were presented in a previous report [3]. The following

experiments were run on schedsim, a Linux kernel scheduler simulator we developed to test new

algorithms. The simulator consists of Linux 2.4 scheduler code with software wrappers that control

events external to the scheduler module, such as the arrival or sleeping of processes. The simulator

executes the dummy best-effort and srtsim processes within its own user-space memory. The

simulated environment makes the same decisions as the actual Linux and BEST scheduler, while

30

allowing testing of new scheduler algorithms without the need to build and install entire kernels

or reboot processors. The original tests were run on an otherwise quiescent system, so other tasks

did not interfere with the results of the processes under test, but on a desktop systems there may

be page fault or interrupts that effect the processing. However in schedsim, there are no external

influences as may appear on an actual desktop environment.

3.4.2 Interpretation of results

Our results show that in general the Linux scheduler performs reasonably well when the

total demand of soft real-time processes is less than 100% of the CPU and a process i requires

no more than than � prii � ∑x � n prix � of the CPU, where n is the set of running processes, and prix

is the nice priority of x (a value between 1 and 40). This value is often 1 � n, when users do

not change the default nice priorities of the running processes. As the needs of an SRT process

approach this limit, the scheduler is less effective at ensuring the process meets deadlines, because

it may service processes in arbitrary order. Because time-share scheduling algorithms are unaware

of resource requirements or deadlines, well-intentioned scheduling decisions can result in some

processes missing deadlines that could otherwise be met.

Figure 3.1(a) shows the performance of the Linux scheduler and the BEST scheduler

with one best-effort process and one SRT process (with a 25 frames/sec rate and CPU requirements

averaging 50% of the CPU). The graphs show the progress of each process, with actual time on the

X-axis and the CPU-time consumed by the process on the Y-axis. For example, if the progress of a

process has a slope of 0.3, then the process is receiving approximately a third of the CPU resource.

A missed deadline is indicated by marking a small cross below the line.

Because the Linux scheduler provides approximately equal amounts of CPU cycles to

31

0

5

10

15

20

25

30

0 10 20 30 40 50 60

pr
og

re
ss

 (
C

P
U

 s
ec

on
ds

)

time (seconds)

Linux Scheduler

srt (25 frame/s 50%)
best effort

0

5

10

15

20

25

30

0 10 20 30 40 50 60

pr
og

re
ss

 (
C

P
U

 s
ec

on
ds

)
time (seconds)

BEST Scheduler

srt (25 frame/s 50%)
best effort

(a) Linux and BEST schedulers.

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

7 7.2 7.4 7.6 7.8 8 8.2

pr
og

re
ss

 (
C

P
U

 s
ec

on
ds

)

time (seconds)

Linux Scheduler

srt (25 frame/s 50%)
best effort

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

7 7.2 7.4 7.6 7.8 8 8.2

pr
og

re
ss

 (
C

P
U

 s
ec

on
ds

)

time (seconds)

BEST Scheduler

srt (25 frame/s 50%)
best effort

(b) Detail view of application progress in Linux and BEST.

Figure 3.1: Linux and BEST schedulers running (1) best-effort and (2) srtsim 25fps 50%.

32

0

5

10

15

20

25

30

0 10 20 30 40 50 60

pr
og

re
ss

 (
C

P
U

 s
ec

on
ds

)

time (seconds)

Linux Scheduler

srt (25 frame/s 31%)
srt (33 frame/s 28%)

best effort

0

5

10

15

20

25

30

0 10 20 30 40 50 60

pr
og

re
ss

 (
C

P
U

 s
ec

on
ds

)

time (seconds)

BEST Scheduler

srt (25 frame/s 31%)
srt (33 frame/s 28%)

best effort

Figure 3.2: Linux and BEST schedulers with (1) best-effort, (2) SRT 25fps 31% and (3) srtsim
33fps 28%.

each application, the SRT process should be able to meet its deadlines. However, we observe the

SRT process missing 7.8% of its deadlines. Although the process receives enough CPU allocation,

for many frames it does not receive the CPU in time to make its deadline. The BEST scheduler

met all but 2 deadlines (� 1%) while providing the same amount of resources to each application.

We found that with one SRT and one best-effort process, we must reduce the average usage of

srtsim to below 40% before the Linux scheduler could meet performance of the BEST scheduler.

Figure 3.1(b) shows a magnified view of a portion of the data from Figure 3.1(a), provid-

ing greater detail about when each scheduling decision is made and how much CPU is scheduled

at each decision. In particular, it shows that under the Linux scheduler, the SRT process doesn’t

always receive CPU at the even intervals required to meet its periodic deadlines. Under the BEST

scheduler, the SRT process receives CPU allocation at evenly proportioned intervals equal to its

period, and does not miss deadlines.

In Figure 3.2, there are two SRT processes, both which require approximately a third

of the CPU to meet deadlines. With another best-effort process present, Linux will allocate up to

33

0

5

10

15

20

25

30

0 10 20 30 40 50 60

pr
og

re
ss

 (
C

P
U

 s
ec

on
ds

)

time (seconds)

Linux Scheduler

srt (25 frame/s 62.5%)
best effort

0

5

10

15

20

25

30

0 10 20 30 40 50 60

pr
og

re
ss

 (
C

P
U

 s
ec

on
ds

)

time (seconds)

BEST Scheduler

srt (25 frame/s 62.5%)
best effort

0

5

10

15

20

25

30

0 10 20 30 40 50 60

pr
og

re
ss

 (
C

P
U

 s
ec

on
ds

)

time (seconds)

Rate Monotonic Scheduler

srt (25 frame/s 62.5%)
best effort

Figure 3.3: Linux, BEST and RM schedulers running (1) best-effort and (2) srtsim 25fps 62.5%.

34

1
3 CPU to each. In this case, Linux fares well, missing only 1.7% and 0.1% of deadlines for the

two respective SRT processes. However, BEST does better, missing only one deadline of each

task (� 0.1%). It is interesting to note that in this case, the BEST scheduler slightly outperformed

the Rate Monotonic scheduler, which missed 0.5% of the deadlines of the lower priority (longer

period) task.

When a soft real-time process requires more than its nominal share of the available CPU

cycles, the Linux scheduler is unable to satisfy it in the presence of CPU-bound best-effort pro-

cesses. Specifically, when two processes of equal priority compete, the Linux scheduler gives

them each about 50% of available CPU cycles (with slightly more given to processes that block

occasionally). Figure 3.3 shows the performance of the Linux, BEST, and RM schedulers with

one best-effort process and one SRT process (with 25 frames/sec and 62.5% CPU usage). Here

we see that the Linux scheduler provides approximately 50% of the CPU cycles to each process,

causing the SRT process to miss 25.5% of its deadlines. By contrast, the RM scheduler (with the

SRT process having higher priority) provides the SRT process with 62.5% of the available cycles,

enabling it to meet all but 4.8% of its deadlines. When generating a high average usage, the sta-

tistically driven srtsim workload will sometimes generate a frame that takes longer than the period

to process; in this example, the SRT process missed only the deadlines that were impossible to

make. The BEST scheduler provides exactly the same performance as the RM scheduler, enabling

the SRT process to meet all but the impossible deadlines. Recall, however, that BEST dynamically

determines the application periods whereas Rate Monotonic requires that periods be specified in

order to determine appropriate priorities.

Any set of soft-real time processes with a CPU requirement less than 100% is theoret-

ically schedulable without missed deadlines, provided that the scheduler may shed load of non

35

0

5

10

15

20

25

30

0 10 20 30 40 50 60

pr
og

re
ss

 (
C

P
U

 s
ec

on
ds

)

time (seconds)

Linux Scheduler

srt (25 frame/s 41%)
srt (33 frame/s 40%)

best effort

0

5

10

15

20

25

30

0 10 20 30 40 50 60

pr
og

re
ss

 (
C

P
U

 s
ec

on
ds

)

time (seconds)

BEST Scheduler

srt (25 frame/s 41%)
srt (33 frame/s 40%)

best effort

0

5

10

15

20

25

30

0 10 20 30 40 50 60

pr
og

re
ss

 (
C

P
U

 s
ec

on
ds

)

time (seconds)

Rate Monotonic Scheduler

srt (25 frame/s 41%)
srt (33 frame/s 40%)

best effort

Figure 3.4: Linux, BEST and RM schedulers running (1) best-effort, (2) srtsim 25fps 41%, and
(3) srtsim 33fps 40%.

36

0

5

10

15

20

25

30

0 10 20 30 40 50 60

pr
og

re
ss

 (
C

P
U

 s
ec

on
ds

)

time (seconds)

BEST Scheduler

srt (13 frame/s 30%)
srt (19 frame/s 30%)
srt (62 frame/s 31%)

best effort

0

5

10

15

20

25

30

0 10 20 30 40 50 60

pr
og

re
ss

 (
C

P
U

 s
ec

on
ds

)

time (seconds)

Rate Monotonic Scheduler

srt (13 frame/s 30%)
srt (19 frame/s 30%)
srt (62 frame/s 31%)

best effort

Figure 3.5: BEST and RM schedulers running (1) srtsim 13fps 30%, (2) srtsim 19fps 30%, and (3)
srtsim 62fps 31%.

real-time processes. Figure 3.4 shows the Linux, BEST and RM schedulers with three processes,

one best-effort and two SRT, one processing 25 frames/second and requiring an average of 41% of

the CPU, and one processing 33 frames/second and requiring 40% of the CPU. In this situation,

a time-share scheduler cannot allocate enough share to SRT processes due to competition from

the loads of other non-SRT processes. The Linux scheduler cannot meet all deadlines because it

allocates roughly 1
3 of the resources to each process, and it performs poorly, missing 26.8% and

24.5% of the deadlines of periodic processes, respectively. Under the same workload, the BEST

scheduler misses 4.6% and 3.3% of deadlines, while the RM scheduler misses 16.7% and 0%. In

this case, BEST donated CPU cycles of the best-effort process to the SRT processes so that they

could make deadlines and perform reasonably well, while preserving some fairness between the

two SRT processes. With strict priorities assigned in the RM scheduler, only the highest priority

(shortest period) task benefits at the expense of lower priority tasks.

One shortcoming of rate-monotonic scheduling is its inability to find a feasible schedule

that fully utilizes the CPU when running periodic applications that exhibit non-harmonic peri-

37

ods [9]. By using EDF to make the actual scheduling decisions, BEST does not exhibit this prop-

erty. Figure 3.5 shows the performance of the three schedulers with one best-effort and three SRT

processes: one with a frame rate of 13 frames/second requiring 30% of the CPU, one with a frame

rate of 19 frames/second requiring 30% of the CPU and one with a frame rate of 62 frames/second

and requiring 31% of the CPU. In this case, the SRT processes need a total of 91% of the CPU and

have non-harmonic periods. The Linux scheduler (not shown) provides approximately equal CPU

to each process, with the result that the best-effort process makes too much progress and prevents

the SRT processes from meeting enough deadlines—they miss 40.7%, 37.1%, and 20.1% respec-

tively. In theory, RM scheduling may not meet all deadlines and that is exactly what we observe.

RM causes the process with the longest period (and thus the lowest Rate Monotonic priority) to

miss 7.7% of its deadlines. Outperforming both other schedulers, BEST executes the processes

and meets almost all SRT deadlines, missing less than 1% of each processes’ deadlines.

An important question about any SRT scheduler is how it performs in situations of sys-

tem overload. Best-effort schedulers will generally allocate a proportional share of the CPU to

each process, Rate Monotonic will meet the deadlines of processes with highest priority (gen-

erally those with the lowest period) [9], and EDF will miss all deadlines by roughly the same

amount [33]. While the overload of either RT scheduler might be considered optimal in some

strictly SRT environments, they suffer from the fact that they will starve best-effort processes

entirely. Figure 3.6 shows the performance of the Linux, BEST, and RM schedulers with three

processes, one best-effort, one SRT with frame rate of 25 frames/second requiring 62.5% of the

CPU, one SRT with frame rate of 33 frames/second also requiring 62.5% of the CPU. Because the

resource requirements of the SRT process sum to greater than 100% of the CPU, no scheduler can

meet all of the deadlines. The Linux scheduler gives each process roughly 1
3 of the CPU, caus-

38

0

5

10

15

20

25

30

0 10 20 30 40 50 60

pr
og

re
ss

 (
C

P
U

 s
ec

on
ds

)

time (seconds)

Rate Monotonic Scheduler

srt (25 frame/s 62.5%)
srt (33 frame/s 62.5%)

best effort

0

5

10

15

20

25

30

0 10 20 30 40 50 60

pr
og

re
ss

 (
C

P
U

 s
ec

on
ds

)

time (seconds)

BEST Scheduler

srt (25 frame/s 62.5%)
srt (33 frame/s 62.5%)

best effort

0

5

10

15

20

25

30

0 10 20 30 40 50 60

pr
og

re
ss

 (
C

P
U

 s
ec

on
ds

)

time (seconds)

Rate Monotonic Scheduler

srt (25 frame/s 62.5%)
srt (33 frame/s 62.5%)

best effort

Figure 3.6: Linux, BEST, and RM schedulers with (1) best-effort, (2) srtsim 25fps 62.5%, and (3)
srtsim 33fps 62.5%.

39

ing the SRT processes to miss 52.4% and 44.3% of their deadlines, respectively, and allows the

best-effort process to make very good progress, getting a full 1
3 of the available CPU cycles. The

RM scheduler meets all but 5.6% of the deadlines of the SRT processes with shorter deadlines (all

those that were possible to meet), but misses 83.4% of the deadlines for the SRT process with the

longest deadline only assigns the best-effort process less than 1% of the CPU. The BEST scheduler

embodies the best characteristics of both schedulers, distributing (somewhat) and minimizing the

missed deadlines (51.3% and 16.8% respectively) while still allowing the best-effort process to

make reasonable progress by allocating it 15% of the CPU.

Table 3.1: Summary of percentage of deadlines missed for all experiments.

Scheduler
Experiment Process Linux BEST RM

1 best-effort - - -
srtsim (25fps 50%) 7.8 0.1 0

2 best-effort - - -
srtsim (25fps 31%) 1.7 0 0.5
srtsim (33fps 28%) 0.1 0 0

3 best-effort - - -
srtsim (25fps 62.5%) 26.7 4.8 4.8

4 best-effort - - -
srtsim (25fps 41%) 26.8 4.6 16.7
srtsim (33fps 40%) 24.4 3.3 0

5 best-effort - - -
srtsim (13fps 30%) 40.7 0.1 7.7
srtsim (19fps 30%) 37.1 0.1 0
srtsim (62fps 31%) 20.1 0 0

6 best-effort - - -
srtsim (25fps 62.5%) 52.4 51.3 83.4
srtsim (33fps 62.5%) 44.0 16.7 5.6

A primary goal of the BEST scheduler is to minimize the number of missed deadlines for

soft real-time processes while providing good best-effort performance. The previous figures show

that BEST approximates the performance of both Linux and RM as appropriate. Table 3.1 sum-

40

marizes the percentage of deadlines missed by each scheduler in all of the experiments. It shows

that BEST meets or exceeds the performance of both the Linux and Rate Monotonic schedulers in

each of the experiments shown.

A final question that is difficult to answer with data is the qualitative one—how does the

scheduler perform in general use? To attempt to answer this question, we have been running the

BEST scheduler (in Linux) on a desktop machine for several months. We have experienced no

anomalous behavior, response time has been satisfactory and “normal,” SRT processes definitely

appear to run better, and BE processes do not starve while SRT processes are running. We have no

reason to believe that BEST is not a satisfactory scheduler for desktop environments.

3.5 Limitations of BEST

The BEST scheduler meets its design goals: users benefit from improved real-time per-

formance for processes that enter the runnable queue in predictable periodic patterns. However

there are disadvantages to using the BEST scheduler. An obvious disadvantage includes violation

of fairness, which in some cases leads to instability or inability to provide adequate performance

for important processes. Also, because BEST knows no a priori resource demands, if it cannot

detect when processes with deadlines are not performing well.

The assumption that all resources be divided equally among processes is implicit in

time-sharing schedulers. Because BEST was not designed with fairness in mind (SRT processes

are deemed more important), it provides processes exhibiting periodic behavior an advantage by

allowing them to execute for the entire length of their period before resetting their deadline. Be-

cause the priority of the process is a function of deadline, an SRT process may retain a high priority

41

for the length of its period (and even longer if preempted). The result is that BEST allows SRT

processes to greedily consume the CPU. We found that once a process establishes its period, if it

requires the entire period to meet its deadline, it relinquishes less than 4% of the CPU for each

process that competes with it. In fact, once an SRT process establishes its period, it may hinder

newer SRT processes from ever meeting deadlines, with the result that they perform without any

scheduling advantage because periodic behavior cannot be detected.

Figure 3.6 shows the effect of two SRT processes each greedily attempting to use more

than their share of the CPU. Because together they demand more than the full CPU, only one may

proceed at their desired rates at any time, and so the two processes trade the rate of progress back

and forth between themselves. This is due in part to the statistically driven workload, where many

frames are shorter than the average frame; when the process computes short frames, it is able to

establish its period with the BEST scheduler, and benefits when longer frames arrive. However too

many longer frames creates missed deadlines, occasionally preventing BEST from estimating the

period and so the process loses its advantage. The cumulative effect of this phenomenon on both

processes creates the wavy progress paths; both receive unstable resource allocation.

Because BEST does not attempt to allocate the CPU equally among processes, it may ig-

nore user-assigned priority. UNIX systems allow users to adjust the relative scheduling priority of

a process by changing a parameter called nice. In the Linux implementation, nice scales the time

quantum assigned to processes. In BEST, non-periodic processes receive a deadline expiration

timer equal to their Linux time quantum, and therefore an executing process that is not preempted

relinquishes the CPU after the same amount of time in both schedulers. However, periodic pro-

cesses in BEST do not take into account the nice value of the process—the scheduler assumes all

periodic applications equally important. Without taking into account user-assigned priority, there

42

is no way for the scheduler to know which of several periodic processes is more important. The

processes receiving scheduling priority are the ones lucky enough to meet their previous deadlines

(often processes that began executing first, before the overall load was heavy). Even worse, if a

best-effort process is more important than a periodic process, there is no way for the user to enforce

it.

Chapter 4 describes a variation on the BEST scheduler called BEST-RATE. The goal

of the BEST-RATE scheduler is to address the shortcomings described above, by allocating the

CPU equally to processes in accordance with priorities assigned by nice. By doing so, a process

will only meet deadlines if it can already do so within its allocated fair-share of resources, like in

best-effort schedulers such as Linux. However, unlike Linux it ensures that the process receives

CPU allocations at a rate so that deadlines are met, whereas best-effort schedulers make no effort

to allocate a process’ share in a timely manner.

The next chapter presents one solution to the limitations described above, but there is

another limitation which our research has not yet addressed. BEST works on the principle that

processes with periodic deadlines will synchronize their processing of periods using timer prim-

itives provided by the operating system. The rate of entry to the runnable queue coincides with

the processes periodic deadline, and for every deadline the process completes on time it may sleep

until end of the period, triggering BEST’s period detection algorithm upon waking. For processes

that meet periodic deadlines, BEST detects their period and helps them meet future deadlines, es-

sentially creating a positive feedback loop. As observed in the multimedia application described

in Chapter 2, when a process does not meet its deadline, it will not sleep before beginning its next

period. BEST’s period detection algorithm is not triggered, and the process will be treated as a

best-effort process. Since a best-effort process may not be scheduled in a timely manner, it will

43

likely miss future deadlines if the CPU is significantly utilized. In effect, this creates an implicit

negative feedback loop, but the scheduler does not receive any feedback that an SRT process is pro-

gressing poorly, only the user observes the poor performance. It is possible for BEST to remember

which processes were periodic, so that a few missed deadlines will not impact future performance

(by using averaged measured periods and confidence values and smoothing these averages using

hysteresis), but if the process never establishes its period because the system is already loaded, it

has no recourse but to perform poorly. Section 5.1 discusses future directions for addressing this

limitation.

44

Chapter 4

The BEST-RATE Scheduler

Like BEST, the goal of BEST-RATE is to enhance the performance of soft real-time

tasks. Unlike BEST, BEST-RATE does not adjust the share of resources a process receives. It is a

refinement of the BEST technique designed to address several of the issues discussed in Section 3.5

by adding allocation fairness and the ability to handle user-assigned priorities. Like BEST, the

underlying scheduler of BEST-RATE uses the EDF algorithm. However, deadlines are assigned

according to process rates, as described below in Section 4.0.2.

4.0.1 Design Goals

To develop the BEST-RATE scheduler we had a number of specific design criteria, most

of which are identical to the BEST design goals, with the exception that the BEST-RATE scheduler

allocates CPU bandwidth equally among processes. The goals are:

1. The same scheduling policy should apply to every application, regardless of its scheduling

needs—a uniform algorithm simplifies scheduling decisions.

45

2. Neither users or developers need to provide any a priori information about processes.

3. The scheduler should enhance the performance of soft real-time applications.

� The rate of execution of all processes will be monitored. Processes that enter the

runnable queue in predictable patterns should receive future CPU allocations so that

they consume resources at the same rate as past allocations.

� This algorithm should create a positive feedback loop for well-behaved soft real-time

processes; when processes do not miss deadlines, they have the opportunity to wait for

the next period, increasing the likelihood of consistent patterns.

� The scheduler should be preemptive. Since periodic processes receive timely alloca-

tion, this prevents missed deadlines.

4. The default behavior of the scheduler should be reasonable and consistent with general pur-

pose time-sharing schedulers.

� All processes should receive their fair-share of resources. Default behavior allocates

equal share to all, but this may be tuned by the user.

� The scheduler should favor interactive processes over CPU-bound processes.

4.0.2 BEST-RATE Scheduler Details

The BEST-RATE scheduler algorithm is simpler than the BEST scheduler. Every pro-

cess has a deadline that is computed when the process enters the runnable queue. The sched-

ule() function selects the runnable process with the earliest deadline. Since we do not know a

46

process’s deadline, a simple heuristic is used to estimate actual deadlines for periodic processes

and pseudo-deadlines for best-effort processes.

4.0.3 Setting deadlines

Like BEST, BEST-RATE periodically sets a deadline and a deadline expiration timer

for all processes. The expiration timer is the same as in the BEST scheduler, decrementing only

for clock ticks during which the process is executing. There are two times a deadline is reset:

(1) when a process is executing and its deadline expires (in schedule()), or (2) when a process

wakes up (in wake up process()). In the former situation, the running process has the earliest

deadline, and because its deadline expired and is reassigned, usually another process is eligible to

run. When a process wakes up, its deadline will be set according to its past behavior, so that if the

process consumed CPU in short bursts, as processes with periodic deadlines do, it will be assigned

a short period in which to consume another short burst. For each process, the scheduler records

a value called usage U . The usage is the weighted average number of clock ticks the process

consumes before its deadline is reset, U ��� consumed � w � U ����� 1 � w � , where w is a weighting

factor that controls how fast previous measurements are forgotten. For processes with a period

shorter than time quantum, U will be below the average period, assuming that most deadlines are

met. For CPU-bound processes, it will be exactly the quantum, and for I/O-bound processes, it

will generally be lower than the quantum.

The deadline is computed using a process’s target rate, which is the amount of CPU it

should be allocated assuming a fair share. The total load L of the system is the sum of all nice

priorities, L � ∑x � n prix, where n is the set of running processes and prix is the nice priority of

process x. The target rate R of a process x is prix
L . The deadline is then computed deadline � now �

47

U � R. For all processes, the deadline expiration timer is set to the same value as the Linux quantum.

When the load consists of all best-effort processes, BEST-RATE chooses the same schedule as the

Linux scheduler. However BEST-RATE schedules I/O-bound and periodic processes with less

latency then Linux because of the deadline ordering of processes.

Other changes

Like BEST, the BEST-RATE scheduler uses higher timer resolution than Linux (in-

creased by a factor of 8), for the same reasons described in Section 3.3.3.

4.1 Experimental Results

To show that the BEST-RATE scheduler meets the design criteria set forth in Sec-

tion 4.0.1 we conducted a few experiments comparing the performance of the BEST-RATE sched-

uler with that of the Linux scheduler and BEST Scheduler. We implemented the BEST-RATE

algorithm in schedsim, and measured the throughput of all processes and the number of missed

deadlines for periodic processes, using the same methods outlined in Section 3.4.

Our results show that BEST-RATE alleviates the problem seen in Linux when an SRT

process requires a CPU allocation close to its fair share. Figure 4.1 shows the performance of the

Linux scheduler and the BEST-RATE scheduler with one best-effort process and one SRT process

that requires 50% CPU (the same experiment of Figure 3.1). In the Linux scheduler, the SRT

process misses 7.8% of its deadlines, while BEST-RATE misses only a single (� 0.1%) deadline.

In Figure 4.2(a), the load of best-effort processes was increased by running three best-

effort processes with a single SRT process (with a frame rate of 25 frames/second and requiring

25% of the CPU). In this case, the Linux scheduler provides a quarter of CPU to each process, but

48

0

5

10

15

20

25

30

0 10 20 30 40 50 60

pr
og

re
ss

 (
C

P
U

 s
ec

on
ds

)

time (seconds)

Linux Scheduler

srt (25 frame/s 50%)
best effort

0

5

10

15

20

25

30

0 10 20 30 40 50 60

pr
og

re
ss

 (
C

P
U

 s
ec

on
ds

)

time (seconds)

BEST-RATE Scheduler

srt (25 frame/s 50%)
best effort

Figure 4.1: Linux and BEST-RATE running (1) best-effort and (2) srtsim 25fps 50%.

like in the previous experiment, the SRT process is unable to meet all of its deadlines, missing 5.6%

of them. In the BEST-RATE scheduler, the SRT process meets all of its deadlines. Figure 4.2(b)

shows the plot on a shorter time-scale, so a detailed view of CPU allocation is visible. In the

Linux scheduler, we see several instances where the progress of the SRT progress is halted while

a best-effort processes receives the allocation, and so misses its deadline. This is due to phasing of

dynamic priorities assigned by the Linux scheduler. Because the SRT process periodically sleeps,

its dynamic priority decays at a slower rate than CPU-bound processes, and usually upon waking it

preempts the currently executing process. However, the dynamic priorities of all running processes

are occasionally recomputed, and it is possible that the SRT process will not always be greater upon

waking, in which case the executing best-effort process may complete an entire quantum without

interruption. The BEST-RATE scheduler eliminates this problem, resulting in evenly spaced CPU

allocations.

UNIX users may adjust the relative priorities of processes using the nice utility, which

sets a priority value in the range -20 to +19. The default value is 0, and in the Linux implementation

49

0

5

10

15

20

25

30

0 10 20 30 40 50 60

pr
og

re
ss

 (
C

P
U

 s
ec

on
ds

)

time (seconds)

Linux Scheduler

srt (25 frame/s 25%)
best effort
best effort
best effort

0

5

10

15

20

25

30

0 10 20 30 40 50 60

pr
og

re
ss

 (
C

P
U

 s
ec

on
ds

)
time (seconds)

BEST-RATE Scheduler

srt (25 frame/s 25%)
best effort
best effort
best effort

(a) Linux and BEST-RATE schedulers.

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

3 3.2 3.4 3.6 3.8 4

pr
og

re
ss

 (
C

P
U

 s
ec

on
ds

)

time (seconds)

Linux Scheduler

srt (25 frame/s 25%)
best effort
best effort
best effort

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

3 3.2 3.4 3.6 3.8 4

pr
og

re
ss

 (
C

P
U

 s
ec

on
ds

)

time (seconds)

BEST-RATE Scheduler

srt (25 frame/s 25%)
best effort
best effort
best effort

(b) Detail view of application progress in Linux and BEST-RATE.

Figure 4.2: Linux and BEST-RATE schedulers running (1-3) 3 best-effort processes and (4) srtsim
25fps 25%.

50

0

5

10

15

20

25

30

0 10 20 30 40 50 60

pr
og

re
ss

 (
C

P
U

 s
ec

on
ds

)

time (seconds)

Linux Scheduler

srt (33 frame/s 67%)
best effort nice 10

0

5

10

15

20

25

30

0 10 20 30 40 50 60

pr
og

re
ss

 (
C

P
U

 s
ec

on
ds

)

time (seconds)

BEST-RATE Scheduler

srt (33 frame/s 67%)
best effort nice 10

Figure 4.3: Linux and BEST-RATE running (1) best-effort (w/ nice 10) and (2) srtsim 33fps 67%.

nice scales a process’s time quantum (on a linear scale, where -20 will double the time-slice, and

+10 will halve the time-slice). For example, when running a program using nice, the default

Linux behavior assigns the process a nice priority of 10, halving its quantum. If this process is

competing with another process, it receives 1
2 quantum for every quantum of the other process,

effectively reducing its usage to 1
3 of the CPU.

Because the BEST-RATE scheduler does not attempt to allocate over a process’s fair

share of resource, an SRT process needing more than its nominal share to meet deadlines may not

perform well. The goal of the BEST scheduler is to attempt to meet any deadlines it can detect,

however the goal of BEST-RATE is only to meet those which can be met within the process’s fair

share. In Figure 4.3 the SRT process with frame rate of 33 frames/second requires an average of

2
3 of the CPU to meet its deadlines, which we may allocate by assigning the best-effort process a

default nice of +10. Like in the last two examples, even though the Linux scheduler provides the

SRT process the share it needs to meet deadlines, it does not receive them in a timely manner and

misses 11% of them. However in the BEST-RATE scheduler, the SRT process does not miss any

51

0

5

10

15

20

25

30

0 10 20 30 40 50 60

pr
og

re
ss

 (
C

P
U

 s
ec

on
ds

)

time (seconds)

BEST Scheduler

srt (25 frame/s 50%)
srt (50 frame/s 50%)

best effort

0

5

10

15

20

25

30

0 10 20 30 40 50 60

pr
og

re
ss

 (
C

P
U

 s
ec

on
ds

)

time (seconds)

BEST-RATE Scheduler

srt (25 frame/s 50%)
srt (50 frame/s 50%)

best effort

Figure 4.4: BEST and BEST-RATE schedulers with (1) best-effort, (2) srtsim 25fps 50% and (3)
srtsim 50fps 50%.

deadlines.

In the last experiment, the performance of BEST-RATE when deadlines cannot be met is

evaluated. Unlike BEST which attempts to violate fairness in order to meet deadlines, BEST-RATE

allocates resources according to assigned priority. Figure 4.4 shows the performance of the BEST

and BEST-RATE schedulers with three processes, one best-effort, one SRT with a frame rate of 25

frames/second and CPU demand of 50%, and another SRT with frame rate of 50 frames/second

and demand of 50%. The BEST scheduler performs well, missing only 1.6% of each processes

deadlines. As expected, BEST-RATE is not capable of meeting deadlines, but outperforms Linux

(not shown) by missing only 25% and 14.2% of respective deadlines (Linux misses 32% and 21%).

An interesting result is that the SRT processes missed the exact same number of deadlines under

BEST-RATE (the percentages are different because the number of periods in the run differed), al-

though further experiments show that BEST-RATE does not equally balance the number of missed

deadlines during overload for all workloads.

The goal of the BEST-RATE scheduler is to minimize the number of missed deadlines

52

Table 4.1: Summary of percentage of deadlines missed for all experiments.

Scheduler
Experiment Process Linux BEST BEST-RATE

7 best-effort - - -
srtsim (25fps 50%) 7.8 0 0

8 best-effort - - -
best-effort - - -
best-effort - - -
srtsim (25fps 25%) 5.6 0 0

9 best-effort (nice 10) - - -
srtsim (33fps 67%) 11 0 0

10 best-effort - - -
srtsim (25fps 50%) 32.0 1.6 25.0
srtsim (50fps 50%) 21.0 1.6 14.3

for soft real-time processes that are able to meet deadlines in their nominal share of resource

allocation. Like the Linux scheduler, it attempts to provide fairness, and like BEST it ensures that

the process gets its CPU allocation in a timely manner. The previous experiments show that BEST-

RATE meets this goal. Table 4.1 summarizes the percentage of deadlines missed by the schedulers.

It shows that BEST-RATE exceeds the performance of Linux in situations where deadlines can be

met. However for processes in which demand exceeds share, BEST-RATE behaves like Linux and

provides a fair allocation to all processes.

53

Chapter 5

Future Work and Conclusion

Experiments show that the BEST prototype meets its intended purpose: enhancing the

performance of periodic processes while capturing the benefits of a best-effort model. It also

preserves the design goals of general-purpose operating systems by favoring I/O-intensive over

CPU-bound jobs; as users we successfully employ the scheduler on a development and general

purpose platform with no adverse effect on responsiveness. However, because BEST violates

fair-sharing assumptions of time-share scheduling used in general purpose systems, the BEST-

RATE scheduler was developed to provide timely allocation to real-time processes within fair-

share resource allocation.

The goal of this research project is to explore an approach to soft real-time scheduling

that uses the best-effort model of scheduling, in which the system knows nothing a priori about the

workload or resource needs of processes. Most existing soft real-time schedulers were developed

by relaxing the constraints of real-time schedulers. Because they are rooted in real-time techniques,

most SRT schedulers use interfaces similar to real-time systems and require some level of workload

characterization for proper performance. After beginning to examine soft real-time scheduling

54

from the best-effort point-of-view, we have identified several areas for future research in this area,

discussed below.

5.1 Future Work

When comparing the performance of BEST-RATE to BEST, we found a case during

overload where one scheduler causes two processes of different period to miss the same number of

deadlines, and the other scheduler causes the processes to miss the same percentage of deadlines.

Although we also find that this behavior is not consistent under other loads, it leads to the question:

what is the “proper” way for a best-effort scheduler to degrade performance when deadlines cannot

be met? The SRMS scheduler was evaluated using a measure of intertask unfairness, which assigns

a value to the unfairness among tasks that miss deadlines [1], and in future experiments we should

incorporate this metric into our evaluations.

Ultimately, “fairness” should be based on a user’s concept of the relative importance

of processes. Locke demonstrated that an appropriate method to deal with overload is to assign

utility values for each deadline, and choose to schedule for the deadlines that provide high aggre-

gate utility [25]. This solution allows real-time systems to make best-effort scheduling decisions,

and influenced much of the later soft real-time research. To achieve a similar policy in BEST, we

may define utility functions for deadlines derived from user-assigned priorities. Some real-time

scheduling research provides advice for choosing utility values [10, 37], and it is known that us-

ing value-based scheduling leads to more graceful degradation in the absence of guarantees than

EDF [11]. Using value in BEST, we hope to provide more consistent and predictable behavior

when handling overload situations, while still preserving the best-effort model of no a priori re-

55

source demands.

BEST infers periodic deadlines of processes by measuring statistics during execution.

It is reasonable to assume that if an application exhibits periodic deadlines during one execution,

then it will have deadlines in future executions. If the scheduler saves some state for an appli-

cation, it may be able to quickly infer its behavior patterns without needing to wait for run-time

characterization. This is especially helpful when a process begins executing during heavy proces-

sor utilization—the process may not receive enough CPU to meet deadlines and therefore will not

be correctly identified by BEST. If the scheduler knows that a process has deadlines, it may be

able to schedule it effectively from the beginning. To implement this feature in BEST, we need

to decide how to save this state, and which information to save. For example, some application

behavior may depend on the media format or frame rate, which varies for each media file. In this

case, it may be appropriate to associate SRT state with the media. But if two different applications

execute the same media using different execution patterns, it may be necessary to associate the

state with the applications, and not the media. However it may be adequate to simply flag that a

process is SRT, and leave the period characterization to run-time.

One unresolved problem discussed Section 3.5 is the inability of BEST to receive neg-

ative feedback about real-time process performance. Because in the best-effort model, the appli-

cation has no interface to the scheduler, there is no way for an application to notify the scheduler

when it does not receive timely resources to make deadlines. Lack of interface to the scheduler is

a limitation of best-effort models, and it may be worthwhile to investigate relaxing this run-time

model. If there exists a system call allowing a process to relay to the scheduler that it missed a

deadline, the scheduler is equipped to receive negative as well as positive feedback. Although such

a system call violates the best-effort model, it does not require the scheduler to know any resource

56

needs of applications, and may still use the BEST model of on-line resource determination. By

adding a negative feedback component to BEST we may explore more techniques for providing

system support to real-time applications without need for workload characterization.

With the increasing popularity of more sophisticated mobile and hand-held devices such

as digital cellular phones, a current fertile topic in systems research is reducing power consump-

tion. These devices often run soft real-time applications that process voice, video, and other media

content. These applications need to be scalable for adapting to available processor and commu-

nication bandwidth. Recent research finds that dynamically adjusting energy usage to adapt to

workloads leads to considerable power savings [2]. An interesting research path is to investigate

how we might exploit the run-time characterization techniques used by BEST to control the re-

source allocations of these scalable SRT applications so that they effectively use power.

5.2 Conclusion

Standard best-effort schedulers make no resource guarantees, but soft real-time applica-

tions require some assurance of resource allocation in order to meet deadlines. Best-effort schedul-

ing is thought to perform poorly for multimedia; but because it is simple to use, the best-effort

model continues to be attractive for both application developers and users of general purpose sys-

tems. BEST and BEST-RATE are CPU schedulers that adhere to a best-effort scheduling policy

while automatically detecting and boosting the performance of periodic soft real-time processes.

BEST dynamically determines application periods and schedules processes according to earliest

deadline first, a well-known scheduler for real-time systems. However, unlike real-time sched-

ulers, it uses simple heuristics to determine deadlines for both periodic and non-periodic processes.

57

BEST-RATE allocates CPU to processes so they progress at the rate of their weighted share, but

ensures that processes that need the CPU within time constraints receive the resources with less

latency.

This paper presents the design and implementation of the prototype BEST and BEST-

RATE schedulers in the Linux kernel. It includes the results of a set of experiments demonstrating

the effectiveness of both schedulers at boosting the performance of processes with soft deadlines,

while preserving desired characteristics of general purpose time-sharing schedulers. In particu-

lar, our results show that BEST performs as well as or better than the Linux scheduler and RM

scheduling in handling best-effort, soft real-time, and a combination of the two types of processes.

This holds true in situations of both processor under-load and processor overload and is done with

no a priori knowledge of the applications, their resource usage, or their periods. We also show that

BEST-RATE is a weighted-share scheduler that is effective at allocating CPU with less latency to

processes that exhibit periodic behavior.

58

Bibliography

[1] Alia K. Atlas and Azer Bestavros. Statistical rate monotonic scheduling. In Proceedings of

the 19th IEEE Real-Time Systems Symposium (RTSS 1998), Madrid, Spain, December 1998.

IEEE.

[2] Hakan Aydin, Rami Melhem, Daniel Mossé, and Pedro Majía-Alvaraz. Dynamic and agres-

sive scheduling techniques for power-aware real-time systems. In Proceedings of the 22nd

IEEE Real-Time Systems Symposium (RTSS 2001), pages 95–105. IEEE, December 2001.

[3] Scott Banachowski and Scott Brandt. The BEST scheduler for integrated processing of best-

effort and soft real-time processes. In Proceedings of Multimedia Computing and Networking

2002 (MMCN ’02), pages 46–60, Jan 2002.

[4] Andy Bavier and Larry L. Peterson. BERT: A scheduler for best effort and real-time tasks.

Technical Report TR-587-98, Princeton University, August 1998.

[5] Michael Beck, Harold Böhme, Mirko Dziadzka, Ulrich Kunitz, Robert Magnus, and Dirk

Verworner. Linux Kernel Internals. Addison Wesley Longman, 2nd edition, 1998.

[6] Scott Brandt and Gary Nutt. Flexible soft real-time processing in middleware. Real-Time

Systems, pages 77–118, 2002.

59

[7] Scott Brandt, Gary Nutt, Toby Berk, and James Mankovichr. A dynamic quality of ser-

vice middleware agent for mediating application resource usage. In Proceedings of the 19th

IEEE Real-Time Systems Symposium (RTSS 1998), pages 307–317, Madrid, Spain, Decem-

ber 1998.

[8] Scott A. Brandt. Performance analysis of dynamic soft real-time systems. In Proceedings

of the 20th IEEE International Performance, Computing and Communications Conference

(IPCCC ’01), pages 379–386, Phoenix, AZ, April 2001.

[9] Alan Burns. Scheduling hard real-time systems: A review. Software Engineering Journal,

6:116–128, May 1991.

[10] Alan Burns, Divya Prasad, Andrea Bondavalli, Felicita Di Giandomenico, Krithi Ramam-

ritham, John Stankovic, and Lorenzo Strigini. The meaning and role of value in scheduling

flexible real-time systems. Journal of Systems Architecture, 46(4):305–325, January 2000.

[11] Giorgio Buttazzo, Marco Spuri, and Fabrizio Sensini. Value vs. deadline scheduling in over-

load conditions. In Proceedings of the 16th IEEE Real-Time Systems Symposium (RTSS

1995), 1995.

[12] George M. Candea and Michael B. Jones. Vassal: Loadable scheduler support for multi-

policy scheduling. In Proceedings of the 2nd USENIX Windows NT Symposium, pages 157–

166, August 1998.

[13] Hao-hua Chu and Klara Nahrstedt. A soft real time scheduling server in UNIX operating

system. In European Workshop on Interactive Distributed Multimedia Systems and Telecom-

munication Services, September 1997.

60

[14] Kenneth J. Duda and David R. Cheriton. Borrowed-virtual-time (BVT) scheduling: Support-

ing latency-sensitive threads in a general-purpose scheduler. In Proceedings of the 17th ACM

Symposium on Operating System Principals, December 1999.

[15] Bryan Ford and Sia Susarla. CPU inheritance scheduling. In Proceedings of the 2nd Sympo-

sium on Operating Systems Design and Implementation, pages 91–105, October 1996.

[16] Pawan Goyal, Xingang Guo, and Harrick M. Vin. A hierarchical CPU scheduler for multi-

media operating systems. In Proceedings of the Second Symposium on Operating Systems

Design and Implementation, October 1996.

[17] Christopher J. Hughes, Praful Kaul, Sarita V. Adve, Rohit Jain, Chanik Park, and Jayanth

Srinivasan. Variability in the execution of multimedia applications and implications for ar-

chitecture. In Proceedings of the 28th International Symposium on Computer Architecture,

June 2001.

[18] The Institute of Electrical and Electronics Engineers. IEEE Standard for Information

Technology-Portable Operating System Interface (POSIX)-Part 1: System Application Pro-

gramming Interface (API)-Amendment 1: Realtime Extension [C Language], Std1003.1b-

1993 edition, 1994.

[19] Kevin Jeffay and David Bennett. A rate-based execution abstraction for multimedia comput-

ing. In Proceedings of the 5th International Workshop on Network and Operating System

Support for Digital Audio and Video, April 1995.

[20] E. Douglas Jensen, C. Douglass Locke, and Hideyuki Tokuda. A time-driven scheduling

61

model for real-time operating systems. In Proceedings of the 6th IEEE Real-Time Systems

Symposium, December 1985.

[21] Sandeep Khanna, Michael Sebrée, and John Zolnowsky. Realtime scheduling in SunOS 5.0.

In USENIX Winter 1992 Technical Conference, pages 375–390, January 1992.

[22] Ian M. Leslie, Derek McAuley, Richard Black, Timothy Roscoe, Paul Barham, David Evers,

Robin Fairbairns, and Eoin Hyden. The design and implementation of an operating sys-

tem to support distributed multimedia applications. In IEEE Journal on Selected Areas in

Communications, pages 1280–1297, September 1996.

[23] Chih-han Lin, Hao-hua Chu, and Klara Nahrstedt. A soft real-time scheduling server on the

Windows NT. In Proceedings of the 2nd USENIX Windows NT Symposium, August 1998.

[24] C. L. Liu and James W. Layland. Scheduling algorithms for multiprograming in a hard-

real-time environment. Journal of the Association for Computing Machinery, 20(1):46–61,

January 1973.

[25] C. Douglas Locke. Best-Effort Decision Making for Real-Time Scheduling. PhD thesis,

Carnegie-Mellon University, May 1986.

[26] Marshall Kirk McKusick, Keith Bostic, Michael J. Karels, and John S. Quarterman. The

Design and Implementation of the 4.4BSD Operating System. Addison-Wesley Publishing,

1996.

[27] Clifford W. Mercer, Stefan Savage, and Hideyuki Tokuda. Processor capacity reserves: Oper-

ating system support for multimedia applications. In Proceedings of the IEEE International

Conference on Multimedia Computing and Systems, pages 90–99, May 1994.

62

[28] Bob Mullen. The Multics scheduler. http://www.multicians.org/mult-sched.html, August

1995.

[29] Jason Nieh, James G. Hanko, J. Duane Northcutt, and Gerard A. Wall. SVR4UNIX sched-

uler unacceptable for multimedia applications. In Proceedings of the Fourth International

Workshop on Network and Operating System Support for Digital Audio and Video, 1993.

[30] Jason Nieh and Monica Lam. The design, implementation and evaluation of SMART: A

scheduler for multimedia applications. In Proceedings of the Sixteenth Symposium on Oper-

ating System Principals, October 1997.

[31] John Regehr. Inferring scheduling behavior with Hourglass. In Proceedings of the Freenix

Track: 2001 USENIX Annual Technical Conference, pages 143–156, Monterey, CA, USA,

June 2002. USENIX.

[32] John Regehr, Michael B. Jones, and John A. Stankovic. Operating system support for mul-

timedia: The programming model matters. Technical Report MSR-TR-2000-98, Microsoft

Research, September 2000.

[33] John A. Stankovic, Marco Spuri, Marco Di Natale, and Giorgio Buttazo. Implications of

classical scheduling results for real-time systems. Computer, 28(6):16–25, June 1995.

[34] Ion Stoica, Hussein Abdel-Wahab, Kevin Jeffay, Sanjoy K. Buruah, Johannes E. Gehrke,

and C. Greg Plaxton. A proportional share resource allocation algorithm for real-time, time-

shared systems. In Proceedings of the Real-Time Systems Symposium, pages 288–299, De-

cember 1996.

63

[35] Hideyuki Tokuda, Tatsuo Nakajimi, and Prithvi Rao. Real-time Mach: Towards a predictable

real-time system. In Proceedings of USENIX Mach Workshop, October 1990.

[36] Carl A. Waldspurger. Lottery and Stride Scheduling: Flexible Proportional-Share Resource

Management. PhD thesis, Massachusetts Institute of Technology, September 1995.

[37] Lonnie Welch and Scott Brandt. Toward a realization of the value of benefit in real-time sys-

tems. In Proceedings of the 15th International Parallel & Distributed Processing Symposium,

San Francisco, CA, April 2001.

[38] David K.Y. Yau and Simon S. Lam. Adaptive rate-controlled scheduling for multimedia

applications. In ACM Multimedia Conference, November 1996.

[39] Victor Yodaiken and Michael Barabanov. Real-time Linux. In Proceedings of Linux Appli-

cations Development and Deployment Conference (USELINUX), January 1997.

