
Understanding Bug Fix Patterns in Verilog

Sangeetha Sudhakrishnan
sangeetha@soe.ucsc.edu

Janaki T. Madhavan
janaki@soe.ucsc.edu

E. James Whitehead Jr.
ejw@soe.ucsc.edu

Jose Renau
renau@soe.ucsc.edu

University of California, Santa Cruz CA

Abstract

Today, many electronic systems are developed using a
hardware description language, a kind of software that
can be converted into integrated circuits or programmable
logic devices. Like traditional software projects, hardware
projects have bugs, and significant developer time is spent
fixing them. A useful first step toward reducing bugs in
hardware is developing an understanding of the frequency
of different types of errors. Once the most common types
are known, it is then possible to focus attention on elimi-
nating them. As most hardware projects use software con-
figuration management repositories, these can be mined for
the textual bug fix changes. In this project, we analyze the
bug fix history of four hardware projects written in Verilog
and manually define 25 bug fix patterns. The frequency of
each bug type is then computed for all projects. The fre-
quency of bug types in these Verilog projects is compared
with similar patterns in Java, allowing a comparison of bug
frequencies between hardware and software projects. We
find that 29−55% of the bug fix pattern instances in Verilog
involve assignment statements, while 18− 25% are related
to if statements.

1 Introduction

During the 1990’s, the design of integrated circuits
shifted from the traditional labor intensive process of
schematic layout towards the use of hardware description
languages (HDLs), such as Verilog and VHDL. Similar to
the tradeoff of early programming languages, HDLs pro-
duced less efficient ciruits, but at higher designer produc-
tivity. One consequence is that hardware development now
has a heavy software development flavor.
Verilog is one of the most widely used hardware description
languages. The language supports the design, verification,
and implementation of analog, digital, and mixed-signal cir-

cuits at various levels of abstraction. Its syntax is similar to
the C programming language, has a preprocessor like C and
the control flow keywords are similar to C. The language
differs from C in the following. It uses Begin/End to spec-
ify a block instead of the curly braces. The definition of
constants requires a bit width along with their base and Ver-
ilog does not have structures, pointers, or recursive subrou-
tines. The concept of time is important in HDLs, and is not
found in C. Another major difference from a conventional
language is that the statements are not executed strictly lin-
early.
Just as in software, a hardware project goes through de-
sign, development, and testing phases. A designated team
of testers usually checks whether the project exhibits the re-
quired external behavior. When undesirable behavior is de-
tected, a log is maintained, similar to bug tracking in soft-
ware projects. This undesirable behavior is called a bug
and fixing the bug involves modification of the HDL source
code.
Software configuration management repositories are widely
used to record the evolution of hardware and software
projects. Similar to SourceForge, there is a publi-
cally available repository of open source HDL software,
www.opencores.org, that contains over 450 HDL projects
including arithmetic cores, communication controllers,
memory cores, video controllers, and microprocessor cores.
As in software projects, changes made to HDL projects
include a brief description of the change, recorded in the
SCM change log. More often than not, words like “fixed”
and “bug” are used to describe the changes related to bug
fixes. Hence, these repositories can be mined for log mes-
sages containing these words to obtain the bug fix changes.
Indeed, it appears that many of the techniques developed
to exploit information found in the development history of
software projects can be applied to the development history
of HDL projects too.
Given this similarity between HDL and high-level program-
ming languages, one question that arises is whether the

1

types and frequencies of bugs in an HDL like Verilog are
similar to those in, say, Java. In prior work, Kai Pan man-
ually developed a series of fine-grained bug fix patterns in
Java software [1]. These bug fix patterns are automatically
extractable from the history of a software project. The bug
fix patterns can be viewed as a kind of error taxonomy. Un-
like existing work to categorize software errors into spe-
cific categories, the bug fix patterns are automatically cate-
gorized; prior work involved a human manually performing
the categorization work, resulting in poor scalability and un-
reliable categorizations. This paper reports on an effort to
translate this idea of bug fix patterns over to Verilog.
We present a series of 25 bug fix patterns observed
in four open source Verilog projects, downloaded from
www.opencores.org. The patterns we found were seen to
be related to assignments (blocking, non-blocking and as-
sign), “if” statements, module declaration and instantiation,
“always” and “switch” statements. We have obtained the
frequency of their occurence in the four projects we have
analyzed. Errors in assignment were found to be the most
common pattern, followed by the “if” related ones. In order
to understand them in greater detail, we have characterized
them further into many sub-patterns.
The remainder of the paper is organized as follows. Sec-
tion II discusses the methodology used to obtain the bug
fix changes from the change history of the projects ana-
lyzed. Section III describes the identified Verilog bug fix
patterns in detail. The frequency of the observed patterns
in the four projects are presented in Section IV. Section VI
discusses the related work in this area. And finally, Section
VII presents ideas for future work and concludes the report.

2 Methodology for Identifying Bug Fixes

In this paper, we use the term bug for a mistake made
in the source code by the developer, which results in an
undesirable external behaviour during the execution of the
code. When the developers commit the changes that repair
a bug to the software configuration management repository,
they usually log a brief note about these changes. The bug
fixes are typically denoted by the words ”bug” and ”fixed”.
Therefore, by going over the change history, we can obtain
the revision that contains the changes that fix a bug (bug fix
revision) and the one that has the bug (buggy).
There are two main approaches to get the bug fix revisions
and their corresponding buggy revisions. One of the techin-
ques involves looking for references to bug reports; this was
introduced by Mockus and Votta [3]. The other one, intro-
duced by Fischer et al [4] and by Cubranic and Murphy [5],
involves scanning the change logs for keywords like “fixed”
or “bug”; the revisions, whose change logs contain these
words are considered to be the bug fix revisions and the re-
visions prior to them are their respective buggy revisions.
We follow the second approach and manually look for the

Table 1. Projects Analyzed
Project Name # of Revisions # of Bugs
Uart 16550 32 128

OC 8051 22 121
OR1K 17 108

Mem ctrl 45 169

above mentioned keywords in the change logs of the Ver-
ilog projects, we analyzed.
After obtaining the buggy and the bug fix revisions, we
compute the changes to each file involved in the latter by
doing a “diff” with their counterparts in the former. Adopt-
ing the terminology used by [1], we call this textual dif-
ference a bug fix hunk pair. A bug hunk refers to the code
section in the buggy version, that is modified or deleted in
the bug fix revision. The corresponding fix hunk comprises
the modifications in the bug fix version that fixes the bug.
These two together form the bug fix hunk pair. A bug fix
change is typically a modification, addition or deletion of
some specific lines of the source code.
To get some insight into the kind of changes developers
make to repairs bugs in Verilog, we have looked for syntax-
based patterns in the bug fix hunk pairs. The patterns found
by us are explained in detail in the next section.

3 Bug fix patterns

To obtain all the bug fix patterns in Verilog, we man-
ually analyzed the four open source projects downloaded
from www.opensource.org. They are listed in Table I. By
following the methodology described in the previous sec-
tion, we obtained the bug fix hunk pairs and identified the
bug fix patterns present in them. These patterns are grouped
into the following major categories: if-related (IF), module-
related (MD), assignment (AS), switch (SW), always (AL)
and class field (CF).
IF-RELATED (IF)

1. Addition of an if statement (IF APC): This pattern is
observed when an if statement is added to fix a bug. This
statement is usually added to ensure that a certain condition
is met before performing an operation.
Example:

+ if(rst) ma issue ≤ 1′b0

2. Removal of an if statement (IF RMV): In this pattern,
the buggy version has an unnecessary if statement that is
removed in the bug fix version. After this fix, the code pre-
viously enclosed by the ”if” gets executed without requiring
any condition to be met.
Example:

− if(rst) ma issue ≤ 1′b0

2

3. Addition of an else branch (IF ABR): This pattern in-
volves an addition of an else branch to an if statement in the
bug fix version to repair a bug. This bug fix is performed
when a condition that had been previously ignored has to
be considered for the program to exhibit the desired exter-
nal behaviour.
Example:

+ else {ma issue ≤ 1′b0

OR

+ else if(mst) {ma issue ≤ 1′b0

4. Removal of an else branch (IF RBR): As the header
suggests, in this pattern, an else branch present in the buggy
version is removed in the bug fix version, thereby freeing
the code in the else body.
Example:

− else {ma issue ≤ 1′b0

OR

− else if(mst) {ma issue ≤ 1′b0

5. Change of if condition expression (IF CC): In this pat-
tern, the condition logic of the if expression is changed to
fix a bug.
Example:

− if(mst) {ma issue ≤ 1′b0
+ if(!mst) {ma issue ≤ 1′b0

OR

− if(mst) {ma issue ≤ 1′b0
+ if(mst && rst) {ma issue ≤ 1′b0

The if related patterns of Verilog are similar to those of any
conventional programming language but the remainder of
the patterns are more specific to Verilog.
MODULE-RELATED
A Verilog design consists of a heirarchy of modules. Each
module defines a set of inputs and output connections called
ports. These ports act as connection points with other mod-
ules in the system. They are somewhat similar to the formal
parameters of a procedure in a high level language. Ports
can be of mode input, output or inout. A module receives
its input from its input ports and uses the output ports to
send out the generated signals. The inout port can at times
receive input, at other times generate output but cannot do
both simultaneously. We now present the patterns where the
bug fixes involve making changes to the modules.
Change in the number of ports in a module (MD DNP):

This bug fix involves changing the number of ports (input
and output included), while declaring a module, i.e., the
buggy version has more or fewer number of ports in a mod-
ule declaration than the fix version.
Example:

− module decode(clk, rst, jp, dr, isb){
+ module decode(clk, rst, jp, dr){

OR

− module decode(clk, rst, jp, dr, isb){
+ module decode(clk, rst, dpr, dr, isb){

Modules in Verilog can incorporate a copy of another mod-
ule by the process of module instantiation, thus creating
a heirarchy of modules. The communication between the
parent module and the instantiated one is done through the
ports of the latter. We also found some bug fix patterns re-
lated to module instantiation. They are listed with examples
below.
Module instantiation with different number of ports
(MI DNP): This bug fix consists of a change to the num-
ber of ports in the instantiated module.
Example:

− df u2(.clk(clock), .q(q[1]));
+ df u2(.clk(clock), .q(q[1]), .data(d[1]));

OR

− df u2(.clk(clock), .q(q[1]), .data(d[1]));
+ df u2(.clk(clock), .q(q[1]));

Module instantiation with different values for the ports
(MI DCP): In this pattern, the number of ports in the in-
stantiated module is the same across the buggy and the fix
version but the signals passed through the ports is changed.
Example:

− dff u2(.clk(clock), .q(q[1]));
+ dff u2(.clk(clock), .q(q[2]));

ASSIGNMENT-RELATED
There are two types of assignments in Verilog: continuous
and procedural. The former is a statement that gets executed
every time the right hand side of the assignment changes. It
starts with the ”assign” keyword. The procedural assign-
ments can be either blocking (operator used: =) or non-
blocking (operator used: <=). A blocking statement must
be executed before the execution of the statements that fol-
low it in a sequential order, whereas a non-blocking state-
ment allows one to schedule assignments without blocking

3

the procedural flow. We have found bug fix patterns in the
continuous as well as the procedural assignments. These
patterns are given below.
Addition of “assign” statement (ASG ADD):
Example:

+ assign mux out = sel? a : b;

Removal of “assign” statement (ASG RMV):
Example:

− assign buf out = en? in : 16′bz;

Change in ”assign” statement expression (ASG CE):
Example:

− assign F = ((A&B) ‖ (C&D));
+ assign F = ((A&B) & (C&D));

Addition of a non-blocking assignment (NB ADD):

Example:

+ buf out <= sel? a : b;

Removal of a non-blocking assignment (NB RMV):

Example:

− mux out <= sel? a : c;

Change in non-blocking assignment expression
(NB CE):

Example:

− mux out <= a;nonumber (1)
+ mux out <= a&b;

Addition of a blocking assignment (B ADD):

Example:

+buf out = sel;

Removal of a blocking assignment (B RMV):

Example:

− mux out = sel;

Change in blocking assignment expression (B CE):

Example:

− mux out = a;
+ mux out = a&b;

CASE-RELATED

Verilog has a case statement that works exactly like
the switch statement of C. The instruction decoder for a
CPU is implemented using the case statement. The bug
fix pattern observed in this statement is given below. We
have grouped addition/deletion of case statements with the
addition/deletion/modification of case branches because
the incidence of case-related patterns is quite rare.

Addition or removal of case branches (SW ABRP):

Example (addition of case statement):

+ case(select)
+ 0 : q = d[0];
+ 1 : q = d[1];
+ 2 : q = d[2];
+ endcase

Example (removal of case statement):

− case(select)
− 0 : q = d[0];
− 1 : q = d[1];
− 2 : q = d[2];
− endcase

Example (addition of a case branch):

+ 3 : q = d[3];

Example (removal of a case branch):

− 4 : q = d[4];

Example (change in the body enclosed in a case branch):

− 0 : q = d[0];
+ 0 : q = d[0]&sel;

ALWAYS-RELATED

This structure is Verilog-specific and it is hard to find
an equivalent structure in a conventional programming
language. As the name suggests, an always block excecutes
always, unlike other blocks that execute only once. In
addition, the always block has a sensitivity list that tells
this block when to execute the code in its body. The bug fix
patterns observed in this statement are as follows.

4

Addition of an always block (AL ADD):
Example:

+ always @(a or sel or b)
+ begin

+ f = fb&fd;
+ end

Removal of an always block (AL RMV):
Example:

− always @(a or sel or b)
− begin

− f = fb&fd;
− end

Change in the sensitivity list of the always statement
(AL SE):
Example:

− always @(a or sel or b)
+ always @(a or sel or b or selb)

OR

− always @(a or sel or b)
+ always @(a or sel)

CLASSFIELD-RELATED

The roles of wires and registers in Verilog are similar to
the class fields in Java. So we call this category classfield-
related. The bug fix patterns observed in this category are
listed below.

Addition of a register (RG ADD):
Example:

+ reg q;

Removal of a register (RG RMV):

Example:

− reg p;

Addition of a wire (WR ADD):

Example:

+ wire[1 : 0] select;

Removal of a wire (WR RMV):

Example:

− wire[3 : 0] d;

We have ignored changes related to comments, synthe-
sis statements, include statements, param statements, code
cleanup and code formatting. Excluding these, we have
classified all the changes observed in the four projects and
the results are summarized in Table 2. In the next sec-
tion, we characterize the bug fix patterns obtained in these
projects.

4 Characteristics of Bug Fix Patterns

In this section, we show the frequency of bug fix pat-
terns in the four verilog projects. analyzed. Figure 1 gives
the frequencies of all the bug fix patterns across projects.
It is clear that the assignment related patterns are the most
common. They account for 29-55% of all observed patterns.
This is followed by the if related patterns. They account for
18-25% of the observed patterns. The combined frequency
of module declaration and module instantiation is seen to
be 4.7-25%. The class field related patterns occur with fre-
quency 4.7-16%. The frequency of the always related pat-
terns is about 2.8-21%. And finally, case related patterns
account for only about 1.8-4.6%. Apart from the assign-
ment and the if related patterns, which follow similar trend
across all the four projects (most common and second most
common respectively), we cannot say anything conclusive
about the rest of the projects.

5 Related Work

Bugs in software are difficult to find and costly to fix.
Therefore, static code analysis to detect bugs is a very ac-
tive area of research in software engineering.
The closest work to the work presented in this paper is by
[14]. The authors study 4 student hardware design projects
and present error distributions. The major difference with
the work presented here is that designers were asked to cre-
ate new revision via CVS whenever a design error was cor-
rected or whenever the design process was interrupted. In
this paper, we mine the revision history after the project was
created and looked for revision logs containing the words
“Bug” or “Fix”, thereby considering only changes made to
code to correct a design bug. Further, the taxonomy used by
Campenhout et al [14] is ambiguous when compared to the
taxonomy presented in this paper.
Many techniques have been developed over the years to
automatically detect bugs in software. These techniques
are usually based on syntactic pattern matching, data flow
analysis, type systems and theorem proving. FindBugs [6],
JLint [7, 8], ESC/Java 2 [9], PMD [10] are some examples.
These tools are applied to find bugs in Java, which has many

5

CATEGORY PATTERN NAME SHORTNAME UART 16550 OC8051 OR1K MEM CTRL
% # % # % # %

If related Addition of else related branch IF ABR 2 1.56 12 10 9 8.3 6 3.5
Addition of if branch IF APC 6 4.7 2 1.7 0 0 12 7.1

Change of if condition expression IF CC 14 11 9 7.4 6 5.5 20 11.8
Removal of else branch IF RBR 4 3.1 1 0.8 3 2.8 1 0.6

Removal of if branch IF RMV 5 4.6 3 2.5 1 0.92 4 2.3
TOTAL 31 24 27 22.3 19 18 43 25

Module instantiation Module instantiation with different number of ports MI DNP 2 1.56 4 3.3 7 6.5 3 1.8
Module instantiation with different values for the ports MI DCP 0 0 2 1.65 9 8.3 7 4.1

TOTAL 2 1.6 6 4.9 16 15 10 6
Module declaration Module declaration with different number of ports MD DNP 4 3.1 5 4.1 11 10 7 4.1

TOTAL 4 3.1 5 4.1 11 10 7 4.1
Assignment related Change of expression for non blocking assignment NB CE 21 16.4 9 7.4 6 5.5 5 3

Change of expression for blocking assignment B CE 0 0 4 3.3 1 0.92 6 3.5
Change of expression for assign statement ASG CE 6 4.7 13 10.7 27 25 5 2.95
Change of expression for assign statement ASG CE 6 4.7 13 10.7 27 25 5 2.95

Assign statement added ASG ADD 28 21.8 5 4.1 4 3.7 7 4.1
Assign statement removed ASG RMV 4 3.1 5 4.1 1 0.92 8 4.73

Non blocking statement added NB ADD 10 7.8 5 4.1 1 0.92 3 1.78
Non blocking statement removed NB RMV 1 0.8 8 6.6 0 0 0* 1.18

Blocking statement added B ADD 0 0 3 2.5 0 0 7 4.14
Blocking statement removed. B RMV 0 0 1 0.8 0 0 6 3.55

TOTAL 70 54.6 53 44 40 37 49 29
Switch Case related Additionor removalofcase branches SW ABRP 5 4.6 3 2.5 2 1.9 3 1.77

TOTAL 5 4.6* 3 2.5 2 1.9 3 1.77
Class field related Additionofreg RG ADD 4 3.1 10 8.26 5 4.7 11 6.5

Additionof wire WR ADD 1 0.8 4 3.3 8 7.4 7 4.14
Removal of reg RG RMV 1 0.8 4 3.3 1 0.92 0 0

Removalof wire WR RMV 0 0 0 0 3 2.8 4 2.366
TOTAL 6 4.7 18 15 17 16 22 13

Always related Sensitivity list changes AL SE 1 0.8 2 1.65 1 0.92 11 6.5
Always added AL ADD 5 4.6 5 4.1 2 1.9 20 11.83

Always removed AL RMV 4 3.1 2 1.65 0 4 2.36
TOTAL 10 7.8 9 7.5 3 2.8 35 21
TOTAL 128 121 108 169

Table 2. The count and frequency of the extracted pattern instances across projects

Figure 1. Bar chart of the frequency distribution of bugs in the projects analyzed

6

potential coding pitfalls [11]. There has also been work that
compares the effectiveness of these tools [13]. All these
tools are based on static analysis and the bug patterns are
based on known program errors. These tools do not use the
change history of a software project to find the real bugs re-
ported by the developers.
FindBugs is a tool to detect bug patterns in Java. Its main
technique is to analyze the bytecode and syntactically match
source code to known suspicious programming practice.
This approach is similar to ASTLog [12]. It also uses
data flow analysis to look for bugs. JLint is also based
on analysing bytecode, performing syntactic checks and
dataflow analysis. PMD also performs syntactic checks on
program source code and does not have the dataflow compo-
nent. ESC/Java is based on theorem proving and performing
formal verifications of properties of Java source code.
The change history of a software project can give consider-
able information about the common bugs and the patterns
found in their fixes. This information has been exploited to
develop an extractor tool to automatically extract 27 bug fix
patterns in Java projects [1]. All the tools described above
have been developed for Java; to our knowledge, there has
been no work on statically analyzing bugg code patterns in
hardware description languages. Our approach, based on
[1], looks for the bug fix patterns in the software change
history of Verilog projects. We have thus categorized all the
observed bug-fix related changes into 25 bug fix patterns.

6 Conclusions and Future Work

In this paper, we obtained the bug fix patterns in a hard-
ware description language, Verilog, observing 25 categories
of bug fix patterns. Among them, the assignment related
patterns are found to be the most common, followed by if
related ones. The former accounts for 29-55% of all ob-
served patterns, while the latter accounts for 18-25%. In
contrast, the bug fix patterns in Java are dominated by the if
statements and the method calls [1]. They account for 45-
60.3% of all defined bug fix patterns. The correlation anal-
ysis on the extracted pattern instances on the four projects
indicates that most of them have similar bug fix pattern dis-
tributions.
We could only examine four Verilog projects as our anal-
ysis was manual. Also, finding Verilog projects with long
history of evolution was difficult. In our future work, we
would like to examine more projects to investigate whether
the trend found in this paper holds across other projects. If
it does, then it should be possible to leverage this pattern
knowledge in the creation of static analysis bug finders for
Verilog. These patterns can be used to develop bug predic-
tion mechanisms for Verilog. A similar analysis can be done
for other hardware description languages to see whether the
bug fix patterns are similar to those of Verilog.

References

[1] Pan, Kai, ”Using Evolution Patterns to Find
Duplicated Bugs,” Ph.D Dissertation, Com-
puter Science, UC Santa Cruz, 2006. Avail-
able at http://www.soe.ucsc.edu/˜ejw/
dissertations/pan-dissertation.pdf

[2] S. Kim, K. Pan, E. J. Whitehead, Jr., Memories of Bug
Fixes, In Proceedings of the fourteenth ACM SIGSOFT
Symposium on Foundations of Software Engineering
(FSE2006), Portland, Oregon, November 5-11, 2006.

[3] A. Mockus and L. G. Votta, Identifying Reasons
for Software Changes Using Historic Database, In
Proceedings of International Conference on Software
Maintenance (ICSM 2000), San Jose, California, 2000,
pp 120-130.

[4] M.Fischer, M. Pinzger and H. Gall, Populating a Re-
lease History Database from Version Control and Bug
Tracking Systems, In Proceedings of 2003 International
Conference on Software Maintenance (ICSM’03), Am-
sterdam, Netherlands, 2003, pp 23-32.

[5] D. Cubranic and G. C. Murphy, Hipikat: Recommend-
ing Pertinent Software Development Artifacts, In Pro-
ceedings of the 25th International Conference on Soft-
ware Engineering, Portland, Oregon, 2003, pp 408-418.

[6] D. Hovemeyer and W. Pugh, Finding Bugs is Easy,
ACM SIGPLAN Notices, vol. 39, no. 12, pp 92-106,
2004.

[7] C. Artho, Finding Faults in Multi-threaded Programs,
Master’s Thesis, Institute of Computer Systems, Fed-
eral Institute of Technology, Zurich/Austin, 2001.

[8] JLint, http://artho.com/jlint .

[9] C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nel-
son, J. B. Saxe, R. Stata, Extended Static Checking for
Java, In Proceedings of the 2002 ACM SIGPLAN Con-
ference on Programming Language Design and Imple-
mentation, pp 234-245, Berlin, Germany, June 2002.

[10] PMD/Java, http://pmd.sourceforge.net .

[11] E. Allen, Bug Patterns in Java, APress, 2002.

[12] R. F. Crew, ASTLOG: A Language for Examining Ab-
stract Syntax Trees, In Proceedings of the Conference
on Domain-Specific Languages, Santa Barbara, Cali-
fornia, Oct 1997.

[13] N. Rutar, C. B. Almazan and J. S. Foster, A Compar-
ison of Bug Finding Tools for Java, in The 15th IEEE
International Symposium on Software Reliability En-
gineering (ISSRE’04), pp 245-256, Saint-Malo, Bre-
tagne, France, November 2004.

7

[14] D. Van Campenhout and H. Al-Asaad and J. Hayes
and T. Mudge and R. Brown, High-level design veri-
fication of microprocessors via error modeling, Trans.
Design Automation of Electronic Systems, 3(4):581–
599, October 1998.

8

