
Exponential Lower Bounds for DPLL Algorithms on
Satisfiable Random 3-CNF Formulas

Dimitris Achlioptas1,2,3 and Ricardo Menchaca-Mendez3

1 University of Athens
2 CTI, Greece

3 University of California, Santa Cruz

Abstract. We consider the performance of a number of DPLL algorithms on
random 3-CNF formulas with n variables and m = rn clauses. A long series of
papers analyzing so-called “myopic” DPLL algorithms has provided a sequence
of lower bounds for the satisfiability threshold. Indeed, for each myopic algorithm
A it is known that there exists an algorithm-specific clause-density, rA, such that
if r < rA, the algorithm finds a satisfying assignment in linear time. For example,
rA is 8/3 = 2.66.. for ORDERRED-DLL and 3.003... for GENERALIZED UNIT

CLAUSE. We prove that for densities well within the provably satisfiable regime,
every backtracking extension of either of these algorithms takes exponential time.
Specifically, all extensions of ORDERRED-DLL take exponential time for r >
2.78 and the same is true for GENERALIZED UNIT CLAUSE for all r > 3.1. Our
results imply exponential lower bounds for many other myopic algorithms for
densities similarly close to the corresponding rA.

1 Introduction

The problem of determining the satisfiability of Boolean formulas is central to computa-
tional complexity. Moreover, it is of tremendous practical interest as it arises naturally in
numerous settings. Random CNF formulas have emerged as a mathematically tractable
vehicle for studying the performance of satisfiability algorithms and proof systems. For
a given set of n Boolean variables, let Bk denote the set of all possible disjunctions of
k non-complementary literals on the variables (k-clauses). A random k-SAT formula
Fk(n,m) is formed by selecting uniformly and independently m clauses from Bk and
taking their conjunction.

We will be interested in random formulas from an asymptotic point of view, i.e.,
as the number of variables grows. In particular, we will say that a sequence of random
events En occurs with high probability (w.h.p.) if limn→∞ Pr[En] = 1. In this context,
the ratio of constraints-to-variables, r = m/n, known as density, plays a fundamental
role as most interesting (monotone) properties are believed to exhibit 0-1 laws with
respect to density. Perhaps the best known example is the satisfiability property.

Conjecture 1. For each k ≥ 3, there exists a constant rk such that for any ε > 0,

lim
n→∞

Pr[Fk(n, (rk − ε)n)] = 1, and lim
n→∞

Pr[Fk(n, (rk + ε)n)] = 0 .

The satisfiability threshold conjecture above has attracted a lot of attention in computer
science, mathematics and statistical physics. At this point, neither the value, nor even
the existence of rk has been established. In a breakthrough result, Friedgut [16] gave a
very general condition for a monotone property to have a non-uniform sharp threshold.
In particular, his result yields the statement of the conjecture if one replaces rk with a
function rk(n). For k = 3, the best known bounds are 3.52 < r3 < 4.49, due to results
in [14] and [20], respectively.

A key feature of random k-CNF formulas is that their underlying hypergraph is lo-
cally tree-like for every finite density, i.e., for both satisfiable and unsatisfiable formulas.
One implication of this fact is that the formula induced by any finite-depth neighbor-
hood of any variable is highly under-constrained. As a result, unsatisfiability comes
about due to long-range interactions between variables something that appears hard
to capture by efficient algorithms. In particular, random formulas have been shown to
be hard both for proof systems, e.g., in the seminal work of Chvátal and Szemerédi
on resolution [11], and, more recently, for some of the most sophisticated satisfiabil-
ity algorithms known [12]. More generally, for the connections of random formulas to
proof-complexity and computational-hardness see the surveys by Beame and Pitassi [7]
and Cook and Mitchell [13], respectively.

The last decade has seen a great deal of rigorous results on random CNF formu-
las, including a proliferation of upper and lower bounds for the satisfiability threshold.
Equally importantly, random CNF formulas have been the domain of an extensive ex-
change of ideas between computer science and statistical physics, including the discov-
ery of the clustering phenomenon [21,22], establishing it rigorously [3], and relating it
to algorithmic performance [12]. In this work we take another step in this direction by
taking a technique from mathematical physics, the interpolation method [19,15,24,6],
and using it to derive rigorous upper bounds for the satisfiability threshold of random
CNF formulas that are mixtures or 2- and 3-clauses. As we discuss below, such formu-
las arise naturally as residual formulas in the analysis of satisfiability algorithms and
their unsatisfiability implies exponential lower bounds for the running time of a large
class of algorithms. Our main result is the following.

Theorem 1. Let F be a random CNF formula on n variables with (1 − ε)n random
2-clauses, and (1 + ε)n random 3-clauses. W.h.p. F is unsatisfiable for ε = 10−4.

Our method for proving Theorem 1 involves estimating an infinite sum with no close
form, any truncation of which yields a rigorous bound. The choice of 10−4 is rather ar-
bitrary as our methods can deliver arbitrarily small ε > 0, given enough computational
resources. We have chosen ε = 10−4 as it can be checked readily with very modest
computation.

2 Background and Motivation

Many algorithms for finding satisfying assignments for CNF formulas operate by build-
ing a partial assignment step by step. These algorithms commit to the assignments made
at each step and operate on a residual formula, in which clauses already satisfied have
been removed, while the remaining clauses have been shortened by the removal of their

falsified literals. We call such algorithms forward search algorithms. During the exe-
cution of any such algorithm a partial assignment may produce clauses of size 1 (unit
clauses) in the residual formula which in turn create additional forced choices in the
partial assignment, since the variables appearing in unit clauses have only one possi-
ble assignment if the formula is to be satisfied. The choices made by a forward search
algorithm when no unit clauses are present are called free.

A large class of natural DPLL algorithms are “myopic” as their free-step choices
are based on local considerations in terms of the underlying hypergraph. Perhaps the
simplest such algorithm is ORDERRED-DLL which performs unit-clause propagation
but, otherwise, sets variables in some a priori fixed random order/sign. Another example
is GENERALIZED UNIT CLAUSE (GUC) [9,17], where in each step a random literal in
a random shortest clause is assigned true. The key property of myopic algorithms that
makes their analysis mathematically tractable is the following (indeed, this can be seen
as a definition of myopic algorithms): as long as the algorithm has never backtracked,
the residual formula is uniformly random conditional on its number of 2- and 3-clauses
(unit-clauses are satisfied as soon as they occur).

To analyze the performance of myopic algorithms on random formulas one employs
the standard technique of approximating the mean path of Markov chains by differential
equations in order to keep track of the 2- and 3-clause density of the residual formula.
As is well understood, in the large n limit, both of these densities behave as determin-
istic functions, for every myopic algorithm. In the absence of backtracking, i.e., if the
algorithm continues blithely on after a 0-clause is generated, this means that for any
given initial 3-clause density r, we can model the algorithm’s behavior as a continuous
2-dimensional curve (dr2(x), d

r
3(x)) of the 2- and 3-clause density, where x ∈ [0, 1]

denotes the fraction of assigned variables. Since the 2-SAT satisfiability threshold is
r2 = 1 [11,18], it follows that for any initial 3-clause density r > 0 and every γ > 0
such that dr2(x) < 1 for all x ∈ [0, γ), the algorithm will only backtrack for trivial local
reasons, never having to reset more than O(log n) variables. Indeed, to determine the
threshold rA for each myopic algorithm it suffices to determine the largest r such that
dr2(x) < 1 for all x ∈ [0, 1).

To understand what happens for r > rA, let us consider what happens if one gives
as input to a myopic algorithm A a random 3-CNF formula of density r > rA, but
only runs the algorithm for x0 · n steps such that dr2(x) < 1 for all x ∈ [0, x0). At that
point, the algorithm will have either not backtracked at all, or backtracked for trivial
local reasons, so that the residual formula will be a mixture of random 2- and 3-clauses
such that the 2-clauses alone are satisfiable. Naturally, if the residual formula is satis-
fiable the algorithm still has a chance of finding a satisfying assignment in polynomial
time. But what happens if this mixture, as a whole, is unsatisfiable? How fast will it
discover this and backtrack? In [2] it was shown that the resolution complexity of such
mixtures is exponential. Since every DPLL algorithm produces a resolution proof of
unsatisfiability, it follows that the algorithm must take exponential time.

To delineate satisfiable from unsatisfiable mixtures, define ∆c to be the largest ∆
such that for every ε > 0, a mixture of (1 − ε)n 2-clauses and ∆n 3-clauses is w.h.p.
satisfiable. In [4] it was proven that 2/3 ≤ ∆c < 2.28... The upper bound, combined
with the differential equations analysis mentioned above was used in [2] to prove that if

ORDERED-DLL is started with 3.81n random 3-clauses it will reach a stage where the
residual formula has exponential resolution complexity (and, therefore, take exponential
time on such formulas). Similarly, for GUC started with 3.98n random 3-clauses.

By establishing ∆c < 1.001, the exact same analysis as in [2] allows us to prove
that each of these algorithms fails for much lower densities, well within the proven
satisfiable regime. Specifically, while ORDERED-DLL succeeds in finding a satisfying
assignment in linear time up to 8/3 = 2.66... we prove that it requires exponential time
for r > 2.71. Similarly, while GUC succeeds in linear time for r < 3.003, we prove that
it requires exponential time for all r > 3.1. We state both of this results more precisely
in the next section, after discussing the different types of backtracking that one can
consider.

We note that these two explicit results for ORDERED-DLL and GUC are simply in-
dicative and Theorem 1 can be applied to prove similar bounds for all myopic algo-
rithms. This includes all algorithms in [1] and many others. In fact, our Theorem 1 can
be generalized to random mixtures of 2- and 3-clauses with a given degree sequence,
thus also covering algorithms such as the one in [20].

2.1 Backtracking

When a path in the search tree leads to a contradiction, the algorithm must begin back-
tracking by undoing all the (forced) choices up to the last free choice and flipping the
assignment to that variable. From there, perhaps the simplest option would be for the al-
gorithm to act as if it had reached this point without backtracking and apply the original
heuristic to decide which variable(s) to set next. As long as the 2-clause density stays
below 1 it is not hard to show that any such backtracking w.h.p. is due to trivial “local”
reasons and can be fixed by changing the value of O(log n) variables (typically O(1)
variables suffice). From a technical point of view, such backtracking (minimally) dis-
turbs the uniform randomness of the residual formula, but enough to make the statement
of crisp mathematical statements cumbersome.

An alternative heuristic, due to Frieze and Suen [17], which we call FS-backtracking
is the following: when a contradiction is reached, record the portion of the assignment
between the last free choice and the contradiction; these literals become hot. After flip-
ping the value of the last free choice, instead of making the choice that the original
heuristic would suggest, give priority to the complements of the hot literals in the or-
der that they appeared; once the hot literals are exhausted continue as with the original
heuristic. FS-backtracking is quite natural in that this last part of the partial assignment
got us into trouble in the first place.

A key property of FS-backtracking that is useful in analysis is that as long as the
value of each variable in a partial assignment has been flipped at most once, the resid-
ual formula is perfectly uniformly random conditional on the number of clauses of each
size. We emphasize that while the original motivation for introducing FS-backtracking
is technical, such backtracking is, in fact, a genuinely good algorithmic idea. Specif-
ically, on random 3-CNF formulas with densities between 3.8 and 4.0, large experi-
ments show that the histogram of run-times of FS-backtracking is significantly better
than simple backtracking. We will denote a forward search algorithm A extended with
FS-backtracking by A-FS.

Let us say that a DPLL algorithm is at a t-stage if precisely t variables have been
set.

Definition 1. Let ε = 10−4. A t-stage of a DPLL algorithm is bad if the residual for-
mula at that stage is the union of a random 2-CNF formula with (1−ε)(n−t) 2-clauses
and a random 3-CNF formula with (1 + ε)(n− t) clauses, where t ≤ n/2.

Definition 1 is identical to that of bad stages in [2], except that they have 2.28 + ε
instead of our 1 + ε, since ∆c ≤ 2.28 was the best known bound prior to our work.
Proceeding exactly as in [2], we get the following.

Lemma 1. Let ∆ORDERED-DLL = 2.71 and let ∆GUC = 3.1.

1. For each A ∈ {ORDERED-DLL,GUC}, an execution of any backtracking extension
of A on a random 3-CNF formula with ∆A · n clauses reaches a bad t-stage with
constant probability.

2. For each A ∈ {ORDERED-DLL,GUC}, an execution of algorithm A-FS on a ran-
dom 3-CNF formula with ∆A · n clauses reaches a bad t-stage w.h.p.

Theorem 2. Let ∆UC = ∆ORDERED-DLL = 2.71 and let ∆GUC = 3.1.

1. For each A ∈ {ORDERED-DLL,GUC}, an execution of any backtracking extension
ofA on a random 3-CNF formula with∆An clauses takes time 2Ω(n) with constant
probability.

2. For each A ∈ {ORDERED-DLL,GUC}, an execution of algorithm A-FS on a ran-
dom 3-CNF formula with ∆An clauses takes time 2Ω(n) w.h.p.

2.2 Proving Upper Bounds for Satisfiability Thresholds

The simplest upper bound on the satisfiability threshold of random k-CNF formulas
comes from taking the union bound over all assignments σ ∈ {0, 1}n of the probability
that each one is satisfying. That is,

Pr[Fk(n, rn) is satisfiable] ≤
∑
σ

Pr[σ satisfies F3(n, rn)] =
[
2(1− 2−k)r

]n → 0 ,

for all r > r∗k, where 2(1− 2−k)r
∗
k = 1. It is easy to see that r∗k/(2

k ln 2)→ 1.
Note that the above argument holds even for k = n, in which case satisfiability

reduces to the coupon collector’s problem over {0, 1}n. By standard results, in this
case the number of clauses to cover the cube is very close to 2n ln(2n) = n2n ln 2.
Aggregating, for the sake of comparison, these assignments into groups of size 2n−k so
that they are comparable to k-clauses, recovers the union bound above. In other words,
the simplicity (and the weakness) of the union bound is that it treats the 2n−k distinct
assignments forbidden by each k-clause as a random multiset of the same size. As one
can imagine, this phenomenon is stronger as the cubes are larger, i.e., for smaller values
of k. For example, r∗3 = 5.19.., but a long series of increasingly sophisticated results
has culminated with the bound r3 < 4.49 by Díaz et al. [14]. In the extreme case k = 1,
the birthday paradox readily implies that a collection of Θ(n1/2) random 1-clauses is
w.h.p. unsatisfiable, yet the union bound only gives r1 ≤ 1.

For the special case k = 2, it has long been shown, independently, by Chvátal and
Reed [10] and Goerdt [18] that r2 = 1. In all these proofs, the fact r2 ≤ 1 is estab-
lished by exploiting the existence of succinct certificates of unsatisfiability for 2-SAT
enabling proofs that proceed by identifying the “most likely” unsatisfiable subformulae
in the evolution of F2(n, rn). Intriguingly, early non-rigorous arguments of statistical
physics [23] recover the fact r2 ≤ 1 without relying on the fact that 2-SAT is in P. It
is precisely this feature that we exploit in the present work. In particular, we will show
how one can get improved unsatisfiability bounds for random (2 + p)-SAT instances.

2.3 Applying the Interpolation Method to Random CNFs formulas

To prove Theorem 1 we abandon standard combinatorial proofs of unsatisfiability and
turn to a remarkable tool developed by Francesco Guerra [19], called the interpolation
method, to deal with the Sherrignton Kirkpatrick model (SK) of statistical physics. Fol-
lowing Guerra’s breakthrough, Franz and Leone [15], in a very important paper, applied
the interpolation method to random k-SAT and random XOR-SAT to prove that certain
expressions derived via the non-rigorous replica method of statistical physics for these
problems, correspond to rigorous lower bounds for the free energy of each problem. As
such, these expressions can, in principle, be used to derive upper bounds for the satis-
fiability threshold of each problem, yet this involves the solution of certain functional
equations that appear beyond analytical penetration. In [24], Panchenko and Talagrand
showed that the results of [15] can be derived in a simpler and uniform way, unifying
the treatment of different levels of Parisi’s Replica Symmetry Breaking.

In a recent paper [6], Bayati, Gamarnik and Tetali, showed that a combinatorial ana-
logue of the interpolation method can be used to elegantly derive an approximate sub-
additivity property for a number of CSPs on Erdős-Renyi and regular random graphs.
This allowed them to prove the existence of a number of limits in these problems, in-
cluding the existence of a limit for the size of the largest independent set in a random
regular graph. At the same time, the simplicity of their combinatorial approach comes
at the cost of losing the capacity to yield quantitative bounds for the associated limiting
quantities.

To overcome these problems we will apply a recently developed [5] energetic in-
terpolation method to random mixtures of 2- and 3-clauses. This, implicitly, exploits
the second order nature of random 2-SAT phase transitions to gain in computational
tractability.

3 The Energetic Interpolation Method

In the more standard models of random k-SAT, the number of clauses m is fixed (not
a random variable). The interpolation method requires that m be a Poisson random
variable with mean E[m] = rn. Since, though, the standard deviation of the Poisson
distribution is the square root of its mean we have m = (1 + o(1))rn w.h.p., thus not
affecting any asymptotic results regarding densities.

We shall work with the random variable Hn,r(σ), know as the Hamiltonian, count-
ing the number of unsatisfied clauses in the instance for each σ ∈ {0, 1}n. We will

sometimes refer to Hn,r(σ) as the energy function. The goal of the method is to com-
pute lower bounds on the following quantity

ξr = n−1E
[

min
σ∈{0,1}n

Hn,r(σ)

]
. (1)

Note that proving lim infn→∞ ξr > 0 implies that the satisfiability threshold is upper
bounded by r, since the random variable n−1 minσHn,r(σ) concentrates by standard
martingale arguments. (To see this conside the clause-exposure martingale. Clearly,
changing any one clause can not change Hn,r by more than 1.)

Given σ = (x1, x2, . . . , xn) we will write Hn,r(σ) as the sum of m functions
Ea(xa1 , ..., xak), one for each clause a. That is, Ea(xa1 , ..., xak) = 1 if the associated
clause is not satisfied and 0 otherwise. The basic object of the energetic interpolation
method is a modified energy function that interpolates between Hn,r(σ) and the energy
function of a dramatically simpler (and fully tractable) model. Specifically, for t ∈
[0, 1], let

Hn,r,t(x1, . . . , xn) =

mt∑
m=1

Eam(xam,1 , ..., xam,k
) +

n∑
i=1

ki,t∑
j=1

ĥi,j(xi) , (2)

where mt is a Poisson random variable with mean E[mt] = trn, the ki,t’s are i.i.d.
Poisson random variables with mean E[ki,t] = (1 − t)kr, and the functions ĥi,j(·) are
i.i.d. random functions distributed as the function of equation 4 below. Before delving
into the meaning of the random functions ĥi,j(·), which are the heart of the method, let
us first make a few observations about (2). To begin with, note that for t = 1 equation (2)
is simply the energy function of the original model, i.e., a sum of m functions counting
whether each clause has been violated or not. On the other hand, for t < 1, we see
that, in expectation, (1− t)m of these functions have been replaced by k times as many
functions, each of which takes as input the value of a single variable in the assignment.
A good way to think about this replacement is as a decombinatorialization of the energy
function wherein (combinatorial) k-ary functions are replaced by k univariate functions.
As one can imagine, for t = 0 the model is fully tractable. In particular, letting

ξr(t) =
1

n
E
[

min
σ∈{0,1}n

Hn,r,t(σ))

]
(3)

one can readily compute ξr(0).
The main idea of the interpolation method is to select the univariate functions ĥi(·)

independently, from a probability distribution that reflects aspects of the geometry of the
underlying solution space. A particularly appealing aspect of the energetic interpolation
method is that it projects all information about the geometry of the solution space into a
single probability p, which can be interpreted as the probability that a variable picked at
random will be frozen, i.e., have the same value in all optimal assignments. The method
then delivers a valid bound for any choice of p ∈ [0, 1] and the bound is then optimized
by choosing the best value of p, i.e., performing a single-parameter search.

Let “1”, “0”, and “ ∗ ” denote the binary functions {h(0) = 1, h(1) = 0}, {h(0) =
0, h(1) = 1}, and {h(0) = 0, h(1) = 0} respectively. One can think of function 1 as
being 1 (unhappy) when the input is not 1, of function 0 as being 1 when the input is not
0, and of function ∗ as never being 1. Let h(x) be a random function in {“0”, “1”, “ ∗ ”}
with Pr(h(·) = “1”) = Pr(h(·) = “0”) = p/2 and let the random function ĥ(x) be
defined as follows

ĥ(x) = min
y1,...,yk−1

{E(y1, .., yk−1, x) +

k−1∑
i=1

hi(yi)} , (4)

where E(·) is a random clause-function and the functions hi(·) are i.i.d. random func-
tions distributed as h(x) i.e. hath(·) = ”1” with probability 2−kpk−1. The main point
is that as t goes from 1 to 0, we can control in the change of ξr(t), hence the name
interpolation. Specifically, one has the following.

Theorem 3 ([5]).
ξr ≥ ξr(0)− r(k − 1)2−kpk . (5)

Determining ξr(0) is a tractable task and establishing ξr > 0 implies that Fk(n, rn) is
w.h.p. unsatisfiable.

For completeness, we present the proof of Theorem 3 in Appendix A.

4 Energy density bounds for (2 + p)-SAT

Let F2,3(n, ε,∆) denote a random CNF formula over n variables consisting of m2

random 2-CNF clauses, where m2 is a Poisson random variable with mean E[m2] =
(1− ε)n and m3 random 3-CNF clauses, where m3 is a Poisson random variable with
mean E[m3] = ∆n. Thus, the energy function is now

Hn,ε,∆(σ) = H
(2)
n,1−ε(σ) +H

(3)
n,∆(σ) ,

whereH(2)
n,1−ε(σ) is the k-SAT energy function for k = 2 and r = 1−ε, whileH(3)

n,∆(σ)
is the energy function for k = 3 and r = ∆. Similarly the interpolation function is the
sum of the two independent interpolation functions corresponding to k = 2 and k = 3,
i.e.,

Hn,ε,∆,t(x1, . . . , xn) = H
(2)
n,1−ε,t(x1, . . . , xn) +H

(3)
n,∆,t(x1, . . . , xn) . (6)

Letting

ξε,∆(t) = n−1E
[

min
σ∈{0,1}n

Hn,ε,∆,t(σ)

]
(7)

the analogue of Theorem 3 for random mixtures of 2- and 3-clauses is the following.

Theorem 4. For every value of p ∈ [0, 1],

ξε,∆ ≥ ξε,∆(0)−
1

4
(1− ε)p2 − 1

4
∆p3 . (8)

Proof. As with Theorem 3, the probability joint distribution implicit in the expectation
of ξε,∆(t) can be written as the product of Poisson random functions, due to the in-
dependence among the random variables appearing in Hn,ε,∆,t(x1, . . . , xn). Now, the
derivative with respect to t gives rise to two independent set of equations similar to the
ones in equations (14) and (15) for k = 2 and k = 3, where the base energy function
is Hn,ε,∆(σ). Since all the relevant properties of the mixture are captured by its set of
frozen variables, the theorem follows simply by applying the proof of equation 12 in
Theorem 3 twice.

5 Application to (2 + p)-SAT

In this section we give first an analytical expression for ξε,∆(0) and then compute a
lower bound for it. We have

ξε,∆(0) = n−1E
[

min
σ∈{0,1}n

Hn,ε,∆,0(σ)

]

= n−1E

 min
σ∈{0,1}n

 n∑
i=1

k2,i∑
j=1

ĥ2,i,j(xi) +

k3,i∑
j=1

ĥ3,i,j(xi)

= n−1E

 n∑
i=1

min
xi∈{0,1}

k2,i∑
j=1

ĥ2,i,j(xi) +

k3,i∑
j=1

ĥ3,i,j(xi)

= n−1

n∑
i=1

E

 min
xi∈{0,1}

k2,i∑
j=1

ĥ2,i,j(xi) +

k3,i∑
j=1

ĥ3,i,j(xi)

 ,

where the k2,i’s and the k3,i’s are Poisson random variables with means 2(1 − ε) and
3∆ respectively, as defined in equation 6. Note now that the n expectations in the above
summation are identical, thus

ξε,∆(0) = E

 min
x∈{0,1}

 s2∑
j=1

ĥ2,j(x) +

s3∑
j=1

ĥ3,j(x)

 , (9)

where s2 and s3 are Poisson random variables with means 2(1−ε) and 3∆ respectively,
and the functions ĥ2,j(·) and ĥ3,j(·) are i.i.d. copies of the function ĥ(·) in Equation
(4) for k = 2 and k = 3, respectively, i.e., random functions in {“0”, “1”, “ ∗ ”} with
Pr(ĥk,j(·) = “1”) = Pr(ĥk,j(·) = “0”) = 2−kpk−1.

Let lk,0, lk,1, and lk,∗ denote the number “0”, “1”, and “*” functions respectively
among the ĥk,j(·) functions inside the summation of equation (9). Conditional on the
value of sk, the random vector (lk,0, lk,1, lk,∗) is distributed as a multinomial random
vector with sk trials and probability vector (2−kpk−1, 2−kpk−1, 1−2−k+1pk−1), there-

fore,

ξε,∆(0) =

∞∑
x=0

∞∑
y=0

x∑
l2,0=0

x−l2,0∑
l2,1=0

y∑
l3,0=0

y−l2,0∑
l3,1=0

min{l2,0 + l3,0, l2,1 + l3,1} ×

Poi(2(1− ε), x)Multi(l2,0, l2,1, x− l2,0 − l2,1)×
Poi(3∆, y)Multi(l3,0, l3,1, y − l3,0 − l3,1) ,

where Multi(·, ·, ·) denotes the multinomial density function.
Changing the limits of all summations to infinity, does not change the value of

ξε,∆(0), since Multi(·, ·, ·) evaluates to zero for negative numbers, hence, we can inter-
change the order of the summations to get

ξε,∆(0) =

∞∑
l2,0=0

∞∑
l2,1=0

∞∑
l3,0=0

∞∑
l3,1=0

min l2,0 + l3,0, l2,1 + l3,1 ×

∞∑
x=0

Poi(2(1− ε), x)Multi(l2,0, l2,1, x− l2,0 − l2,1)×

∞∑
x=0

Poi(3∆,x)Multi(l3,0, l3,1, x− l3,0 − l3,1) .

The last equation can be simplified by summing out the randomness in the Poisson ran-
dom variables. The result is that l2,0 and l2,1 become two independent Poisson random
variables with mean 1

2 (1− ε)p, that is,

∞∑
x=0

Poi(2(1− ε), x)Multi(l2,0, l2,1, x− l2,0 − l2,1) =

Poi((1− ε)p/2, l2,0)× Poi((1− ε)p/2, l2,1) .

Similarly, l3,0 and l3,1become two independent Poisson random variables with mean
3
8∆p

2. Moreover, l0 = l2,0 + l3,0 is itself a Poisson random variable with mean λ =
1
2 (1 − ε)p +

3
8∆p

2, since the sum of two independent Poisson random variables with
means λ1 and λ2 is a Poisson random variable with mean λ = λ1 + λ2. Thus

ξε,∆(0) =

∞∑
l0=0

∞∑
l1=0

min{l0, l1} × Poi (λ, l0)× Poi (λ, l1) ,

i.e., ξε,∆(0) is the expected value of the minimum of two independent Poisson random
variables l0, l1 with mean λ. Consequently, the bound of Theorem 4 becomes

ξε,∆ ≥ E [min{l0, l1}]−
1

4
(1− ε)p2 − 1

4
∆p3 . (10)

Finally, we note that

E [min{l0, l1}] =
∞∑
i=0

i

2Poi(λ, i)

1−
i−1∑
j=0

Poi(λ, j)

− (Poi(λ, i))2

 . (11)

Thus, to compute lower bounds for (10) is enough to truncate equation (11) at any
value of i. In particular, by letting ε = 0.0001, ∆ = 1.0001 and i = 50, we get that
for p = 1.2 · 10−3 the truncated version of equation (10) is greater than 0, implying
that a random CNF formula with 0.9999n 2-clauses and 1.0001n 3-clauses is w.h.p.
unsatisfiable.

References

1. Dimitris Achlioptas. Lower bounds for random 3-SAT via differential equations.
Theoretical Computer Science, 265(1–2):159–185, 2001.

2. Dimitris Achlioptas, Paul Beame, and Michael Molloy. A sharp threshold in proof
complexity yields lower bounds for satisfiability search. J. Comput. Syst. Sci., 68
(2), 238–268 (2004).

3. Dimitris Achlioptas and Amin Coja-Oghlan. Algorithmic barriers from phase tran-
sitions. In Proc. 49th Ann. IEEE Symp. on Foundations of Computer Science (FOCS
08), p 793 - 802.

4. Dimitris Achlioptas, Lefteris M. Kirousis, Evangelos Kranakis, and Danny Krizanc.
Rigorous results for random (2 + p)-SAT. Theoretical Computer Science, 265(1–
2):109–129, 2001.

5. Dimitris Achlioptas and Ricardo Menchaca-Mendez. Unsatisfiability Bounds for
Bivariate Random CSPs from an Energetic Interpolation Method. In Preparation.

6. Mohsen Bayati, David Gamarnik and Prasad Tetali. Combinatorial approach to the
interpolation method and scaling limits in sparse random graphs, In Proc. 42th Ann.
IEEE Symp. on on Theory of computing (STOC 10), p 105–114.

7. Paul Beame and Toniann Pitassi, Propositional proof complexity: past, present, and
future, Bull. Eur. Assoc. Theor. Comput. Sci. EATCS (1998), no. 65, 66–89.

8. Giulio Biroli, Remi Monasson, and Martin Weigt, A variational description of the
ground state structure in random satisfiability problems, Eur. Phys. J. B 14 (2000),
551–568.

9. Ming Te Chao and John Franco. Probabilistic analysis of a generalization of the
unit-clause literal selection heuristics. Information Science, 51:289–314, 1990.

10. Vasěk Chvátal and Bruce Reed. Mick gets some (the odds are on his side). In
Proceedings 33rd Annual Symposium on Foundations of Computer Science, pages
620–627, Pittsburgh, PA, October 1992. IEEE.

11. Vasěk Chvátal and Endre Szemerédi. Many hard examples for resolution. J. ACM,
35(4), 759-768 (1988).

12. Amin Coja-Oghlan. On belief propagation guided decimation for random k-SAT. In
Proc. 22nd SODA (2011) 957-966.

13. Stephen A. Cook and David G. Mitchell, Finding hard instances of the satisfiability
problem: a survey, Satisfiability problem: theory and applications (Piscataway, NJ,
1996), Amer. Math. Soc., Providence, RI, 1997, pp. 1–17.

14. Josep Díaz, Lefteris M. Kirousis, Dieter Mitsche and Xavier Pérez-Giménez, On
the satisfiability threshold of formulas with three literals per clause, Theor. Comput.
Sci. 410 (2009), 2920–2934.

15. Silvio Franz and Michele Leone. Replica Bounds for Optimization Problems and
Diluted Spin Systems, Journal of statistical physics, 111 (2003), no. 3, 535–564.

16. Ehud Friedgut, Sharp thresholds of graph properties, and the k-SAT problem, J.
Amer. Math. Soc. 12 (1999), 1017–1054.

17. Alan Frieze and Stephen Suen. Analysis of two simple heuristics on a random
instance of k- SAT. Journal of Algorithms, 20(2):312–355, 1996.

18. Andreas Goerdt, A threshold for unsatisfiability, J. Comput. System Sci. 53 (1996),
no. 3, 469–486.

19. Francesco Guerra and Fabio L Toninelli. The Thermodynamic Limit in Mean Field
Spin Glass Models, Commun. Math. Phys. 230 (2002) no. 1, 71–79.

20. Alexis C. Kaporis and Lefteris M. Kirousis and Efthimios G. Lalas. The proba-
bilistic analysis of a greedy satisfiability algorithm, Random Struct. Algorithms, 28
(2006), 444–480.

21. Marc Mézard, Giorgio Parisi, and Riccardo Zecchina. Analytic and Algorithmic So-
lution of Random Satisfiability Problems. Science, 297, 812 (2002).

22. Marc Mézard, Thierry Mora, and Riccardo Zecchina. Clustering of Solutions in the
Random Satisfiability Problem. Phys. Rev. Lett., 94 (19), 197205 (2005).

23. Rémi Monasson and Riccardo Zecchina, Statistical mechanics of the random K-
satisfiability model, Phys. Rev. E (3) 56 (1997), no. 2, 1357–1370.

24. Dmitry Panchenko and Michel Talagrand. Bounds for diluted mean-fields spin glass
models, Probab. Theory Relat. Fields, 130 (2004), 319-336.

A Proof of Theorem 3

Proof. Since ξr(1) = ξr(0) +
∫ 1

0
ξ′r(t)dt and since r(k− 1)2−kpk does not depend on

t, it suffices to show that −r(k − 1)2−kpk is an lower bound for ξ′r(t), i.e., we have to
show that

ξ′r(t) ≥ −r(k − 1)2−kpk . (12)

We begin by computing ξ′r(t). Let minσHm(σ) and minσHki(σ) denote the random
variable minσHn,t(σ) conditioned on the values of the random variables mt and ki,t
respectively, that is

min
σ
Hm(σ) = min

σ
Hn,r,t(σ)

∣∣∣
mt=m

and min
σ
Hki(σ) = min

σ
Hn,r,t(σ)

∣∣∣
ki,t=ki

and more generally

min
σ
Hm,k1,...,kn(σ) = min

σ
Hn,r,t(σ)

∣∣∣
mt=m,k1,t=k1,...,kn,t=kn

.

Denote the Poisson density function with mean µ as Poi(µ, z) = e−µ(µz/z!). Since
the random variablemt and the random variables ki,t are independent, we can write the
expectation in (3) as

ξr(t) =
∑

m,k1,...,kn

Poi(trn,m)

n∏
i=1

Poi((1− t)rk, ki)
1

n
E[min

σ
Hm,k1,...,kn(σ)] .

By differentiating ξr(t) with respect to t we get

ξ′r(t) =

∞∑
m=0

∂

∂t
Poi(trn,m)

1

n
E[minHm(σ)] + (13)

n∑
i=1

∞∑
ki=0

∂

∂t
Poi((1− t)rk, ki)

1

n
E[minHki(σ)] .

Recall now that (∂/∂t)Poi(trn,m) = −rnPoi(trn,m) + rnPoi(trn,m − 1). Thus,
the derivative with respect to t in the first summation in (13) can be written as

−r
∞∑
m=0

Poi(trn,m)E[minHm(σ)] + r

∞∑
m=1

Poi(trn,m− 1)E[minHm(σ)] =

r

∞∑
m=0

Poi(trn,m) [E[minHm+1]− E[minHm]] . (14)

Similarly, the derivatives in the double sum in (13) with respect to t can be written as

−rk 1
n

n∑
i=1

∞∑
ki=0

Poi((1− t)rk, ki) [E[minHki+1]− E[minHki]] . (15)

Now, a crucial observation is that (14) is r times the expected value of the change in
minH after adding a random clause, while (15) is −rk times the expected value of the
change in minH after adding a single ĥ function whose argument is a variable selected
uniformly at random. Thus, to establish (12) we need to show that the expected change
in minH caused by adding a random clause minus k times the expected change caused
by adding a random function ĥ is at most −r(k − 1)2−kpk. Equivalently, we need to:

1. Consider the experiment:
– Select: (i) a random formula H from the distribution Hn,r,t, (ii) a random

clause c, (iii) a random variable x ∈ {x1, . . . , xn}, and (iv) a random ĥ-
function.

– Let H ′ = H(σ) + Ec, H ′′ = H(σ) + ĥ(x).
– Let Y = (minH ′ −minH)− k(minH ′′ −minH).

2. Prove that EY , over the choice of H, c, ĥ, is at most −r(k − 1)2−kpk.

The averaging task in Step 2 above appears quite daunting, as we need to average
over H . The reason we can establish the desired conclusion is that, in fact, something
far stronger holds. Namely, we will prove that for every realization of H , the condi-
tional expectation of Y , i.e., the expectation over only c, h and ĥ, satisfies the desired
inequality.

Specifically, Let H0(·) denote any realization of Hn,r,t(·). Let C∗ ⊆ {0, 1}n be the
set of optimal assignments in H0. A variable xi is frozen if its value is the same in all
optimal assignments. LetO∗ be the set of frozen variables corresponding toH0. We are
going to compute the expected value in the change of minσ{H0(σ)} after adding a new
factor node Eanew(xanew,1

, . . . , xanew,k
) and after adding an individual factor ĥnew(·) to a

variable selected u.a.r.
Adding a new factor Enew(x1,new, . . . , xk,new) will change the minimum value by 1

iff all the variables appearing in Enew are frozen, i.e., {xanew,1 , . . . , xanew,k
} ⊆ O∗, and

the sign of all the frozen variables in the clause associated with Enew is not equal to its
frozen value. For, otherwise, any non frozen variable could be adjusted to make the new
factor zero. The probability that {xanew,1

, . . . , xanew,k
} ⊆ O∗ is (|O∗| /n)k, since each

of the variables in a random clause are selected uniformly at random with replacement.
Thus,

E
[
min
σ
{H0(σ) + E(xanew,1

, . . . , xanew,k
)}
]
−min

σ
{H0(σ)} = 2−k

(
|O∗|
n

)k
.

The change after adding a new individual factor ĥnew(·) to variable selected uni-
formly at random can be computed in a similar way. In this case the minimum value
will change by 1 only if the selected variable x is frozen and if the new factor forces the
variable x to take its non-frozen value. This requires that both of the following occur:

– The variable x is frozen to the opposite sign from the one it has in the random
clause E(y1, ..., yk−1, x) in the added factor. This event occurs with probability
|O∗|/(2n).

– The k−1 random functions, distributed as h(·), are all “0” or “1” functions and the
(k − 1)-tuple (y∗1 , ..., y

∗
k−1) that minimizes

∑
hi(yi) does not satisfy the random

clause in the factor. This event occurs with probability (p/2)k−1.

Therefore,

E
[
min
σ
{H0(σ) + ĥnew(x)}

]
−min

σ
{H0(σ)} = 2−kpk−1

|O∗|
n

.

Thus the value ξ′(t) conditional on H0 is

ξ′(t)|H0 = r2−k
(
|O∗|
n

)k
− rk2−kpk−1 |O

∗|
n

.

We finish the proof by noting that

−ξ′(t)|H0 − r(k − 1)2−kpk = 2−k

(
−r
(
|O∗|
n

)k
+ rkpk−1

|O∗|
n
− r(k − 1)pk

)

is always non-positive since the polynomial F (x, p) = xk − kpk−1x+ (k − 1)pk ≥ 0
for all 0 ≤ x, p ≤ 1. To see this last statement note that:

– F (0, p), F (1, p), F (x, 0), F (x, 1) ≥ 0.
– The derivative of F with respect to p is 0 only when p = x, wherein F (x, x) = 0.

