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Tyrus Miller
Vice Provost and Dean of Graduate Studies



Copyright c© by

Rishi Graham

2010



Table of Contents

List of Figures vi

List of Tables ix

Abstract x

Dedication xii

Acknowledgments xiii

1 Introduction 1
1.1 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Background and preliminaries 9
2.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.2 Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Nonsmooth analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Multicenter Voronoi configurations . . . . . . . . . . . . . . . . . . . . . 14
2.4 Network architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.5 Bayesian modeling of space-time processes . . . . . . . . . . . . . . . . . 17

2.5.1 Correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.5.2 Predictive Variance . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.5.3 Predictive Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.6 Basic linear algebraic facts . . . . . . . . . . . . . . . . . . . . . . . . . . 25

I Geometric solutions under near independence 27

3 Optimal configurations for sampling static fields under near indepen-
dence 29

iii



3.1 Model assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2 Objective functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3 Optimal configurations for spatial prediction . . . . . . . . . . . . . . . 31

3.3.1 Coincident configurations are not minima of the maximum error
variance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3.2 Multicenter Voronoi configurations are asymptotically optimal . 32
3.3.3 Distributed coordination algorithms . . . . . . . . . . . . . . . . 36

3.4 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.4.1 Analysis of simulations for M{α} . . . . . . . . . . . . . . . . . . 38
3.4.2 Analysis of simulations for E{α} . . . . . . . . . . . . . . . . . . . 39

4 Optimal trajectories for sampling dynamic fields under near indepen-
dence 40
4.1 Model assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.1.1 Objective function for spatial estimation . . . . . . . . . . . . . . 41
4.2 Optimal solutions under near-independence . . . . . . . . . . . . . . . . 42
4.3 Maximal correlation partition . . . . . . . . . . . . . . . . . . . . . . . . 45
4.4 Unconstrained optimal trajectories for a given partition . . . . . . . . . 47

4.4.1 Single sample unconstrained problem . . . . . . . . . . . . . . . . 48
4.4.2 Multiple sample unconstrained problem . . . . . . . . . . . . . . 49

4.5 Range-constrained optimal trajectories for a given partition . . . . . . . 51
4.5.1 Single sample constrained problem . . . . . . . . . . . . . . . . . 51
4.5.2 Multiple sample single agent constrained problem . . . . . . . . . 53
4.5.3 Multiple agent constrained problem . . . . . . . . . . . . . . . . 57

4.6 The Generalized Multicircumcenter Algorithm . . . . . . . . . 59

II A hybrid network for gradient based adaptive sampling 63

4.6.1 Model assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.6.2 Network assumptions . . . . . . . . . . . . . . . . . . . . . . . . 65
4.6.3 Projected gradient descent . . . . . . . . . . . . . . . . . . . . . . 67
4.6.4 Distributed computational tools . . . . . . . . . . . . . . . . . . 69

5 Average error minimization 71
5.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.1.1 The average variance as objective function . . . . . . . . . . . . . 72
5.2 Distributed criterion for adaptive design . . . . . . . . . . . . . . . . . . 72

5.2.1 Upper bound on sigma-conditional variance . . . . . . . . . . . . 73
5.2.2 Approximate sigma mean . . . . . . . . . . . . . . . . . . . . . . 74
5.2.3 The aggregate average prediction variance and its smoothness

properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.2.4 Distributed computation of aggregate average prediction variance

and its gradient . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

iv



5.3 Distributed optimization of the aggregate average predictive variance . . 85
5.3.1 Complexity analysis . . . . . . . . . . . . . . . . . . . . . . . . . 89

6 Adaptive maximum entropy sampling 95
6.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.1.1 Network objective . . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.2 A distributed criterion for one-step-ahead data collection . . . . . . . . . 96

6.2.1 Entropy of the random field estimation . . . . . . . . . . . . . . 96
6.2.2 Alternative criterion for adaptive design . . . . . . . . . . . . . . 97
6.2.3 Smoothness properties of E(k) . . . . . . . . . . . . . . . . . . . . 98

6.3 Adaptive sampling via distributed entropy optimization . . . . . . . . . 100
6.3.1 Distributed calculations . . . . . . . . . . . . . . . . . . . . . . . 100
6.3.2 Distributed gradient descent algorithm . . . . . . . . . . . . . . . 101
6.3.3 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

7 Conclusions and future work 106

A Proofs and supporting results 109
A.1 Proofs and supporting results from Chapter 3 . . . . . . . . . . . . . . . 109

A.1.1 Continuity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
A.2 Proofs and supporting results from Chapter 4 . . . . . . . . . . . . . . . 115
A.3 Proofs and supporting results from Chapter 5 . . . . . . . . . . . . . . . 123
A.4 Proofs and supporting results from Chapter 6 . . . . . . . . . . . . . . . 126

B Predictions with a subset of measurements 128

C Near optimal relaxation parameter for JOR 132

Bibliography 135

v



List of Figures

2.1 Examples of (a) a non-convex set (b) a convex set which is not strictly
convex and (c) a strictly convex set. . . . . . . . . . . . . . . . . . . . . 10

2.2 Examples of (a) the orthogonal projection, s′ = projΩ1
(s), (b) and the

minimum distance set, {s1, s2} = mds(s0, Ω2). . . . . . . . . . . . . . . . 11
2.3 (a) A multi-circumcenter Voronoi configuration with circumcircle shown

around each cell, (b) an isolated multi-incenter Voronoi configuration
with inscribed circles, and (c) a multi-incenter configuration which is
not isolated. In each case, the dashed lines depict boundaries between
Voronoi cells. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1 Contours of VarSK[z(s); P ] for (a) an arbitrary configuration, and (b)
a multi-circumcenter configuration. The correlation function used was
Gaussian. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2 Value of M{α} for multi-circumcenter (solid), approximated global min-
imum (dashed) arrived at by gradient descent for each value of α, and
random (dotted) configurations of 5 agents for increasing α. The covari-
ance function is exponential. . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3 Value of E{α} for multi-incenter (solid), approximated global minimum
(dashed) arrived at by gradient descent for each value of α, and random
(dotted) configurations of 5 agents for increasing α. The covariance func-
tion is exponential. The performance of the global and multi-incenter
configurations looks identical even though configurations are different at
each α. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.1 Examples of maximal correlation partition in which each cell is defined
by the predictive locations with highest (a) exponential correlation and
(b) Gaussian correlation to a given (generating) sample. In both cases,
two timesteps are shown. Samples taken at step 1 are shown as filled
triangles, those taken at step 2 are shown as filled boxes. . . . . . . . . . 46

4.2 A two-dimensional example of the level sets of MCDi
(k). The dashed

circle is the circumcircle. The closed curves around the circumcenter
represent two different level sets of MCDi

(k). . . . . . . . . . . . . . . . 48

vi



4.3 A two-dimensional example of the extended center representation of a
critical point of the constrained problem. The dashed circle is the cir-
cumcircle of W̃1

(2), with circumcenter s1
(2). Note that s1

(2) is on the
boundary of Γ(2) formed by s1

(1), and thus EPt(2:1) is active in centering. 53
4.4 Two-dimensional three sample example of a centered sequence. The solid

arrows show the directions from the sample to the farthest points in the
associated predictive region. For illustrative purposes, we have used a
correlation distance equivalent to Euclidean distance. . . . . . . . . . . . 54

4.5 Simulation of 20 iterations of the Generalized Multicircumcenter

Algorithm with no initial anchor points. (a) Shows the initial trajectory
S{0}. (b) Shows the final trajectory S{20}. In each case, the associated
maximal correlation partition is drawn, with the different colors repre-
senting different agents and different intensities of each color representing
the timestep at which the given sample is to be taken (more intense colors
represent later timesteps). The dashed lines show the path each agent
will take. (c) Shows the value of H(S{j}) as a function of j. . . . . . . . 60

4.6 Evolution of three steps of the Sequential Generalized Multicir-

cumcenter Algorithm with n = 8 robots, kmax = 5 steps, and Gaus-
sian correlation. In (a), the initial trajectory is calculated from the initial
anchor points pi(0). In (b), the first set of samples have been taken, and
R6 has dropped out to perform another task (for this simulation, R6

remains stationary during this task). The figure shows the result of the
Generalized Multicircumcenter Algorithm as run by the remain-
ing 7 agents over timesteps {2, . . . , kmax}. In (c), after the second set of
samples have been taken, R6 joins the network again. The figure shows
the result of optimizing over steps {3, . . . , kmax} with all agents. In all
three plots, the anchor points and any past samples are shown as solid tri-
angles, with solid lines connecting the initial anchors to the first samples,
the optimized samples at steps {k∗, . . . , kmax} are empty triangles, with
dashed lines connecting each agent trajectory. The last sample location
of the dropped agent is circled. In each case, the associated maximal cor-
relation partition is drawn, with the different colors representing different
agents and different intensities of each color representing the timestep at
which the given sample is to be taken (more intense colors represent later
timesteps). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.7 Illustration of the communication requirements of the hybrid network.
The static nodes are depicted as filled boxes, with the Voronoi partition
boundaries as solid lines. Each node can communicate with their Voronoi
neighbors, and with any mobile robot within a radius of RN:R (dotted cir-
cle) of the Voronoi cell. For example, q2 needs to be able to communicate
with p1 in the above plot. . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.8 Example contraction region Ω1
(k) (dashed) with Voronoi partition bound-

aries (solid) for comparison. . . . . . . . . . . . . . . . . . . . . . . . . . 67

vii



6.1 (a) Trajectories of all robots, and (b) two representative trajectories,
both from the same run of the distributed projected gradient descent
algorithm. The filled squares represent the (static) positions of the nodes,
and the filled triangles show the starting positions of the robots. . . . . 103

6.2 Plot (a) shows the progression of E(k) as k increases, resulting from the
static (triangle), lawnmower (diamond), and gradient descent (star) ap-
proaches. For the gradient descent algorithm only, plot (b) compares the
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Abstract

Information-driven Cooperative Sampling Strategies for Spatial Estimation by

Robotic Sensor Networks

by

Rishi Graham

Networks of environmental sensors play an increasingly important role in scientific stud-

ies of the ocean, rivers, and the atmosphere. Robotic sensors can improve the efficiency

of data collection, adapt to changes in the environment, and provide a robust response

to individual failures. Ideally, online path planning algorithms should be statistically

aware, driving the sensors towards those sampling locations which will provide the most

information. At the same time, such algorithms need to be distributed and scalable

to make robotic networks capable of operating in an autonomous and robust fashion.

The combination of complex statistical modeling and distributed coordination presents

difficult technical challenges: traditional statistical modeling and inference assume full

availability of all measurements and central computation. While collecting sample val-

ues at a central location is certainly a desirable property, the paradigm for distributed

motion coordination builds on partial, fragmented data. We present two alternative

approaches to the problem of distributed optimal sampling design.

First, under a restricted class of spatio-temporal model, we consider the asymp-

totic regime of near independence between distinct sample locations. This study for-

mally justifies the intuitive notion of space filling designs, thus transforming the statisti-

cal design problem into a geometric one. We provide distributed algorithms for optimal

sampling under these conditions.

Second, for a more general family of Bayesian spatio-temporal models, we

consider a gradient approach to sequential optimal design. We consider two well known

optimality criteria: maximizing predictive entropy over potential sample locations, and

minimizing average posterior variance over a predictive region. We introduce a hybrid



network of static computation and control nodes and dynamic sensing agents, and we

develop approximations of these two objective functions which may be calculated in a

cooperative way by this network. We detail a distributed gradient-based algorithm for

obtaining local optima of the approximate objective function in a sequential setting.
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Chapter 1

Introduction

Scientific studies of environmental phenomena often involve a data collection

stage. Samples are taken of a spatially distributed process of interest, such as a tem-

perature field or chemical concentrations. Combining these samples with a model, the

scientist may make predictions about the process at unmeasured locations, or inference

about the quality and accuracy of the model. Any such prediction or inference should be

associated with some measure of uncertainty, indicating the quality of the prediction. In

a spatial context, where the model contains built-in dependencies on the locations of the

samples, this uncertainty is driven in part by those locations. Optimal sampling design

is the process of choosing where to take samples in order to maximize the information

gained from them.

As robotic sensing technologies improve, the capability to make online adjust-

ments to sampling locations has the potential to greatly increase the effectiveness of

such data collection endeavors. The optimal design paradigm suggests using multiple

sensing devices, particularly in spatial sampling, in which correlation structures allow

accurate predictions from a small number of well-placed samples. Recent work in the

field of distributed computation and control has enabled a new paradigm in environ-

mental sampling. Teams of sensing and computing agents, capable of performing tasks

in a robust and efficient manner, can navigate hazardous or remote terrain with little

1



or no supervision. Distributed methods allow members of an autonomous team to take

action based on local information, adding speed of response to the benefits of teamwork

and autonomy. Cooperative control is the field of control theory devoted to the design

and analysis of coordination algorithms to help swarms achieve some desired global goal.

These algorithms usually build on simple local interaction rules because they scale well

with the size of the network, and are robust to individual failures.

This thesis makes strides towards combining these two disciplines, optimal

design for spatial statistics and cooperative control, developing strategies for networks

of sensing robots to autonomously plan and follow optimal sampling paths in a robust

and efficient manner. Obstacles to this goal arise both from the inherent difficulty of

designing emergent behaviors and from the complexity and centralized nature of modern

statistical methods (and particularly spatial statistics).

A typical distributed control algorithm is defined over a proximity graph, where

individual agents interact only with others within a certain region of space, usually based

on limited range wireless or line-of-sight communication. Thus all information known

to each agent is either through direct interaction with the environment, or indirectly

through their neighbors. The fact that many cooperative strategies run without an

omniscient leader makes them robust to individual failures, scalable with the number

of agents, and capable of easily adapting to changing conditions in the environment or

in the commanded task. Due to the centralized nature of modern statistical methods

and the complex dependency of optimal design on all sample locations, adapting these

methods to a distributed context is an extremely difficult task. One common method

in optimal design is to choose the best locations from a discrete set. Many impor-

tant advances in Bayesian statistics make use of simulation methods such as Markov

Chain Monte Carlo (MCMC), however such methods, at least in the current state of

the technology, do not lend themselves to distributed implementation. Furthermore,

the numerous choices of models for stochastic processes and different ways to define

optimality provide a vast array of possible approaches. We use a Bayesian approach to

spatio-temporal modeling, and treat the field as a Gaussian Process (GP). A GP is an
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infinite-dimensional model in which any vector of realizations from the field is treated

as jointly normally distributed conditional on the space-time position. A prediction at

any point in the field, or inference about model parameters takes the form of a posterior

distribution, with uncertainty directly derived from the sampled data and the prior dis-

tribution. GP models are fully specified by mean and covariance functions, and provide

powerful and flexible tools for modeling under uncertain conditions. Any measure of the

utility of sample locations should be based on the uncertainty in the resulting posterior

distribution. This presents a difficult challenge in a distributed setting, because the

posterior uncertainty depends on all samples in a nontrivial way.

1.1 Literature review

There is a rich literature on the use of model uncertainty to drive the placement

of sensing devices, e.g., [10, 67, 60, 51, 69]. Complex statistical techniques allow a

detailed account of uncertainty in modeling physical phenomena. Of particular relevance

to this work are [48, 29, 73, 13]. Most of this research has focused on choosing from

discrete sets of hypothetical sampling locations, and until recently all of it has made

use of centralized computational techniques. The work [28] examines the effect that

adding and deleting measurement locations has on the kriging variance, and how this

relates to optimal design. Under certain conditions on the covariance structure, data

taken far from the prediction site have very little impact on the predictor [74]. When

the random field does not have a covariance structure with finite spatial correlation, an

approximation which does may be generated via covariance tapering [27].

In cooperative control, various works consider mobile sensor networks per-

forming spatial estimation tasks. [82] introduces performance metrics for oceanographic

surveys by autonomous underwater vehicles. [66] considers a robotic sensor network

with centralized control estimating a static field from measurements with both sensing

and localization error. Depending on the goal of the experiment, different types of in-

formation should be maximized [10, 16, 54, 39]. We focus on the predictive variance

3



as a measure of the accuracy of prediction, and the predictive entropy as a measure

of inferential uncertainty about model parameters. An alternative optimality criterion

called mutual information [9, 46] is also effective for predictive purposes, but requires

that samples and predictions are made on a discrete space (e.g., a grid). Using mu-

tual information, the work [72] addresses the multiple robot path planning problem by

greedily choosing way points from a discrete set of possible sensing locations. Given the

difficulty of optimizing within the whole set of network trajectories, [49] restricts the

optimization problem to a subset of possible paths described by a finite set of param-

eters. [83, 84] discuss the tracking of level curves in a noisy scalar field. [17] develops

distributed estimation techniques for prediction of a spatiotemporal random field and

its gradient. We make use of some of the tools developed in the latter paper for dis-

tributed calculations. In [61], a deterministic model is used, where the random elements

come as unknown model parameters, and localization error is included. The work [12]

uses a Gaussian process model where all information is globally available via all-to-all

communication. Here instead we concentrate on aspects of the model and optimization

which may be calculated via local information only. In [62, 58, 52, 22, 41, 57], the focus

is on estimating deterministic fields with random measurement noise and, in some cases,

stochastic evolution over discrete timesteps. Here we use measures of information which

take into account uncertainty in the spatial process as well as its evolution over time.

In between the specificity of deterministic modeling and the flexibility of fully prob-

abilistic modeling there are other alternative methods such as distributed parameter

systems [77], which introduce possibly correlated stochastic parameters into an other-

wise deterministic model. In this paper, the process itself is treated as random. This

allows for a simpler model and more prior uncertainty, and places the focus on estima-

tion as opposed to inference. Complex dynamics and spatial variation are accounted for

with space-time correlation instead of explicit partial differential equations. In part to

cope with the additional burden of spatial uncertainty, we introduce a hybrid network

of static computing nodes and mobile sensors. One alternative to the spatiotemporal

Gaussian Process is the Kriged Kalman filter [3, 55] approach, which treats the process
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as a spatial GP with discrete temporal evolution governed by a Kalman filter. Instead,

we use an integrated space-time model because it is more general, and because the

treatment in this case is simpler.

Throughout this work, we make use of the technical foundations for cooperative

robot control laid out in [7]. We have also found particularly useful the works [4] for

everything linear algebra, and [63] for all things Voronoi.

1.2 Contributions

Here we summarize the specific contributions of this thesis according to chap-

ter.

In Chapter 3, we consider two performance metrics for optimal placement of

sensor networks based on simple kriging. We first characterize the continuity properties

of the predictive variance of the estimator as a function of the network configuration. In

the case of zero measurement error, this is not trivial. Previous results in the optimal

design literature have avoided this problem by optimizing over a discrete set of possi-

ble configurations. We consider the continuous space of all agent locations within the

region, and instead make restrictions on the form of the covariance function. Next, we

define our first optimality criterion, the maximum predictive variance of the estimator

as a function of network configuration. This gives a measure of the worst-case estimate

over the region. We study its critical points asymptotically, in the limit of near indepen-

dence. We define a second optimality criterion, the extended prediction variance of the

estimator, as a novel form of D-optimality, where we introduce a method for applying

this criterion to a bounded region. We study the critical points of this function within

the same asymptotic framework as the first. Our main results show that circumcenter,

respectively incenter, Voronoi configurations are asymptotically optimal for the max-

imum predictive variance over the environment, respectively the extended prediction

variance. In general, these objective functions pose nonconvex and high-dimensional

optimization problems. In addition, the first criterion is nonsmooth. For these rea-
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sons, it is difficult to obtain exactly the configurations that optimize them. Our results

are relevant to the extent that they guarantee that, for scenarios with small enough

correlation between distinct points, circumcenter and incenter Voronoi configurations

are optimal for appropriate measures of uncertainty. The network can achieve these

desirable configurations by executing simple distributed dynamical systems.

In Chapter 4, we consider the problem of minimizing the maximum prediction

variance over agent trajectories (in time as well as space). We introduce a weighted dis-

tance metric called the correlation distance and define a novel generalized disk-covering

function based on it. We show that minimizing this function is equivalent to minimizing

the maximum prediction variance in the limit of near-independence, thus turning the

optimization problem into a geometric one. Our next contributions all pertain to the

solution of this geometric problem. We first introduce a form of generalized Voronoi

partition based on the maximal correlation between a given predictive location and the

samples. Assuming a fixed network trajectory, we show that this partition minimizes

the maximal correlation distance over all partitions of the predictive space. We next

define multicircumcenter trajectories, which minimize the maximal correlation distance

over all trajectories for a fixed partition. The combination of these two results gives

rise to the optimal trajectories for the correlation distance disk-covering problem. The

final stage of our solution is to define an extension of the maximal correlation partition

which takes into account the positions of consecutive samples taken by the same robotic

agent. Over this extended set, we define a notion of centering which ensures that the

distance between such consecutive samples does not exceed a maximum distance. We

show that these constrained multicenter trajectories optimize the correlation distance

disk-covering problem over the set of distance-constrained trajectories. Finally, using

the duality between optimal trajectory and optimal partition, we design a Lloyd-type

algorithm which enables the network to arrive at globally optimal trajectories. At any

step of the experiment, our strategy is capable of optimizing the remainder of the tra-

jectories as new information arrives.

In Chapter 5, we develop an approximate predictive variance which may be
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calculated efficiently in a sequential and distributed manner. This includes introducing a

scheduled update of the estimated covariance parameter based on uncorrelated clusters

of samples. Our second contribution is the characterization of the smoothness proper-

ties of the objective function and the computation of its gradient. Using consensus and

distributed Jacobi overrelaxation algorithms, we show how the objective function and

its gradient can be computed in a distributed way across a network composed of robotic

agents and static nodes. This hybrid network architecture is motivated in part by the

heavier computational capabilities of static agents and in part by the spatial structure

of the problem. Our third contribution is the design of a coordination algorithm based

on projected gradient descent which guarantees one-step-ahead locally optimal data

collection. Due to the nature of the solution, optimality here takes into account both

the unknown parameter in the covariance and the (conditional) uncertainty in the pre-

diction. Finally, our fourth contribution is the characterization of the communication,

time, and space complexities of the proposed algorithm. For reference, we compare these

complexities against the ones of a centralized algorithm in which all sample information

is broadcast throughout the network at each step of the optimization.

In Chapter 6, we develop an aggregate objective function based on entropy

maximization. We show that the proposed objective function is a second-order ap-

proximation of the posterior predictive entropy, characterize its smoothness properties,

and describe a distributed method to compute it. We employ average consensus and

distributed Jacobi overrelaxation algorithms to compute the objective function and its

gradient in a distributed way across a network composed of robotic agents and static

nodes. Finally, we synthesize a distributed motion coordination for adaptive sampling

based on one-step-ahead local optimization of data collection. We conclude illustrating

the performance of the algorithm in simulation.
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1.3 Organization

Our solutions take shape in two fundamentally different types of approach,

which motivates the following organization for this work. In Chapter 2, we define con-

cepts and tools used throughout the work, and introduce the overall GP model and

related optimality criteria. In Part I we take the approach of restricting the class of

model and the paradigm under which we consider a design “optimal”. Under an as-

sumption of near independence between samples, it is possible to formally justify the

notion of a space-filling design, thus transforming the problem into one of geometric

optimization. This is initially done in Chapter 3 for the case of a single set of measure-

ments taken in a static field, and optimal results are given for the maximum predictive

variance and a novel reformulation of the generalized variance. In Chapter 4, a similar

method is extended to trajectories of multiple samples over time, optimizing for the

maximum predictive variance. In both cases, the geometric optimization problems may

be solved with simple distributed algorithms. In Part II, we allow for more general

classes of model and tackle the distributed aspect of the problem through a series of ap-

proximations and recently developed tools for distributed computation. In this approach

we introduce a hybrid network of static and mobile agents, and provide gradient based

algorithms for optimization in a sequential, “adaptive design” setting. In Chapter 5

we introduce the solution using the average predictive variance as optimality criterion.

This is followed in Chapter 6 by application to the predictive entropy criterion.

The models, assumptions, and optimality criteria, as well as the technical ap-

proaches differ considerably between the two methods mentioned here. For this reason,

we preface each part with an introduction of its own. Chapter 7 brings it all back

together with conclusions drawn from the various approaches and directions for future

work.
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Chapter 2

Background and preliminaries

2.1 Notation

Before we get into the technical discussion, we should first introduce some

preliminary notions. In this section we outline common notational conventions and

useful concepts from the literature. For ease of exposition, we break the discussion of

notation into the following categories.

2.1.1 Geometry

Let R, R>0, and R≥0 denote the set of reals, positive reals and nonnegative

reals, respectively. Similarly, let Z, Z>0, and Z≥0 denote the set of integers, positive

integers and nonnegative integers, respectively. We denote by ⌊x⌋, respectively ⌈x⌉ the

floor, respectively ceiling of x ∈ R. We consider a convex region D ⊂ R
d, d ∈ Z>0. Let

De = D × R denote the space of points over D and time. For p ∈ R
d and r ∈ R>0,

let B(p, r) denote the closed ball of radius r centered at p. For p, q ∈ R
d, we let

]p, q[= {λp + (1 − λ)q | λ ∈]0, 1[} denote the open segment with extreme points p and q.

Given U = (u1, . . . , ua)
T , a ∈ Z>0, and V = (v1, . . . , vb)

T , b ∈ Z>0, we denote by (U, V )

the concatenation (U, V ) = (u1, . . . , ua, v1, . . . , vb)
T .
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2.1.2 Sets

For a set Ω, we denote by |Ω|, bnd(Ω), int(Ω), and co(Ω) its cardinality, the

boundary, the interior, and the convex hull, respectively. A set Ω ⊂ R
d is convex,

respectively strictly convex if, for every s1, s2 ∈ Ω and α ∈ (0, 1), we have αs1 + (1 −
α)s2 ∈ Ω, respectively, αs1 + (1 − α)s2 ∈ int(Ω). Figure 2.1 illustrates the distinction

between nonconvex, convex and strictly convex sets. Let projΩ : R
m → Ω denote

(a) (b) (c)

Figure 2.1: Examples of (a) a non-convex set (b) a convex set which is not strictly convex
and (c) a strictly convex set.

the orthogonal projection onto the set Ω, projΩ(s) = argminy∈Ω ‖s − y‖. Let iF :

(Rd)n → F(Rd) be the natural immersion, i.e., iF(P ) contains only the distinct points in

P = (p1, . . . , pn). Note that iF is invariant under permutations of its arguments and that

the cardinality of iF(p1, . . . , pn) is in general less than or equal to n. We denote by d(q, Ω)

the minimum Euclidean distance from point q to set Ω, i.e., d(q, Ω) = mins∈Ω ‖q −
s‖. Let mds : R

d × P(D) → P(D) be the minimum distance set map, mds(s,Ω) =

{s′ ∈ Ω | ‖s − s′‖ = d(s,Ω)}. Figure 2.2 illustrates the notions of orthogonal projection

and minimum distance set. For a vector P ∈ Dn, we will use the slight abuse of

notation mds(s, P ) = mds(s, iF(P )). The ǫ-contraction of a set Ω, with ǫ > 0, is

the set Ωctn:ǫ = {q ∈ Ω | d(q, bnd(Ω)) ≥ ǫ}. With a slight abuse of notation, for two

convex sets, Ω1, Ω2, we will write the minimum distance between points in the two sets

as, d(Ω1, Ω2) = minp∈Ω1 d(p, Ω2). Let dmax : R
d × P(Rd) → R denote the maximum

distance between a point and set, i.e., dmax(s,Ω) = sups∈Ω{‖s−s‖}. We denote by F(Ω)

the collection of finite subsets of Ω. For a bounded set Ω ⊂ R
d, we let IC(Ω) denote
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′

Ω1

(a)

s0
s1

s2

Ω2

(b)

Figure 2.2: Examples of (a) the orthogonal projection, s′ = projΩ1
(s), (b) and the minimum

distance set, {s1, s2} = mds(s0, Ω2).

the incenter of Ω, that is, the center of the largest-radius d-sphere contained within Ω.

We let CC(Ω), respectively CR(Ω) denote the circumcenter, respectively circumradius

of Ω, that is, the center and radius of the smallest-radius d-sphere enclosing Ω.

Table 2.1 summarizes the notation introduced in this section.

Notation Description

R, R>0, R≥0 Reals, positive reals, and nonnegative reals
Z, Z>0, Z≥0 Integers, positive integers, and nonnegative integers
⌊a⌋ , ⌈a⌉ Floor and ceiling of a

d Spatial dimension of experiment region
D Convex spatial region where the experiment takes place
De Space-time domain of D over the entire experiment

B(p, r) Closed d-dimensional ball of radius r centered at p

]p, q[ Open segment between p and q

|Ω|,bnd(Ω),int(Ω),co(Ω) Cardinality, boundary, interior, and convex hull of set Ω
projΩ(s) Orthogonal projection of s onto Ω
iF(P ) Natural immersion of vector P (set of distinct points)

d(p, Ω), d(Ω1, Ω2) Minimum point-to-set and set-to-set distance
dmax(s,Ω) Maximum point-to-set distance
mds(s,Ω) Subset of Ω at minimum (Euclidean) distance from s

F(Ω) Collection of finite subsets of Ω
Ωctn:ǫ The ǫ-contraction of Ω

CC(Ω), CR(Ω) Center and radius of smallest d-sphere containing Ω

Table 2.1: Notational conventions.
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2.2 Nonsmooth analysis

Here we present some useful notions from nonsmooth analysis following [15].

For a vector, S = (s1, . . . , sn)T ∈ (Rd)n, let πk : (Rd)n → R
d denote the canonical

projection onto the kth factor, i.e. πk(S) = sk. For a function f : R
d → R and c ∈ R,

let

Slvl(f, c) =
{

s ∈ R
d | f(s) = c

}
, Ssublvl(f, c) =

{
s ∈ R

d | f(s) ≤ c
}

,

denote the c-level and c-sublevel sets of f , respectively. For a given closed, convex set

Ω ⊂ R
d, let NΩ : Ω → P(Rd) and TΩ : Ω → P(Rd) map locations in Ω to the normal

cone and the tangent cone of Ω, respectively. Specifically, we have

NΩ(x) =
{

y ∈ R
d | yT (x − z) ≥ 0, ∀z ∈ Ω

}

TΩ(x) =
{

y ∈ R
d | yT z ≤ 0, ∀z ∈ NΩ(x)

}
.

A function f : R
d → R is locally Lipschitz at s ∈ R

d if there exist positive constants Ls

and ǫ such that |f(y)−f(y′)| ≤ Ls‖y−y′‖ for all y, y′ ∈ B(s, ǫ). The function f is locally

Lipschitz on Ω ⊆ R
d if it is locally Lipschitz at s, for all s ∈ Ω. A function f : R

d → R

is regular at s ∈ R
d if for all v ∈ R

d, the right and generalized directional derivatives of

f at s in the direction of v, coincide. The interested reader is referred to [15] for the

precise definition of these directional derivatives. The generalized gradient of a locally

Lipschitz function f is

∂f(s) = co

{
lim

i→+∞
df(si) | si → s , si 6∈ Ω ∪ Ωf

}
,

where Ωf ⊂ R
d denotes the set of points at which f fails to be differentiable, and Ω

denotes any other set of measure zero. Note that this definition coincides with df(s) if f

is continuously differentiable at s. A point s ∈ R
d which satisfies that 0 ∈ ∂f(s) is called

a critical point of f . The following results correspond to [15, Propositions 2.3.12,2.3.13]

and a special case of [15, Theorem 2.3.9].
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Proposition 2.2.1 (Generalized gradient of point-wise maxima) Let fk : R
d →

R, k ∈ {1, . . . , m} be locally Lipschitz functions at s ∈ R
d and let f : R

d → R denote

the maximum, f(s′) = max {fk(s
′) | k ∈ {1, . . . , m}}. Then,

(i) f is locally Lipschitz at s,

(ii) if I(s′) denotes the set of indices k for which fk(s
′) = f(s′), we have

∂f(s) ⊆ co {∂fi(s) | i ∈ I(s)} , (2.1)

and if fi, i ∈ I(s), is regular at s, then equality holds and f is regular at s.

Proposition 2.2.2 (Generalized gradient product rule) Let f1, f2 : R
d → R≥0 be

Lipschitz and regular near s ∈ R
d. Then the product f1f2 is Lipschitz and regular near

s, and the generalized gradient admits the form,

∂(f1f2)(s) = f2(s)∂f1(s) + f1(s)∂f2(s).

Theorem 2.2.3 (Generalized gradient chain rule special case) Let f1 : R
d → R

be Lipschitz and regular near s, let f2 : R → R be continuously differentiable near f1(s),

and let f : R
d → R be the composition, f(s) = f2(f1(s)). Then f(s) is locally Lipschitz

and regular and its generalized gradient takes the form

∂f(s) = f ′
2(f1(s))∂f1(s).

The notation introduced in this section is summarized in Table 2.2.

Notation Description

πk(S) Canonical projection onto the kth factor (sk)
Slvl(f, c), Slvl(f, c) c-level and -sublevel sets of f for constant

NΩ(x),TΩ(x) Normal and tangent cones to set Ω at point x ∈ Ω
∂f(s) Generalized gradient of f at s

Table 2.2: Notational conventions.

13



2.3 Multicenter Voronoi configurations

Here we present some relevant concepts on Voronoi partitions [63, 20]. The

Voronoi partition V(S) = (V1(S), . . . , Vn(S)) of D generated by points S = (s1, . . . , sn)

is defined by Vi(S) = {q ∈ D | ‖q − si‖ ≤ ‖q − sj‖, ∀j 6= i}. Each Vi(S) is called a

Voronoi cell. Two points si and sj are Voronoi neighbors if their Voronoi cells share a

boundary. We say that P is a circumcenter Voronoi configuration if pi = CC(Vi(P )),

for all i ∈ {1, . . . , n}, and that P is an incenter Voronoi configuration if pi ∈ IC(Vi(P )),

for all i ∈ {1, . . . , n}. Figure 2.3 shows examples of these configurations.

s1s2

s3

(a)

s1

s2s3

(b)

s1s2

(c)

Figure 2.3: (a) A multi-circumcenter Voronoi configuration with circumcircle shown
around each cell, (b) an isolated multi-incenter Voronoi configuration with inscribed cir-
cles, and (c) a multi-incenter configuration which is not isolated. In each case, the dashed
lines depict boundaries between Voronoi cells.

An incenter Voronoi configuration is isolated if it has a neighborhood in Dn

which does not contain any other incenter Voronoi configuration. Consider the disk-

covering and sphere-packing multicenter functions defined by

HDC(P ) = max
s∈D

{
d(s, iF(P ))

}
, HSP(P ) = min

i6=j∈{1,...,n}

{1

2
‖pi − pj‖, d(pi, bnd(D))

}
.

We are interested in the configurations that optimize these multicenter functions. The

minimization of HDC corresponds to minimizing the largest possible distance of any

point in D to one of the agents’ locations given by p1, . . . , pn. We refer to it as the as

the multi-circumcenter problem. The maximization of HSP corresponds to the situation

where we are interested in maximizing the coverage of the area D in such a way that
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the radius of the generators do not overlap (in order not to interfere with each other)

or leave the environment. We refer to it as the multi-incenter problem. It is useful to

define the index function N : Dn → Z>0 as

N(P ) =
∣∣∣ argmin

pi 6=pj

{1

2
‖pi − pj‖, d(pi, bnd(D))

}∣∣∣.

The notation introduced in this section is summarized in Table 2.3.

Notation Description

V(S) Voronoi partition generated by S

Vi(S) The ith cell in the partition
HDC(P ) Disk covering function
HSP(P ) Sphere packing function
N(P ) Index function (cardinality of maximum spheres in HSP)

Table 2.3: Notational conventions.

2.4 Network architecture

In the context of environmental sampling, the term “sensor network” may

describe anything from a small number of fixed position rainfall monitors in the forest

to a complex group of static flotation devices and mobile robots in the ocean. The

literature on stochastic spatial modeling has traditionally dealt with sensors whose

location is fixed in space. However, the ability to move about the field and take samples

at desired locations has obvious benefits. A network in this context is a group of

agents connected by wired or wireless communication paths. For our purposes, we

consider networks comprised of two types of agents: static and mobile. The term

“mobile agents” describes robots with the ability to move, take samples of the spatial

process, and possibly sense their immediate physical environment. Their storage and

computational capabilities are assumed to be minimal. By “static agents”, we refer to

fixed position computational devices which may or may not take samples. Because they

are static and do not require energy to move around, they may carry more equipment
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and thus perform more in the way of computation and storage tasks. In some contexts,

slower moving large vehicles may be considered static as compared to the faster mobile

agents. Some limited range communication is also assumed for both types of agents.

Networks may be divided into static, mobile, and hybrid, based on the classification

of agents as static nodes, mobile robots, or both static and mobile. In all of these

cases, the term network refers to the combination of the agents (static or mobile) and

the communication links between them. Distributed solutions to global problems are

therefore defined on the communication graph of the system. Sensing technology may

also vary in different scenarios. Agents may have the ability to take point measurements

or broader area measurements, with large or small error margins. In the case of area

sensors, the measurement error may itself be a distribution as opposed to a number.

Here we assume that the samples come in the form of point measurements. We will

call the mobile robots {R1, . . . ,Rn}, n ∈ Z>0, and denote their locations at time t by

P = P (t) = (p1(t), . . . , pn(t))T ∈ Dn. Where static nodes are mentioned, we will call

them {N1, . . . ,Nm}, m ∈ Z>0 at locations Q = (q1, . . . , qm)T ∈ Dm.

The robots take samples of the spatio-temporal field at discrete instants of

time in Z≥0. For simplicity, we assume that the sampling is synchronous. Our results

below are independent of the particular robot dynamics, so long as each agent is able to

move up to a distance umax ∈ R>0 between consecutive sampling times. We assume that

robots have perfect information about their location. Table 2.4 summarizes notational

conventions introduced in this section.

Notation Description

Ri The ith (mobile) robotic agent
P Vector of locations of robotic agents
Nj The jth static node
Q Vector of locations of static nodes

umax maximum movement between discrete sample times

Table 2.4: Notational conventions.
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2.5 Bayesian modeling of space-time processes

Physical process models may be roughly divided into two categories: deter-

ministic and stochastic. Deterministic models are often coupled with a stochastic mea-

surement error term, e.g., [52, 22, 41, 57], but require that model parameters and initial

conditions be known to a high degree of accuracy [48]. When this cannot be guaranteed,

or when the parameter space of the deterministic model has high dimension, it may be

desirable to treat the process itself as in some degree unknown, using a stochastic pro-

cess model. A classic example is a fair coin toss. It is clear that under extremely strict

monitoring of the initial conditions and model parameters, the interested physicist could

exactly model the entire trajectory of the coin, culminating in its final resting position

(for some interesting work in this direction, see, e.g. [24]). The model which is usually

used, however, is to assign a simple probability to each outcome. In this context, it is

easy to allow for the possibility that the coin is not “fair”. We toss the coin a few times,

collect the data, and the results give us information about the model (or about future

coin tosses). For this reason, stochastic modeling is sometimes called data driven, as

opposed to the model driven deterministic modeling. We focus on data driven models,

and particularly their explicit representations of uncertainty.

Let z denote a random process taking values on the space-time domain, De.

Let Y = (y1, . . . , yn)T ∈ R
n be n ∈ Z>0 measurements taken from z at corresponding

space-time coordinates X = (x1, . . . , xn)T ∈ Dn
e , with xi = (si, ti), i ∈ {1, . . . , n}. To

formally introduce the various optimality criteria, particularly in the sequential setting

considered in Part II, we make a distinction between predictive realizations of the field,

sampled data, and unsampled hypothetical realizations at potential sample locations.

Given the data Y and a particular stochastic model, the goal of the experiment might

be to make predictions of z at any point in De, or to make inference about the model

itself. Optimal design is the process of choosing where to take measurements in order to

reduce the uncertainty of the resulting prediction or inference. Since uncertainty drives

the problem, it should be modeled as accurately as possible.
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In a Bayesian setting, the prediction takes the form of a distribution, called

the posterior predictive [50]. One advantage of a Bayesian approach is that parameters

such as the mean and variance of the field may be treated as random variables, carrying

forward uncertainty which informs the predictive distribution. We assume that z is a

Gaussian Process. This means that any vector of realizations is treated as jointly nor-

mally distributed conditional on unknown parameters, with mean vector and covariance

matrix dictated by the mean and covariance functions of the field. Thus a prediction

made after samples have been taken is the result of conditioning the posterior predictive

distribution on the sampled data. When this conditional posterior distribution is ana-

lytically tractable, as in the case of the models presented here, the resulting approach

provides two powerful advantages to the design process. First, there is a direct and

(under certain technical conditions) continuous map from the space-time coordinates

of realizations (data and prediction) to the predictive uncertainty. Second, the joint

distribution of predictions and samples allow conditioning on subsets of samples to see

the effect, for instance, of optimizing over a single timestep.

If the field is modeled as a Gaussian Process with known covariance, the poste-

rior predictive mean corresponds to the Best Linear Unbiased Predictor, and its variance

corresponds to the mean-squared prediction error. Predictive modeling in this context

is often referred to in geostatistics as simple kriging if the mean is also known, or uni-

versal kriging if the mean is treated as an unknown linear combination of known basis

functions. If the covariance of the field is not known, however, few analytical results

exist which take the full uncertainty (i.e., uncertainty in the field and in the parame-

ters) into account. We present here a model [43, 29] which allows for uncertainty in the

covariance and still produces an analytical posterior predictive distribution. We will

call this the Kitanidis model after the author of the first derivation. We assume that

the measurements take the n-variate normal distribution,

Y ∼ Nn

(
µ(X), σ2K

)
, with µ(X) = FT β. (2.2)

Here β ∈ R
p is a vector of unknown regression parameters, σ2 ∈ R>0 is the unknown
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variance parameter, and K is a correlation matrix whose (i, j)th element is Kij =

Cor[yi, yj ] (discussed in more detail in Section 2.5.1). We will sometimes refer to the

covariance matrix, σ2K, but mostly deal with correlation. Note that K is symmetric,

positive definite, with 1’s on the diagonal. The matrix F is determined by a set of

p ∈ Z>0 known basis functions fi : De → R evaluated at X, i.e.,

F =




f1(x1) . . . f1(xn)
...

. . .
...

fp(x1) . . . fp(xn)


 .

We will also use f(x) = (f1(x), . . . , fp(x))T ∈ R
p to denote the vector of basis functions

evaluated at a single point in De. It should be pointed out here that the standard

approach in kriging is to use basis functions which are static with respect to time, how-

ever the related practice of “objective analysis” used in atmospheric sciences [79] does

commonly use time-dependent basis functions [30]. We include the possibility of space-

time basis functions for completeness. To ensure an analytical form for the posterior

predictive distribution, we assume conjugate prior distributions for the parameters,

β|σ2
∼ Np

(
β0, σ

2K0

)
, (2.3a)

σ2
∼ Γ−1

(ν

2
,
qν

2

)
. (2.3b)

Here K0 ∈ R
p×p, β0 ∈ R

p, and q, ν ∈ R>0 are constants, known as tuning parameters for

the model, and Γ−1(a, b) denotes the inverse gamma distribution with shape parameter

a and scale parameter b (see, e.g. [68]). It should be noted that K0 must be positive

definite. A common practice is to use K0 proportional to the identity matrix. We

consider two classes of optimality criteria, described in detail after a note on correlation.

2.5.1 Correlation

The spatial correlation structure is an important part of specification for any

GP model. In particular the notions of stationarity, isotropy, and compact support play

important roles. We will make use of these assumptions in different contexts below.
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A random process, δ, taking place on D is second order stationary if it has constant

mean and its correlation function may be written as Cor[δ(s1), δ(s2)] = C(s1, s2), where

C : D × D → R≥0 is a positive definite function which only depends on the difference

s1 − s2. A common way to include stationarity in a spatial random process which does

not have a constant mean is to write it as the sum of a deterministic mean function

and a zero mean second order stationary process. A second common restriction on

correlation functions is isotropy. The function C above is isotropic if it depends on s1

and s2 only through the distance, ‖s1 − s2‖. Note that if a process has constant mean,

an isotropic correlation function necessarily implies second order stationarity. Yet a

third assumption sometimes made on correlation functions is that of compact support

in the form of a range beyond which the function is identically zero.

When dealing with fields which change over time, it is common practice to

make assumptions on the interaction between the spatial and temporal aspects of the

correlation. One way to deal with time is to treat the correlation as “separable”, meaning

that it can be written as the product of spatial and temporal correlation functions, i.e.,

Cor[z(si, ti), z(sj , tj)] = Ct(ti, tj)Cs(si, sj).

In the kriging models (in which we assume the constant covariance multiplier,

σ2
0), it is also sometimes the practice to introduce an independent and identically dis-

tributed (i.i.d.) measurement error term, so that the samples are written,

y(xi) = z(xi) + ǫi, with ǫi ∼ N(0, τ2),

for some τ ∈ R. This has the effect of adding τ2
I to the covariance matrix, or equiva-

lently reformulating it as σ2
τKτ , where σ2

τ = σ2
0 + τ2, and Kτ is the matrix K, with the

off-diagonal elements multiplied by
σ2
0

σ2
0+τ2 . This is mathematically equivalent to using

a covariance with a “nugget” effect (see, e.g. [19]), but the sampling error term is more

common in the controls literature.

In the work that follows, we will make use of the above assumptions where

necessary. In order to focus on the dependence on spatial location, we will use the slight

abuse of notation, Cor[xi, xj ] = Cor[yi, yj ]. Where we distinguish between two different
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vectors of sample locations, we will use the functional notation, K(X) = Cor[X, X] ∈
R

n×n, and k(s, X) = Cor[X, s] ∈ R
n.

2.5.2 Predictive Variance

The first class of optimality criterion arises when the goal of the experiment is

to make predictions of the value of z. In this case, we consider minimizing the variance

of predictions made over the region. In Chapters 3, 4 we focus on worst-case mitigation:

minimizing the maximum predictive variance, while Chapter 5 considers minimizing the

average variance over predictions made. These correspond to the notions of G-optimality

(maximum variance minimization) and A-optimality (average variance minimization)

from optimal design [19, 67]. The following proposition gives the posterior predictive

distribution of z. The explicit forms of optimality criteria based on this distribution

will be introduced in the aforementioned chapters.

Proposition 2.5.1 (Posterior predictive distribution) Under the prior assump-

tions in Equations (2.2) and (2.3), the posterior predictive at x ∈ De given data Y

is a shifted Students t distribution (see, e.g. [68]) with ν + n degrees of freedom, with

probability density function, for z = z(x),

p(z|Y, X) ∝ Var[z|Y, X]−
1
2

(
1 +

(z − E[z|Y, X])2

(ν + n − 2)Var[z|Y, X]

)− ν+n+1
2

.

Here, the expectation is given by

E[z|Y, X] =
(
f(x) − FK−1k

)T
β† + kTK−1Y,

β† = (E + K−1
0 )−1

(
FK−1Y + K−1

0 β0

)
,

where E = FK−1FT and k = Cor[Y, z] ∈ R
n. The variance is given by

Var[z|Y, X] = ϕ(Y, X)φ(x; X),

φ(x; X) = Cor[z, z] − kTK−1k + (f(x) − FK−1k)T (K−1
0 + E)−1(f(x) − FK−1k)

ϕ(Y, X) =
1

ν + n − 2

(
qν + (Y − FT β0)

T
(
K + FTK0F

)−1
(Y − FT β0)

)
,
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The proof of the proposition follows from the application of Bayes Theorem

to the model given by (2.3). Alternatively, it can also be derived from results in [29]

and [43] using a technique similar to the one used in the proof of Proposition B.0.3 in

Appendix B. Note that since K0 and K are positive definite, the quantities φ(x; X)

and ϕ(Y, X) are well posed.

Remark 2.5.2 (Terms in the posterior predictive variance) The posterior pre-

dictive variance in Proposition 2.5.1 is a product of two terms. The first, ϕ(Y, X), is

the posterior mean of σ2, given the sampled data. We refer to it as the sigma mean.

The second term, φ(x; X), can be thought of as the scaled posterior predictive variance

conditioned on σ2. We refer to it as the sigma-conditional variance. •

The sigma-conditional variance is very close to what the predictive variance

would look like if σ2 were known, as we show next. The following results may be

derived by applying Bayes Theorem to the model specified by Equations (2.2), with the

appropriate alterations of the priors.

Proposition 2.5.3 (Kriging variance) If the variance parameter is known, σ2
0, the

result is the universal kriging predictor, with posterior predictive variance,

VarUK[z|Y, X] = σ2
0

(
Cor[z, z] − kTK−1k + (f(x) − FK−1k)TE−1(f(x) − FK−1k)

)
.

If, in addition, the mean function, µ(X), is known, the result is the simple kriging

predictor, and the posterior predictive variance is,

VarSK[z|Y, X] = σ2
0

(
Cor[z, z] − kTK−1k

)
.

Remark 2.5.4 (Notation for kriging variance) Note that in the kriging models

the posterior predictive variance depends on the locations of the samples, X, but not

on their values. For this reason, we will use the shorthand VarSK[s|X] = VarSK[z|Y, X]

and VarUK[s|X] = VarUK[z|Y, X]. •
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2.5.3 Predictive Entropy

The second class of criterion is inferential. If we are more interested in making

inference about the quality or accuracy of the model itself, an appropriate measure of

uncertainty is the predictive entropy of a vector of potential sample locations. A related

measure is the generalized variance, which focuses more in theory on the predictive

aspect of the problem, but amounts to the same optimization criterion. Because of the

similarities between entropy and generalized variance, we will use the same symbol, E
for both metrics. In Chapters 3 and 6 we consider inferential uncertainty.

The entropy of an arbitrary continuous distribution with pdf p(y) can be writ-

ten as E = −E
[
log p(y)

h(y)

]
, where h(y) is a reference measure chosen to ensure invariance

under affine transformations of y. When the data come from a multivariate Student t

distribution, Y ∼ tn (µ,Ψ, δ), then the entropy is [48],

E =
1

2
log det ((δ − n + 1)Ψ). (2.4)

Consider the situation at timestep k, in which n samples have already been

taken at each of k − 1 previous timesteps, and we wish to choose the best locations for

the next set of measurements. The number of unsampled measurements is n, while the

number of sampled measurements is ns = n(k − 1). The sample vector, Y , may then

be partitioned as Y = (Y s, Y u), with corresponding partitions, X = (Xu, Xs), basis

function matrix, F = (Fu,Fs), and correlation matrix,

K =


Ku Kus

Ksu Ks


 .

Using Lemma B.0.1 in Appendix B, we may write the posterior predictive variance at

the unsampled locations, conditional on the sampled ones as,

Var[Y u|Y s, X] = ϕ(Y s, Xs)φ(Xu; Xs),

where, with a slight abuse of notation, we have used φ(Xu; Xs) to denote the following
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multivariate extensions of φ and ϕ,

φ(Xu; Xs) = Ku − KusKs
−1Ksu+

+ (Fu − FsKs
−1Ksu)T

(
K−1

0 + FsKs
−1Fs

T
)−1

(Fu − FsKs
−1Ksu),

ϕ(Y s, Xs) =
1

ν + ns − 2

(
qν +

(
Y s − Fs

T β0

)T (
Ks + FTK0F

)−1 (
Y s − Fs

T β0

))
.

Identifying terms in (2.4), the posterior predictive entropy at unsampled locations is,

Eu =
1

2
log det (φ(Xu; Xs)) + M(Y s, Xs), (2.5)

where M(Y s, Xs) does not depend on the locations or values of the new samples. Given

past measurements at locations Xs, it is desirable to take the next measurements at

locations Xu which maximize log det (φ(Xu; Xs)). This function, which we call the

conditional entropy, is invariant under permutations of Xu, so we are free to choose any

ordering to facilitate computation. Notation summarized in Table 2.5.

Notation Description

S Vector of spatial locations of samples (potential or realized)
X, xi Space-time coordinate vector, element of that vector
Y , yi Vector of sample values, element of sample vector

E[A], Var[A] Expectation and variance of random vector A

Cor[a, b] Correlation between random variables (or vectors) a and b

z Random space-time process of interest
K Sample correlation matrix
k Samples to prediction correlation vector
F Matrix of basis functions evaluated at sample locations
f Basis vector evaluated at predictive location
β Unknown mean regression parameters

β0,K0 Prior mean vector and correlation matrix of β

σ2 Unknown variance scalar parameter
q, ν Tuning parameters of prior distribution for σ2

φ Predictive variance conditional on σ2 (“conditional variance”)
ϕ Posterior mean of σ2 (“sigma mean”)
E Entropy

Table 2.5: Statistical notation.
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2.6 Basic linear algebraic facts

Here we present some basic facts from linear algebra [4] that will be useful

throughout the paper. We use λmin(A), respectively λmax(A) to denote the smallest,

respectively largest eigenvalue of square matrix A, and sprad(A) to denote its spectral

radius. Note that λmax(A − I) = λmax(A) − 1. Let det (A) denote the determinant of

matrix A. We denote by [A]ij the (i, j)th element of the matrix A, and by rowi(A),

respectively coli(A), its ith row, respectively column. Let 0i×j denote the i × j zero

matrix. If the dimensions are clear from the context we may omit the subscripts and use

0. A useful consequence of the Gershgorin Circle Theorem (see, e.g., [4, Fact 4.10.13])

for positive definite matrices yields the following bound on the largest eigenvalue,

λmax(A) ≤ max
i∈{1,...,n}

{
n∑

j=1

[A]ij}. (2.6)

Given a partitioned matrix, A = A11 A12
A21 A22

, we denote by (A11 |A), respectively

(A22 |A) the Schur complement of A11, respectively A22 in A, i.e.,

(A11 |A) = A22 − A21A
−1
11 A12 and (A22 |A) = A11 − A12A

−1
22 A21.

Using the Schur complement, we can write the determinant,

det (A) = det (A11)det (A11 |A). (2.7)

A matrix A is nonnegative if [A]ij ≥ 0 for all i, j. A matrix norm, ‖ · ‖, is

said to be submultiplicative if it satisfies the inequality ‖AB‖ ≤ ‖A‖‖B‖, and said

to be normalized if it satisfies ‖I‖ = 1. The map A → λmax(A) is a normalized,

submultiplicative norm on the set of nonnegative Hermitian matrices.

Let eA denote the standard matrix exponential of A. For a positive definite

matrix B, there exists a (not necessarily unique) matrix A of the same dimensions such

that eA = B, in which case log det (B) = tr(A). If B satisfies,

‖B − I‖S < 1, (2.8)
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where ‖ · ‖S is a normalized submultiplicative norm, then one representation of the

matrix logarithm is the Taylor series,

log(B) =
∞∑

i=1

(−1)i+1

i
(B − I)i. (2.9)

Let M : R → R
n×n denote a mapping of some real value to an invertible n×n

matrix. Then we may write [56, 21]

d

da
log det (M(a)) = tr

(
M(a)−1 d

da
M(a)

)
, (2.10)

where the derivative of the matrix is taken component-wise.

Table 2.6 reviews notation introduced in this section.

Notation Description

λmin(A), λmax(A) Extremal eigenvalues of square matrix, A

sprad(A) Spectral radius of A

det (A) Determinant of A

rowi(A), colj(A) Row i and column j of matrix A

0i×j i × j dimensional zero vector
[A]ij Element i, j of matrix A

(B |A) Schur complement of submatrix B in matrix A

eA Matrix exponential of A

log(A) Taylor series matrix logarithm (for appropriate A)

Table 2.6: Notational conventions.
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Part I

Geometric solutions under near

independence
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We begin by considering the case in which the mean and covariance of the ran-

dom field are known, using the simple kriging model. Due to the nontrivial interactions

between correlated samples, exactly characterizing the optimal sampling trajectories

even for this simplest of models is a difficult problem. Simply choosing a fixed num-

ber of sampling locations from a discrete set has been shown to be NP-hard [44]. In

our technical approach, we have been inspired by [42], which considers the problem of

minimizing the maximum uncertainty over a discrete space and shows that minimax

configurations are asymptotically optimal as the correlation between any two distinct

points vanishes. Minimax configurations minimize the maximum distance to the near-

est agent from any point in space. In Chapter 3 we build on this setup to characterize

the optimal network configurations in continuous sampling spaces at a fixed instant in

time (i.e. a single snapshot of the field) and established the connection with Voronoi

partitions [63] and geometric optimization [2, 25]. The work [18] defines circumcenter

and incenter Voronoi configurations and proposes coordination algorithms which steer

the network to these configurations. Subsequently, in Chapter 4, we extend this notion

to the scenario in which the agents take multiple of samples at sequential timesteps.
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Chapter 3

Optimal configurations for sampling

static fields under near independence

Here we summarize the work published in the conference paper [31], and the

follow-up technical report [33]. In it, we consider the problem of where to place the

agents in the case that a single measurement is to be taken by each, all at a single instant

of time. Addressing this problem is an initial step towards the more ambitious goal of

characterizing optimal coordinated agent trajectories when multiple measurements are

possible.

3.1 Model assumptions

As we are concerned with a purely spatial problem in this chapter, we consider

only the spatial correlation function in the simple kriging equations. Furthermore,

since the agents will only take a single sample, we will use P in place of X for sample

locations. We assume that the correlation function is isotropic and that the samples

may be corrupted with measurement error, so that the covariance matrix is given by

σ2
τKτ , with τ ∈ R. We denote by gs : R≥0 → R>0 the scaled isotropic correlation

function, so that [Kτ ]ij = gs(‖si − sj‖) for i 6= j ∈ {1, . . . , n}.
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3.2 Objective functions

Here, we consider two objective functions inspired by the notions of G- and

D-optimality from optimal design [19, 67]. The maximum predictive variance is

M(p1, . . . , pn) = max
s∈D

VarSK[z(s); p1, . . . , pn] = σ2
0 − σ2

τ min
s∈D

{kK−1
τ k}. (3.1a)

Let us make an important observation about the well-posedness of M. Under noisy

measurements, i.e., τ2 > 0, the functional map s 7→ VarSK[z(s); P ] is well-defined for

any s ∈ D and P ∈ Dn. Indeed, the dependence of VarSK on the network configuration

is continuous, and hence, M is also well-defined. However, when no measurement noise

is present, i.e., τ2 = 0, then the matrix Kτ is not invertible for configurations in which

one or more samples are collocated, and therefore, it is not clear what the value of VarSK

is. This problem is carefully addressed in Proposition 3.3.2, where it is shown that, in

the no measurement noise case, VarSK is a continuous function of the configuration

under suitable technical conditions on the covariance structure of the spatial field.

Our second objective function requires some background. The generalized

variance [81] of the simple kriging predictor is defined as det
(
(σ2

τKτ )
−1
)
. Minimizing

the generalized variance is equivalent to minimizing −det (Kτ ). For discrete state spaces,

it can be shown [42] that configurations which maximize the minimum distance between

agents asymptotically minimize −det (Kτ ) in the limit of near independence. This tends

to place agents on the boundary of D. Since we are only interested in predictions over

D, we would like a notion of optimality which penalizes agents too close to the boundary

as it does agents too close to each other. To this end, let γ : D → R
d map a point in D

to its mirror image reflected across the nearest boundary of D. Formally,

γ(s) ∈ s + 2
(

argmin
s∗∈bnd(D)

{‖s∗ − s‖} − s
)
.

Note that γ(s) is in general not unique, and is not a smooth function of s. However,

‖s − γ(s)‖ is smooth, and is the same for all values of γ(s). Now consider minimizing

the negative determinant of the estimator which would result if we had data from all
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agents as well as their reflections. The extended prediction variance is then

E(p1, . . . , pn) = −det (Kτ (p1, . . . , pn, γ(p1), . . . , γ(pn))). (3.1b)

Since E does not require inversion of the covariance matrix, it is always well-posed. Our

goal is to find the network configurations P = (p1, . . . , pn) ∈ Dn that minimize the

objective functions M : Dn → R and E : Dn → R.

3.3 Optimal configurations for spatial prediction

In this section, we provide several results that characterize the optimal network

configurations for the objective functions M and E . In Section 3.3.1, we show that

minima of M cannot contain coincident samples. Beyond the obvious benefit of collision

avoidance, this fact is useful in Section 3.3.2 where we show that circumcenter and

incenter Voronoi configurations are asymptotically optimal for M and E , respectively.

3.3.1 Coincident configurations are not minima of the maximum error

variance

In this section, we examine the effect of the location of a subset of agents on

the error variance terms. In particular we are interested in comparing VarSK[z(s); P ]

against VarSK[z(s); iF(P )] for configurations P which contain one or more coincident

locations. The following lemma provides a useful decomposition of VarSK.

Lemma 3.3.1 The estimation error variance function may be written in the form

VarSK[z(s); P ] = VarSK[z(s); P ] −
(
N (s, p1; P )

)2

VarSK[z(p1); P ] + τ2
, (3.2)

with N (s, p1; P ) = gs(‖s − p1‖) − Cor[z(s), Y (P )]Kτ (P )−1 Cor[Y (P ), y(p1)] and P =

(p2, . . . , pn) ∈ Dn−1.

This fact may be proved using [4, Proposition 8.2.4] for the inverse of a par-

titioned symmetric matrix. Equation (3.2) may be applied repeatedly to isolate the
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effects of any subset of locations in P . In the following proposition we consider the

behavior of M as agents move around D. The proof may be found in Appendix A.1.

Proposition 3.3.2 (Continuity of predictive variance) Let Scoinc ⊂ Dn denote

the set of all configurations with one or more coincident points, i.e.,

Scoinc = {P ∈ Dn | pi = pj for some i 6= j ∈ {1, . . . , n}} .

Assume that the function g is differentiable, with g′(0) 6= 0, and τ2 = 0. Then, for each

s ∈ D, the predictive variance, (p1, . . . , pn) 7→ VarSK[z(s); p1, . . . , pn] is continuous. In

addition, for P ∈ Scoinc we have VarSK[z(s); P ] = VarSK[z(s); iF(P )].

Under the assumptions of Proposition 3.3.2, we can extend the mean-squared

error function by continuity to include configurations in Scoinc. With a slight abuse

of notation, in the case of no measurement error, we use VarSK[z(s); P ] to denote

VarSK[z(s); iF(P )] for P ∈ Scoinc.

Proposition 3.3.3 (Minima of M are not in Scoinc) Let P † ∈ Dn be a strict

local minimum of the map P 7→ M(P ). Under the assumptions of Proposition 3.3.2,

P † 6∈ Scoinc.

Proof: We proceed by contradiction. Assume P † ∈ Scoinc. Consider a configura-

tion P ∈ Dn\Scoinc in a neighborhood of P † such that iF(P †) ⊂ iF(P ). Let s, s† ∈ D such

that M(P ) = VarSK[z(s); P ] and M(P †) = VarSK[z(s)†; P †]. Using Lemma 3.3.1 and

Proposition 3.3.2, one can deduce that VarSK[z(s); P †] ≥ VarSK[z(s); P ]. By the defini-

tion of M, VarSK[z(s)†; P †] ≥ VarSK[z(s); P †]. Therefore M(P †) = VarSK[z(s)†; P †] ≥
VarSK[z(s); P †] ≥ VarSK[z(s); P ] = M(P ), which is a contradiction.

3.3.2 Multicenter Voronoi configurations are asymptotically optimal

Let us consider the objective functions M and E introduced in Section 3.2 but

with correlation function Corα, α ∈ Z>0. As α grows, the correlation between distinct

points in D vanishes. Note that Corα retains much of the shape of the original correlation
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function (e.g. smoothness, range, etc), so this analysis is helpful in determining the

properties of the original problem as well. To ease the exposition, we denote by k{α},

respectively K
{α}
τ , the vector k, respectively the matrix Kτ , with each element raised

to the kth power. Similarly, let M{α}, E{α} : Dn → R be defined as

M{α}(p1, . . . , pn) = (σ2
0)

{α} − (σ2
τ )

{α} min
s∈D

{(k{α})T (K{α}
τ )−1k{α}},

E{α}(p1, . . . , pn) = −det
(
K{α}

τ (p1, . . . , pn, γ(p1), . . . , γ(pn))
)
.

First we establish a result on the cardinality of the minimum distance set. Let

Cmds : R
d × Dn → R such that Cmds(s, P ) = gs(‖s − p‖), for any p ∈ mds(s, P ). Note

that Cmds is well-defined.

Proposition 3.3.4 (Cardinality of minimum distance set) Let the correlation

function gs be continuous. For P ∈ Dn \ Scoinc, one has

min
s∈D

{Cmds(s, P ) |mds(s, P )|} = min
s∈D

{Cmds(s, P )} .

The proof of Proposition 3.3.4 is in Appendix A.1. We are now ready to prove one of

the main results of the paper. The proof follows a similar line of reasoning to [42].

Theorem 3.3.5 (Minima of M under near independence) Let Pmcc ∈ Dn be a

global minimizer of the multi-circumcenter problem. Then, as k → ∞, Pmcc asymptoti-

cally globally optimizes M{α}, that is, M{α}(Pmcc) approaches a global minimum.

Proof: Note that minimizing M{α} is equivalent to finding the tuples P which

maximize the function L{α} : Dn → R defined as

L{α}(P ) = min
s∈D

{
(k{α}(s, P ))T (K{α}

τ (P ))−1(k{α}(s, P ))
}

.

Let λmin and λmax : Dn×R → R be such that λmin(P, α), λmax(P, α) denote, respectively,

the minimum and the maximum eigenvalue of K
{α}
τ (P ). We can see that L{α}(P ) is

bounded above by λmax(P, k)
∑

p∈P gs(‖s−p‖){2α} and below by λmin(P, k)
∑

p∈P gs(‖s−
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p‖){2α}. For a given s, in terms of the minimum distance set we can write

∑

p∈P

gs(‖s − p‖){2α} =
∑

p∈mds(s,P )

gs(‖s − p‖){2α} +
∑

p∈P\mds(s,P )

gs(‖s − p‖){2α}

= |mds(s, P )|Cmds(s, P ){2α} +
∑

p∈P\mds(s,P )

gs(‖s − p‖){2α}.

As k → ∞ the elements in the minimum distance set dominate, so we are left with

∑

p∈P

gs(‖s − p‖){2α} = |mds(s, P )|Cmds(s, P ){2α} + o(Cmds(s, P ){2α}).

From Proposition 3.3.4,

min
s∈D

{|mds(s, P )|Cmds(s, P )} = min
s∈D

{Cmds(s, P )} ,

so we can write

min
s∈D

{∑

p∈P

gs(‖s − p‖){2α}} = min
s∈D

{
Cmds(s, P ){2α} (1 + o(1))

}
.

Consider, then, comparing an arbitrary configuration P ∗ against a global minimizer

of HDC, say Pmcc. In the zero measurement error case, by Proposition 3.3.3, we can

assume without loss of generality that P ∗ 6∈ Scoinc. Therefore, no matter what the value

of τ is, we can safely use the eigenvalues of (K
{α}
τ )−1 to provide bounds. Specifically,

L{α}(P ∗)
L{α}(Pmcc)

≤
λmax(P

∗, k)min
s∈D

{
Cmds(s, P

∗){2α} (1 + o(1))
}

λmin(Pmcc, k)min
s∈D

{
Cmds(s, Pmcc)

{2α} (1 + o(1))
} . (3.3)

Next we take a closer look at the eigenvalues. Note that limk→∞ K
{α}
τ (P ) = In, and it

can be seen that λmin(P, k) and λmax(P, k) both tend to 1 for any configuration P . Fi-

nally, since Pmcc minimizes the maximum distance to any point s ∈ D, it maximizes the

minimum covariance, so for any P ∈ Dn, mins∈D Cmds(s, P ) ≤ mins∈D Cmds(s, Pmcc).

Thus the ratio (3.3) is bounded by 1+o(1). Therefore, in the limit as k → ∞, minimizing

M{α} is equivalent to solving the multi-circumcenter problem.

The proof of the theorem can be reproduced for local minimizers of the multi-

circumcenter problem to arrive at the following result.
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Corollary 3.3.6 Let Pmcc ∈ Dn be a local minimizer of the multi-circumcenter problem.

Then, as k → ∞, Pmcc asymptotically optimizes M{α}, that is, M{α}(Pmcc) approaches

a minimum.

According to [18], under certain technical conditions, solutions to the multi-

circumcenter problem are circumcenter Voronoi configurations. Next, let us present a

similar asymptotic result for the extended prediction variance.

Theorem 3.3.7 (Minima of E under near independence) Let Pmic ∈ Dn be a

global maximizer of the multi-incenter problem with lowest index. Then, as k → ∞, Pmic

asymptotically globally optimizes E{α}, that is, E{α}(Pmic) approaches a global minimum.

Proof: Expanding the objective function for asymptotically dominant terms, we

may write E{α}(P ) = −1 + J{α}(P ) + o
(
J{α}(P )

)
, where J{α}(P ) =

∑
i6=j gs(‖pi −

pj‖){2α} +
∑n

i,j=1 gs(‖pi − γ(pj)‖){2α} +
∑

i6=j gs(‖γ(pi) − γ(pj)‖){2α}. Asymptotically

all but the largest terms in J{α}(P ) will drop out, and minimizing E{α}(P ) becomes

equivalent to minimizing those terms. The largest terms in J{α}(P ) correspond to the

shortest distance between the locations of either the agents or their reflected images.

For any two agent locations, pi, pj ∈ D, and any of their reflections γ(pi), γ(pj) the

minimum distance between any two of the four points can be reduced to min
{
‖pi −

pj‖, ‖pi − γ(pi)‖, ‖pj − γ(pj)‖
}

(note that this is not in general true for non-convex

domains). Thus the shortest distance between agents in P and their reflections may

be expressed as 2HSP(P ), though the index of P might be larger than 1. Therefore we

have J{α}(P ) = N(P )
(
gs(2HSP(P )){2α})(1 + o(1)). Consider comparing an arbitrary

configuration, P ∗ ∈ Dn against Pmic. We have

J{α}(Pmic)

J{α}(P ∗)
=

N(Pmic)
(
gs(2HSP(Pmic))

{2α}) (1 + o(1))

N(P ∗)
(
gs(2HSP(P ∗)){2α}) (1 + o(1))

.

If P ∗ is not a global solution of the multi-incenter problem, we have HSP(Pmic) >

HSP(P ∗), and since gs(·) is decreasing this gives us

lim
k→∞

J{α}(Pmic)

J{α}(P ∗)
= 0.
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If, on the other hand, P ∗ is a global solution of the multi-incenter problem, then, using

the fact that Pmic has the lowest index among all of them, we deduce J{α}(Pmic)

J{α}(P ∗)
≤ 1+o(1).

The proof of the theorem can be reproduced for isolated local maximizers of

the multi-incenter problem to arrive at the following result.

Corollary 3.3.8 Let Pmic ∈ Dn be an isolated local maximizer of the multi-incenter

problem. Then, as k → ∞, Pmic asymptotically optimizes E{α}, that is, E{α}(Pmic)

approaches a minimum.

According to [18], under certain technical conditions, solutions to the multi-

incenter problem are incenter Voronoi configurations.

3.3.3 Distributed coordination algorithms

Given the results in Theorems 3.3.5 and 3.3.7, it is of interest to design co-

ordination algorithms that steer a network of mobile agents towards circumcenter and

incenter Voronoi configurations. We do this following the exposition in [18]. In light

of the results in Section 3.3.2, this enables the network to perform a spatial prediction

which is asymptotically optimal as k → ∞. Note that these algorithms are not intended

to provide optimal trajectories for multiple sequential measurements. That problem is

left for future work.

Let us assume each agent can move according to a first-order dynamical model

ṗi = ui, i ∈ {1, . . . , n}. Consider the following coordination algorithms

ṗi = CC(Vi(P )) − pi, (3.4a)

ṗi ∈ IC(Vi(P )) − pi, (3.4b)

for each i ∈ {1, . . . , n}. Note that (3.4b) is a differential inclusion. We understand

its solutions in the Filippov sense [26]. Both coordination algorithms are Voronoi dis-

tributed, meaning that each agent only requires information from its Voronoi neighbors

in order to execute its control law. The equilibrium points of the flow (3.4a) are the
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circumcenter Voronoi configurations, whereas the equilibrium points of the flow (3.4b)

are incenter Voronoi configurations. Furthermore, the evolution of HDC along (3.4a)

is monotonically decreasing, while the evolution of HSP along (3.4b) is monotonically

increasing. The convergence properties of these coordination algorithms, as well as al-

ternative flows with similar distributed properties that can also be used to steer the

network to center Voronoi configurations, are studied in [18].

3.4 Simulations

We begin our simulation study with an example which demonstrates the op-

timality of circumcenter Voronoi partitions for the criterion, M. Figure 3.1 shows

the contours of the function VarSK[z(s); P ] for an arbitrary configuration and a multi-

circumcenter configuration. The number of agents was n = 10, and the domain was

D={(0, .1), (2.5, .1), (3.45, 1.6), (3.5, 1.7), (3.45, 1.8), (2.7, 2.2), (1, 2.4), (0.2, 1.3)}. The

covariance function used was the Gaussian,

gs(‖s1 − s2‖) = e−
(

‖s1−s2‖
.4

)2
.

With the aim of illustrating the results presented in Section 3.3, we performed sim-

(a) (b)

Figure 3.1: Contours of VarSK[z(s); P ] for (a) an arbitrary configuration, and (b) a multi-
circumcenter configuration. The correlation function used was Gaussian.
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ulations for both objective functions M and E with n = 5 agents. In our simu-

lations, we used as domain D the convex polygon with vertices {(0, 0.1), (2.5, 0.1),

(3.45, 1.6), (3.5, 1.7), (3.45, 1.8), (2.7, 2.2), (1.0, 2.4), (0.2, 1.3)} and as isotropic covari-

ance the one defined via g : R → R, gs(‖s1 − s2‖) = e−
1
5
‖s1−s2‖. Note that the mean

function, µ, does not play a role in determining the optimal network configurations.

Figure 2.3 shows the multicenter configurations obtained with the flows (3.4).

3.4.1 Analysis of simulations for M{α}

Using M{1} we ran over 1000 random trials, each time running a gradient

descent algorithm, and chose the local minimum configuration with the smallest value

of M{1} to be our approximation of a global minimum. From this configuration P∗,

we generated a multi-circumcenter configuration using (3.4a), depicted in Figure 2.3(a).

For increasing values of α, we ran a gradient descent of M{α} to find the best local

configuration near P∗. We plotted M{α} as calculated with this new configuration

against M{α} as calculated with the multi-circumcenter configuration. For comparison,

we also plotted the performance of a random (static) configuration which was not a local

minimum. Figure 3.2 illustrates the result in Theorem 3.3.5. We halt the experiment

2 4 6 8 10 12 14

0.2

0.4

0.6

0.8

1

α

H{α}

Figure 3.2: Value of M{α} for multi-circumcenter (solid), approximated global minimum
(dashed) arrived at by gradient descent for each value of α, and random (dotted) config-
urations of 5 agents for increasing α. The covariance function is exponential.

at around α = 15 because the performance of the circumcenter Voronoi configuration

becomes impossible to distinguish from the one of the minimizer of M{α} at this reso-
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lution.

3.4.2 Analysis of simulations for E{α}

Using E{1} we ran over 1000 random trials, each time running a gradient de-

scent algorithm, and chose the local minimum configuration with the smallest value

of E{1} to be our approximation of a global minimum. From this configuration P∗ we

generated the multi-incenter configuration using (3.4b), depicted in Figure 2.3(b). For

increasing values of α, we ran a gradient descent of E{α} to find the best local configu-

ration near P∗. We plotted E{α} as calculated with this new configuration against E{α}

as calculated with the multi-incenter configuration. For comparison, we also plotted

the performance of a random (static) configuration which was not a local minimum.

Figure 3.3 illustrates the result stated in Theorem 3.3.7.

5 10 15 20 25 30 35 40

-0.8

-0.6

-0.4

-0.2

0

α

E{α}

Figure 3.3: Value of E{α} for multi-incenter (solid), approximated global minimum (dashed)
arrived at by gradient descent for each value of α, and random (dotted) configurations
of 5 agents for increasing α. The covariance function is exponential. The performance
of the global and multi-incenter configurations looks identical even though configurations
are different at each α.

Remarkably, the performance of the incenter Voronoi configuration and the

minimizer of E{α} are almost identical, even for low values of α. The numerical sim-

ulations suggest that multi-incenter Voronoi configurations are near-optimal for the

extended prediction criterion.

The next chapter considers extension of these notions to trajectories of samples

over time.
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Chapter 4

Optimal trajectories for sampling

dynamic fields under near independence

Here we summarize the work published in the conference paper [38], and the

(submitted) follow-up paper [37]. In it, we extend the notion of geometric centering to

optimize trajectories of samples taken by multiple agents over an interval of time. We

consider the maximum predictive variance of the simple kriging predictor as optimality

criterion. In the interest of clarity, we have placed most of the proofs in Appendix A.1.

4.1 Model assumptions

Assume that n ∈ Z>0 sensing agents take samples at each of a sequence of

discrete timesteps {1, . . . , kmax}, with kmax ∈ Z>0. Let Si = (si
(1), . . . , si

(kmax))T ∈
Dkmax denote the spatial locations of samples taken over the course of the experiment by

the ith agent, and let S = (ST
1 , . . . , ST

n )T ∈ (Dkmax)n denote the locations of all samples

taken by the network. We use Isamp = {1, . . . , n} × {1, . . . , kmax} to denote the set of

index pairs into the sample vector. We refer often to vectors of elements indexed by both

agent and timestep, such as the elements of S. To save space, we use the shorthand

notation (a1
(1), . . . , an

(kmax)) = (a1
(1), . . . , a1

(kmax), . . . , an
(1), . . . , an

(kmax)). Let Y =
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(y1
(1), . . . , yn

(kmax))T ∈ (Rkmax)n denote the values of all samples taken at locations S.

As in Chapter 3, we assume that the correlation of z exhibits isotropy in the spatial

dimensions, and that samples are corrupted with an i.i.d. error. Here, we make the

additional assumption that the space-time correlation is separable, and we write,

Cor[yi
(k), yi′

(k′)] =





1 if (i, k) = (i′, k′)

gs(‖si
(k) − si′

(k′)‖)gt(k, k′),

for correlation functions gs : R≥0 → (0, 1− τ2], and gt : R≥0 ×R≥0 → [0, 1]. We assume

that gs is strictly decreasing and continuously differentiable with nonzero derivative ex-

cept possibly at 0 (i.e., g′s(d) < 0 for d > 0), and we assume that the sampling error

term, τ2 is strictly positive. Note the assumption that the image of the spatial corre-

lation function is strictly nonzero. These assumptions include the popular exponential,

Gaussian, and Matérn correlation functions [1]. Once again, we write the covariance

matrix as σ2
τKτ .

4.1.1 Objective function for spatial estimation

We consider the scenario where the robotic network is given a time frame

[1, kmax], with kmax ∈ Z>0, to sample the spatio-temporal process z. A natural objective

is to design sampling trajectories in such a way as to minimize the uncertainty of an

estimate of the field at time kmax generated from samples taken up to that time. Here,

we consider an objective function inspired by the notion of G-optimality from optimal

design [19, 67]. The maximum predictive variance M : (Dkmax)n → R of estimates made

at time kmax over the region D is

M(S) = max
s∈D

VarSK[z(s, kmax); S] = σ2
0 − σ2

τ min
s∈D

{
kTK−1k

}
. (4.1)

Note that M corresponds to a “worst-case scenario,” where we consider locations in

the domain at which the predictive variance of the LUMVE is maximal. Our goal is to

find the sampling trajectories S ∈ (Dkmax)n that minimize the objective function M.

Note that the simplified case of kmax = 1 corresponds to the maximum predictive
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variance criterion of Chapter 3. The problem of trajectory optimization treated here

is considerably more complex. We should also note that all of our results hold for

predictions of the field made at times other than kmax.

4.2 Optimal solutions under near-independence

The objective function M is nonconvex and nonsmooth. The problem of find-

ing an explicit characterization for its optimizers is especially hard: even for kmax = 1,

the optimization of M is known to be NP-hard over discrete spaces [44]. In this section

we consider instead the optimization of M under near-independence, much the same

as we did in Chapter 3. Raising the correlation to the power α ∈ R>0 is equivalent to

considering the spatial and temporal correlation functions gα
s and gα

t . Note once again

that the correlation function (gsgt)
α retains much of the shape of the original correla-

tion function (e.g., smoothness, range, etc), so this analysis is helpful in determining the

properties of the original problem as well. We define K
{α}
τ , k

{α}
τ , and M{α} as we did

in Chapter 3, with the caveat that these are now functions of the vector of space-time

samples.

Our objective is to characterize the asymptotic minimizers of M{α}. To do

so, we need to introduce a family of weighted distance measures based on correlation.

Define φ : R≥0 → R≥0 and w : {1, . . . , kmax} → R≥0 by,

φ(d) = − log(gs(d)), w(k) = − log(gt(kmax, k)).

The function w gives a weight which depends on the temporal correlation between

sample time k and predictive time kmax. The function φ is strictly increasing and

continuously differentiable with strictly positive derivative except possibly at zero. It

therefore admits an inverse, φ−1 : R≥0 → R≥0. The correlation between a sample at step

k and prediction at step kmax induces the weighted distance function, δk : D×D → R≥0,

δk(s1, s2) = φ(‖s1 − s2‖) + w(k). (4.2)
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We refer to δk as the correlation distance associated with sample time k, and note that

δk(s, si
(k)) = − log

(
gs(‖s − si

(k)‖)gt(kmax, k)
)
. The following result classifies its level

sets.

Lemma 4.2.1 (Correlation level sets) For each k ∈ {1, . . . , kmax}, s ∈ D and c ∈ R,

one has Ωlvl(s
′ 7→ δk(s

′, s), c) = bnd
(
B(s, rk(c))

)
, where rk : R≥0 → R≥0, defined by

rk(c) =





φ−1(c − w(k)) if c ≥ w(k),

0 otherwise,

is strictly increasing and continuously differentiable on the interval (w(k),∞), with

derivative rk
′(c) = 1

φ′(rk(c)) .

We are interested in those samples with smallest correlation distance to a

given predictive location. Note that this is equivalent to the samples with highest

correlation to the predictive location. We must therefore consider the possibility of

samples with identical correlation to all predictive locations. Let Sunique be the following

set of possible trajectories, which ensures the spatio-temporal uniqueness of any samples

that achieve the maximal correlation distance from any predictive location,

Sunique =
{

S = (s1
(1), . . . , sn

(kmax))T ∈ (Dkmax)n |

6 ∃(i, k) 6= (j, l) ∈ Isamp and s ∈ D, s.t.

δk(s, si
(k)) = min

(i′,k′)∈Isamp

δk(s, si′
(k′)) and

δk(s
′, si

(k)) = δl(s
′, sj

(l)), ∀s′ ∈ D
}
.

Note that for samples si
(k) and sj

(l) to have identical correlation distance to all predictive

locations requires that si
(k) = sj

(l) and gt(kmax, k) = gt(kmax, l). We are now ready to

characterize the minimizers of M{α} as α grows.

Theorem 4.2.2 (Global minimizers of M under near-independence) Let H :

(Dkmax)n → R denote the correlation distance disk-covering function, defined by

H(S) = max
s∈D

{
min

(i,k)∈Isamp

{δk(s, si
(k))}

}
. (4.3)
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For Ω ⊂ (Dkmax)n compact, let Smcc ∈ Ω be a global minimizer of the correlation disk-

covering function H over Ω. Further assume that Smcc ∈ Sunique. Then, as α → ∞,

Smcc asymptotically globally optimizes M{α} over Ω, that is, M{α}(Smcc) approaches a

global minimum over Ω.

The proof of the theorem can be reproduced for local minimizers of H over Ω

to arrive at the following result.

Corollary 4.2.3 (Local minimizers of M under near-independence) For Ω ⊂
(Dkmax)n compact, let Smcc ∈ Ω be a local minimizer of the correlation disk-covering

function H over Ω. Then, as α → ∞, Smcc asymptotically locally optimizes M{α} over

Ω, that is, M{α}(Smcc) approaches a local minimum over Ω.

The generality of the subspace Ω in Theorem 4.2.2 and Corollary 4.2.3 also

allows us to apply the result to two situations of particular importance. First, we may

restrict the samples to feasible trajectories based on vehicular movement limitations,

and the initial positions of the vehicles, which we will call anchor points. This amounts

to a restriction on each agent trajectory, and we define the range-based constraint set,

ΩRg ⊂ (Dkmax)n as, ΩRg =
∏n

i=1 ΩRgi
, where

ΩRgi
=
{
(si

(1), . . . , si
(kmax))T ∈ Dkmax

∣∣ ‖si
(1) − pi(0)‖ ≤ umax and

‖si
(k) − si

(k−1)‖ ≤ umax, ∀k ∈ {2, . . . , kmax}
}
. (4.4)

Our results also hold for a more general problem, optimizing over all P (0) ∈ Dn, how-

ever this setup is directed at online path planning where the benefits of distributed

implementation shine. Second, a change in mission parameters at time k − 1, k ∈
{2, . . . , kmax}, might prompt optimization over just those locations not yet sampled,

i.e., ΩRg
(≥k) =

∏n
i=1 ΩRgi

(≥k), where

ΩRgi

(≥k) =
{
(si

(k), . . . , si
(kmax))T ∈ Dkmax−k+1

∣∣ ‖si
(k) − p(k − 1)‖ ≤ umax and

‖si
(k′) − si

(k′−1)‖ ≤ umax, ∀k′ ∈ {k + 1, . . . , kmax}
}
. (4.5)
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For ease of notation, we assume that these decisions and path adjustments are made

at sample time instants, and thus the anchor points for optimization over ΩRgi

(≥k) are

the sample locations at step k − 1, but the process is easily extensible to optimization

between sample times.

Theorem 4.2.2 shows that the optimization of the maximum predictive variance

is equivalent to a geometric optimization problem in the near-independence range. This

remarkable result allows us to turn the search for the optimizers of M{α} into the search

for the optimizers of the correlation disk-covering function H defined in (4.3). This is

what we tackle in the following sections.

4.3 Maximal correlation partition

In this section, we introduce the maximal correlation partition associated to a

network trajectory. This partition will be instrumental in determining the optimizers

of H. In the context of this work, a partition of D is a collection of compact subsets,

W = {W1
(1), . . . , Wn

(kmax)} with disjoint interiors whose union is D. For any S ∈ Sunique,

let MC(S) = (MC1
(1)(S), . . . ,MCn

(kmax)(S)) denote the maximal correlation partition

defined by

MCi
(k)(S) =

{
s ∈ D

∣∣ δk(s, si
(k)) ≤ δl(s, sj

(l)), ∀(j, l) 6= (i, k)
}
. (4.6)

This partition corresponds to a generalized Voronoi partition [63] for distance measure φ

and weights given by w. In general, the maximal correlation regions are neither convex

nor star-shaped. Note that, depending on the weights and locations, MCi
(k)(S) might

be empty for some i. Let I : P(D) → {1, . . . , n ∗ kmax} map a partition to the number

of nonempty cells it contains, which we term the index of the partition. The following

lemma gives some special cases in which MC is equal to distance-based partitions known

in the literature, see e.g., [63, 20].

Lemma 4.3.1 (Special cases of MC) The maximal correlation partition MC(S) cor-

responds to
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• the Voronoi partition of D with generators S, if all weights are equal,

• the power diagram, if the spatial correlation is the Gaussian, gs(d) = e−αd2
, with

α ∈ R>0,

• the additively weighted Voronoi partition, if the spatial correlation is the exponen-

tial, gs(d) = e−αd, with α ∈ R>0.

Figure 4.1 illustrates the latter two types of partitions. For S ∈ Sunique, the

(a) (b)

Figure 4.1: Examples of maximal correlation partition in which each cell is defined by the
predictive locations with highest (a) exponential correlation and (b) Gaussian correlation
to a given (generating) sample. In both cases, two timesteps are shown. Samples taken
at step 1 are shown as filled triangles, those taken at step 2 are shown as filled boxes.

correlation distance disk-covering function can be restated in terms of the maximal

correlation partition as,

H(S) = max
(i,k)∈Isamp

{
max

s∈MCi
(k)(S)

{δk(s, si
(k))}

}
. (4.7)

This expression is important because it clearly shows how H has a double dependence on

the network trajectory S: through the value of the correlation distance and through the

maximal correlation partition. This motivates us to define an extension of H as follows:

for a given sample vector S ∈ (Dkmax)n and a partition W = {W1
(1), . . . , Wn

(kmax)} ⊂
P(D) of the predictive space, define HW : (Dkmax)n → R by

HW(S) = max
(i,k)∈Isamp

Wi
(k) 6=∅

{
max

s∈Wi
(k)

{
δk(s, si

(k))
}}

. (4.8)
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Note that if S ∈ Sunique, then H(S) = HMC(S)(S). This function is particularly useful

in our search for the optimizers of H because it allows us to decouple the two depen-

dencies of this function on the network trajectory. The following result characterizes

the maximal correlation partition as the optimal partition for HW given a fixed network

trajectory.

Proposition 4.3.2 (H-optimality of the maximal correlation partition) For any

S ∈ Sunique and any partition W ⊂ P(D) of D with I(W) ≤ I(MC(S)),

H(S) ≤ HW(S), (4.9)

that is, the maximal correlation partition MC(S) is optimal for H among all partitions

of D of less than or equal index.

Proposition 4.3.2 implies that, in order to fully characterize the optimizers of

H, it is sufficient to characterize the optimizers of HW for a fixed arbitrary partition.

The latter formulation is advantageous because of the single dependence of the value of

HW on the network trajectory.

4.4 Unconstrained optimal trajectories for a given parti-

tion

In this section, our objective is to characterize the optimal network trajectories

of HW for a fixed partition W = {W1
(1), . . . , Wn

(kmax)} ⊂ P(D) of D. We will find it

useful to start our analysis with the simplified problem of locating a single sample to

minimize the maximum correlation distance to a single predictive region. We will then

build on this analysis to tackle the more complex multiple sample problem.
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4.4.1 Single sample unconstrained problem

For (i, k) ∈ Isamp with Wi
(k) 6= ∅, consider the task of choosing where Ri should

take the sample at time k. Let MCDi
(k) : D → R>0 be defined as,

MCDi
(k)(s) = max

s′∈Wi
(k)

δk(s
′, s). (4.10)

Note that MCDi
(k) corresponds to HW for a single agent and single sample at timestep

k. For any s ∈ D, it is important to note that the maximum correlation distance,

MCDi
(k)(s) is attained at the same locations in Wi

(k) as the maximum Euclidean dis-

tance, i.e.,

argmax
s′∈Wi

(k)

δk(s
′, s) = argmax

s′∈Wi
(k)

‖s′ − s‖.

In the next result, which follows from Lemma 4.2.1, we characterize the sublevel sets of

MCDi
(k).

Lemma 4.4.1 (Sublevel sets of MCD) For any c ∈ R≥0, the set Ωsublvl(MCDi
(k), c)

is closed, bounded, and strictly convex.

Figure 4.2 shows a two-dimensional example of the level sets of MCDi
(k). The following

W
(k)
i

CC(W
(k)
i )

Figure 4.2: A two-dimensional example of the level sets of MCDi
(k). The dashed circle is

the circumcircle. The closed curves around the circumcenter represent two different level
sets of MCDi

(k).

result on the generalized gradient of the maximum correlation distance function makes

use of [14, Theorem 2.1] and [15, Theorem 2.3.9].
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Lemma 4.4.2 (Smoothness of MCDi
(k)) The MCDi

(k) is locally Lipschitz and reg-

ular, and its generalized gradient takes the form

∂MCDi
(k)(s) = co

{
φ′(dmax(s, Wi

(k))) vrs(s − s′) | s′ ∈ argmax
s∗∈Wi

(k)

δk(s
∗, s)

}
.

We next characterize the minimizers of MCDi
(k).

Proposition 4.4.3 (CC(Wi
(k)) minimizes MCDi

(k)) The function MCDi
(k) has a

global minimum at CC(Wi
(k)) and no other critical points.

Remark 4.4.4 (Interpretation of Proposition 4.4.3) Note that Proposition 4.4.3

implies that the circumcenter minimizes the maximum Euclidean distance to an arbi-

trary set. •

4.4.2 Multiple sample unconstrained problem

Here, we use the results of Section 4.4.1 to tackle the multiple sample prob-

lem, i.e., the characterization of the optima of the network objective HW . We can

equivalently write (4.8) as

HW(S) = max
(i,k)∈Isamp

Wi
(k) 6=∅

MCDi
(k)(si

(k)).

The following result on the generalized gradient of HW follows from using Lemma 4.4.2

and [15, Proposition 2.3.12] on this expression.

Lemma 4.4.5 (Smoothness of HW) The function HW is locally Lipschitz and regu-

lar, and its generalized gradient takes the form

∂HW(S) = co
{
∂MCDi

(k)(S) | (i, k) ∈ Isamp s.t. MCDi
(k)(S) = HW(S)

}
,

where, with a slight abuse of notation, we use MCDi
(k)(S) to denote the map S 7→

MCDi
(k)(si

(k)).
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In order to extend Proposition 4.4.3 to the multiple sample case, we first need

to introduce a piece of notation to account for the possibility of empty regions in the

maximal correlation partition. Let CC : P(Rd) × R
d → R

d be defined by

CC(W, s) =





CC(W ) if W 6= ∅,

s otherwise.

Let CC(W, S) =
(
CC(W1

(1), s1
(1)), . . . ,CC(Wn

(kmax), sn
(kmax))

)T
denote a vector of such

circumcenter locations. We are now ready to state a generalization of Proposition 4.4.3.

Proposition 4.4.6 (HW-optimal trajectories) Let W = {W1
(1), . . . , Wn

(kmax)} ⊂
P(D) denote a partition of D. For any trajectories S = (s1

(1), . . . , sn
(kmax))T ∈ Sunique,

and S̃ = (s̃1
(1), . . . , s̃n

(kmax))T ∈ (Dkmax)n,

HW
(
CC(W, S̃)

)
≤ HW(S), (4.11)

that is, the circumcenter locations CC(W, S̃) are optimal for HW among all network

trajectories.

Note the duality between the results in Proposition 4.3.2 (for a fixed network

configuration, the maximal correlation partition is optimal) and Proposition 4.4.6 (for a

fixed partition, the circumcenter locations are optimal). The combination of these two

results allow us provide the following characterization of the optimizers of the correlation

disk-covering function H.

Proposition 4.4.7 (Generalized multicircumcenter trajectories optimize H)

Consider S = (s1
(1), . . . , sn

(kmax))T ∈ (Dkmax)n such that si
(k) = CC

(
MCi

(k)(S)
)

for

each (i, k) ∈ Isamp with MCi
(k)(S) 6= ∅. Then S is a local minimizer of H over (Dkmax)n.

We call such a network trajectory a generalized multicircumcenter trajectory. Further-

more, if I(MC(S)) = n ∗ kmax, then S is a global minimizer of H over (Dkmax)n.
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4.5 Range-constrained optimal trajectories for a given par-

tition

In this section, our objective is to characterize the optimizers of HW over ΩRg

for a fixed partition W. We begin our discussion by providing a useful alternative

expression for HW . Let Wi = {Wi
(1), . . . , Wi

(kmax)} denote the elements of the partition

W assigned to the samples in the trajectory of Ri. With a slight abuse of notation, we

may write

HW(S) = max
i∈{1,...,n}
Wi 6=∅

HWi
(Si), where HWi

(Si) = max
k∈{1,...,kmax}

Wi
(k) 6=∅

{
MCDi

(k)(si
(k))
}
.

The condition Wi 6= ∅ indicates that there is at least one nonempty Wi
(k) ∈ Wi. The

above expression clearly shows that, for a fixed partition, minimizing HW over the space

of network trajectories is equivalent to (independently) minimizing each of the functions

HWi
over the space of trajectories of the robot Ri. As a consequence, we structure our

discussion in three parts. First, we deal with the single sample problem. Then, we build

on this discussion to address the problem of finding an optimal sampling trajectory for a

single agent. Finally, we combine individual agent trajectories into a network trajectory

to find the constrained optimizers of HW .

4.5.1 Single sample constrained problem

Proposition 4.4.3 allows a simple, geometric interpretation of the minimizer

of MCDi
(k). Our objective here is to obtain a similar characterization for the range-

constrained problem. We first consider the single sample problem over a general closed

convex constraint set.

Proposition 4.5.1 (Constrained minimizers of MCDi
(k)) Assume that Wi

(k) 6= ∅.
Let Γ ⊂ R

d be closed and convex. Then a point s∗ ∈ Γ is the unique minimizer of

MCDi
(k) over Γ if and only if 0 ∈ ∂MCDi

(k)(s∗) + NΓ(s∗).
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Let us now specify the range based constraint set for si
(k). The set of constraining

locations of (i, k) ∈ Isamp are the locations of robot Ri at sample times k − 1 and k + 1,

Scs(k, Si) =
{
p(k′) | k′ ∈ Kcs(k)

}
, where Kcs(k) = {k − 1, k + 1} ∩ {0, . . . , kmax}.

Note that in all but the initial anchor point, this set corresponds to the sample locations

immediately preceding and following the (i, k)th sample. Let Γ(k) : Dkmax → P(Rd) map

a network trajectory to the intersection of umax-balls centered at locations in the set of

constraining locations of (i, k), i.e.,

Γ(k)(Si) =
⋂

s∈Scs(k,Si)

B(s, umax). (4.12)

The set Γ(k)(Si) corresponds to ΩRg with all other samples fixed in space. Restricting

Si
(k) to Γ(k)(Si) ensures that Ri does not violate the maximum distance requirement

umax.

In order to state the main result of this section, we will find it useful to intro-

duce an extension of the predictive set Wi
(k) which incorporates the position of sample

(i, k) relative to Γ(k)(Si). To that end, define EPt(k:k′) : Dkmax → R
d, (i, k) ∈ Isamp,

k′ ∈ Kcs(k) by

EPt(k:k′)(Si) = si
(k) + rk(HWi

(Si))
si

(k′) − si
(k)

umax
, (4.13)

The reason for the use of HWi
(Si) will be made apparent in Section 4.5.2. For now,

it is only important that HW(Si) ≥ MCDi
(k)(si

(k)). The location EPt(k:k′)(Si) can

be seen as the projection of si
(k′) onto the surface of B(si

(k), rk(HWi
(Si))

‖si
(k′)−si

(k)‖
umax

).

Then, we extend the predictive set by the extended constraint points as follows. Let

W̃i
(k) : Dkmax → P(Rd), (i, k) ∈ Isamp be the constraint extended predictive set,

W̃i
(k)(Si) = co

(
Wi

(k),
{

EPt(k:k′)(Si) | k′ ∈ Kcs(k)
})

.

A point s ∈ W̃i
(k)(Si) is active in centering if there is no neighborhood of s which might

be added to W̃i
(k)(Si) without changing the circumcenter. It can be seen from (4.13)
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that EPt(k:k′)(Si) is active in centering if and only if the relation holds,

rk(HWi
(Si))

‖si
(k) − si

(k′)‖
umax

≥ rk

(
MCDi

(k)(si
(k))
)
.

Figure 4.3 shows an example of the extended predictive set.

W
(2)
1

ESet
(2)
1

Γ
(2)
1

s
(2)
1

s
(1)
1

EPt
(2:1)
1

s
(3)
1

EPt
(2:3)
1

Figure 4.3: A two-dimensional example of the extended center representation of a critical
point of the constrained problem. The dashed circle is the circumcircle of fW1

(2), with
circumcenter s1

(2). Note that s1
(2) is on the boundary of Γ(2) formed by s1

(1), and thus
EPt(2:1) is active in centering.

The next result gives a geometric interpretation of the constrained optimum

in terms of W̃ .

Proposition 4.5.2 (Extended circumcenter minimizes MCDi
(k) over Γ(k)(Si))

Assume that Γ(k)(Si) and Wi
(k) are nonempty. Further assume that the scaling factor

for the extended constraints satisfies HWi
(Si) = MCDi

(k)(si
(k)). Then si

(k) is the unique

minimizer of MCDi
(k) over Γ(k)(Si) iff si

(k) = CC
(
W̃i

(k)(Si)
)
.

4.5.2 Multiple sample single agent constrained problem

Here we extend the constrained solution above to a single agent optimizing

its own trajectory. and characterize the optima of HWi
over the constraint set ΩRgi

defined in (4.4) in terms of centered sub-sequences. In order to facilitate discussion

of generalized gradients, let d (k:k′) : Dkmax → R≥0, k, k′ ∈ {1, . . . , kmax} be defined as

d (k:k′)(Si) = ‖si
(k)−si

(k′)‖, and let d (1:0)(Si) = d 01(Si) = ‖si
(1)−pi(0)‖. With a slight
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abuse of notation, we use

W̃i
(k)(Si; KC) = co

(
Wi

(k),
{
EPt(k:k′)(Si) | k′ ∈ Kcs(k) ∩ KC

})
.

to denote constraint extended sets as calculated with a subset of the constraint points.

Lemma 4.5.3 (Centered sequences satisfy range constraint) Let Si ∈ Dkmax,

and let KC ⊆ {1, . . . , kmax} define a sequence of consecutive samples from Si such that

each is at the circumcenter of the extended set formed by consecutive neighbors in the

sequence, i.e.,

si
(k) = CC

(
W̃i

(k)(Si; {0} ∪ KC)
)
, for all k ∈ KC ,

Then d (k:k′)(Si) ≤ umax, for all k ∈ KC and k′ ∈ ({0} ∪ KC) ∩ Kcs(k). We call such a

sequence centered.

Figure 4.4 shows an example of a centered sequence.

W
(1)
1

s
(1)
1

W
(2)
1

s
(2)
1

W
(3)
1

s
(3)
1

Figure 4.4: Two-dimensional three sample example of a centered sequence. The solid
arrows show the directions from the sample to the farthest points in the associated pre-
dictive region. For illustrative purposes, we have used a correlation distance equivalent to
Euclidean distance.

In the unconstrained case, optimizing HW takes the form of centering each

sample within its predictive region, which may be characterized in terms of the general-

ized gradient of MCD. Given our discussion for the single sample constrained problem,

in particular Proposition 4.5.2, we next characterize the gradient of the maximum cor-

relation distance to the extended predictive region, W̃ , and thereby the optimal agent
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trajectories in terms of centered sequences. We begin with a result on the effect of the

trajectory on the constraint extended predictive sets.

Lemma 4.5.4 (Correlation distance to extended constraints) Let (i, k) ∈ Isamp

and k′ ∈ Kcs(k), and let Si ∈ Dkmax such that si
(k) 6= si

(k′). Let CDEi
(k:k′) : Dkmax → R

be defined by

CDEi
(k:k′)(Si) = δk(si

(k), EPt(k:k′)(Si)).

The function CDEi
(k:k′) is locally Lipschitz and regular near Si, and its generalized

gradient at Si takes the form

∂CDEi
(k:k′)(Si) =

φ′(‖EPt(k:k′)(Si) − si
(k)‖)

umax

×

×
(
rk(HWi

(Si))∂ d (k:k′)(Si) +
d (k:k′)(Si)

φ′(rk(HWi
(Si)))

∂HWi
(Si)

)
.

In the expression of the gradient of CDEi
(k:k′) where k′ 6= 0, note that since

si
(k) 6= si

(k′), the set ∂ d (k:k′)(Si) consists of a single vector whose only nonzero com-

ponents are the kth and k′th entries. Likewise ∂ d (1:0)(Si) is nonzero only in the first

entry.

We next characterize the function which maps the maximum correlation from

a sample to any point in its constraint extended predictive set.

Lemma 4.5.5 (Extended set correlation distance) Let (i, k) ∈ Isamp and let the

function MCDfW
(k) : Dkmax → R map the ith trajectory to the maximum correlation

distance from si
(k) to the corresponding constraint extended predictive set, i.e.,

MCDfW
(k)(Si) = max

s∈fWi
(k)(Si)

δk

(
s, si

(k)
)
.

Further assume that either Wi
(k) 6= ∅, or there is an s ∈ Scs(k, Si) such that si

(k) 6= s.

Then MCDfW
(k) is locally Lipschitz and regular, and the generalized gradient takes the

55



form

∂MCDfW
(k)(Si) =





∂MCDi
(k)(Si) if MCDi

(k)(Si) > CDEmax
(k)(Si),

∂CDEmax
(k)(Si) if MCDi

(k)(Si) < CDEmax
(k)(Si),

co
{
∂MCDi

(k)(Si),

∂CDEmax
(k)(Si)

}
if MCDi

(k)(Si) = CDEmax
(k)(Si),

where MCDi
(k)(Si) denotes the map Si 7→ MCDi

(k)(si
(k)), and the function CDEmax

(k) :

Dkmax → R>0 and its gradient are given by,

CDEmax
(k)(Si) = max

l∈Kcs(k)
CDEi

(k:l)(Si)

∂CDEmax
(k)(Si) = co

{
∂CDEi

(k:k′)(Si) | k′ ∈ argmax
l∈Kcs(k)

CDEi
(k:l)(Si)

}
.

The constrained objective function for a single agent may be defined as

HfWi
(Si) = max

k∈{1,...,kmax}
MCDfW

(k)(Si).

Note that this function may be calculated entirely by Ri. The following proposition

describes the smoothness of the per-agent constrained objective function.

Proposition 4.5.6 (Extended maximum correlation distance) Let i ∈ {1, . . . , n}
and assume that the set Wi contains at least one nonempty element. The function HfWi

is locally Lipschitz and regular and its gradient takes the form

∂HfWi
(Si) = co

{
∂MCDfW

(k)(Si), k ∈ {1, . . . , kmax} | MCDfW
(k)(Si) = HfWi

(Si)
}
.

(4.14)

Lemma 4.5.7 (Equality of HfWi
and HWi

over ΩRgi
) Let i ∈ {1, . . . , n} and Si ∈

ΩRgi
. Then HfWi

(Si) = HWi
(Si).

We next characterize the critical points of HfWi
in terms of a special case of

centered sequences.
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Lemma 4.5.8 (Maximal elements define sub-sequences within centered se-

quences) Let KC ⊆ {1, . . . , kmax} define a centered sequence of samples in Si with

max
k∈KC

MCDi
(k)(si

(k)) = HWi
(Si). Then there is a sub-sequence, KMC ⊆ KC which is

centered and such that every k ∈ KMC satisfies MCDfW
(k)(si

(k)) = HWi
(Si). We refer

to a sequence such as KMC as maximally centered.

Proposition 4.5.9 (Global minimizers of HfWi
on ΩRgi

contain maximally cen-

tered sequences) A trajectory Si ∈ ΩRgi
is a critical point of HfWi

if and only if it

contains at least one maximally centered sequence of samples. Furthermore, any such

critical point globally minimizes HWi
on ΩRgi

.

4.5.3 Multiple agent constrained problem

Finally, we combine agent trajectories into a network trajectory to find the

constrained optimizers of HW . First, define HfW : (Dkmax)n → R by

HfW(S) = max
i∈{1,...,n}

HfWi
(Si). (4.15)

The following result extends Lemma 4.5.7 to the network.

Lemma 4.5.10 (Equality of HfW and HW over ΩRg) Let S ∈ ΩRg. Then HfW(S) =

HW(S).

The critical points of the extended network objective function may now be characterized.

The proof of this result follows from Proposition 4.5.9.

Proposition 4.5.11 (Global minima of HfW on ΩRg contain maximally cen-

tered sequences) A trajectory S ∈ ΩRg is a critical point of HfW if and only if there

is at least one i ∈ argmaxi∈{1,...,n}HWi
(Si) such that Si contains at least one maximally

centered sequence. Furthermore, any such critical point is a global minimum of HW

over ΩRg

Proposition 4.5.11 allows us to think of the optimization of HW independently for each

agent. If each agent optimizes their own trajectory (cf. Proposition 4.5.9), then the
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resulting network trajectory is optimal. Along with Proposition 4.3.2, this allows the

following result on the optimal trajectories of the correlation disk-covering function H
over ΩRg.

Proposition 4.5.12 (Range-constrained generalized multicircumcenter trajec-

tory) Let S = (ST
1 , . . . , ST

n ) ∈ (Dkmax)n such that each Si contains at least one maxi-

mally centered sequence with respect to the partition W = MC(S). Then S is a local

minimizer of H over ΩRg. We call such a network trajectory a range-constrained gen-

eralized multicircumcenter trajectory. Furthermore, if I(MC(S)) = n ∗ kmax, then S is

a global minimizer of H over ΩRg.

Remark 4.5.13 (S centered implies it is multicircumcenter) Note that if each

Si is centered, then it must contain a maximally centered sequence, and thus S is a

range-constrained generalized multicircumcenter trajectory. •

The following proposition allows for partial optimization of trajectories which

are already under way, based on minimizing the maximum error over the remainder of

the experiment. The proof is a direct result of Proposition 4.5.9, where the samples

being optimized over are anchored by the last sample already taken.

Proposition 4.5.14 (Partially fixed range-constrained generalized multicir-

cumcenter trajectory) Let k∗ ∈ {2, . . . , kmax}, and assume that samples {1, . . . , k∗ −
1} have been taken (thus the locations are now fixed). Let S = (ST

1 , . . . , ST
n ) ∈ (Dkmax)n

such that, for each i ∈ {1, . . . , n}, ∃Ki ⊆ {k∗, . . . , kmax} which defines a maximal se-

quence of samples in Si, with anchor point pi(k
∗−1). Then S is a local minimizer of the

map (s1
(k∗), . . . , sn

(kmax)) 7→ H(S) over ΩRg
(≥k∗). Furthermore, if I(MC(S)) = n∗kmax,

then S is a global minimum of the constrained problem.
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4.6 The Generalized Multicircumcenter Algorithm

Given our discussion in the previous sections, here we synthesize coordination

algorithms to find the optimal trajectories of the correlation disk-covering H with and

without range-constraints. The design of these strategies is based on the characteriza-

tions stated in Propositions 4.4.7 and 4.5.12 for the unconstrained and the constrained

cases, respectively.

Table 4.1 presents the Generalized Multicircumcenter Algorithm, a

modification of the well-known Lloyd algorithm for data clustering, by which the network

may find a minimizer of H over ΩRg
(≥k∗) for some k∗ ∈ {1, . . . , kmax}. With slight

adjustments, the same algorithm works for the unconstrained case.

Goal: Find a minimum of H over ΩRg
(≥k∗)

Input: (i) Sample interval [k∗, kmax]
(ii) Anchor points, pi(k

∗ − 1), i ∈ {1, . . . , n}
(ii) Initial trajectory, S{0} = (S

{0}
1 , . . . , S

{0}
n )T ∈ ΩRg

(≥k∗), with S
{0}
i

the ith agent trajectory
Assume: (i) Ri has a communication radius, R ∈ R>0 which is large enough

to communicate its trajectory to any other agents whose samples are
neighbors in MC
(ii) If k∗ > 1, Ri knows the locations of all past samples which neighbor
any future samples of Ri in MC

For j ∈ Z>0, each robot Ri, i ∈ {1, . . . , n} executes synchronously

1: send all future elements of S
{j−1}
i to robots within a distance of R

2: calculate MCi
(k)(S{j−1}) for k ∈ {k∗, . . . , kmax}

3: run gradient descent of HfWi

on future samples only to find a centered agent trajectory,

S
{j}
i ∈ ΩRg

i

(≥k∗)

Table 4.1: Generalized Multicircumcenter Algorithm.

Figure 4.5 shows results of a simulation of the Generalized Multicircum-

center Algorithm, leaving out the initial anchor points to illustrate optimization

over the set of all initial positions. The convergence properties of the algorithm are

characterized in the following result.
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Proposition 4.6.1 (Convergence of the Generalized Multicircumcenter Al-

gorithm) The Generalized Multicircumcenter Algorithm is distributed over

the partition MC(S{j}), meaning that at step j + 1, Ri need only communicate with

Ri′ for each i′ ∈ {1, . . . , n} such that MCi
(k)(S{j}) adjacent to MCi′

(k′)(S{j}) for some

k, k′. Furthermore, S{j} ∈ ΩRg
(≥k∗), for all j ∈ Z>0. As j → ∞, S{j} approaches a

S∗ ∈ (Dkmax)n, and if S∗ 6∈ Sunique, then S∗ is a minimizer of H over ΩRg
(≥k∗).
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Figure 4.5: Simulation of 20 iterations of the Generalized Multicircumcenter Algorithm
with no initial anchor points. (a) Shows the initial trajectory S{0}. (b) Shows the final
trajectory S{20}. In each case, the associated maximal correlation partition is drawn, with
the different colors representing different agents and different intensities of each color
representing the timestep at which the given sample is to be taken (more intense colors
represent later timesteps). The dashed lines show the path each agent will take. (c) Shows
the value of H(S{j}) as a function of j.

Remark 4.6.2 (Limit points should be unique) We suspect that the limit points of

the Generalized Multicircumcenter Algorithm are in Sunique except for initial

conditions in a set of measure zero, but establishing this fact is challenging because of

the delicate interplay between the objective function and the constraints. Extensive

simulations have reinforced our idea that this intuition is correct. •

We next turn our attention to an adaptive approach to optimal path planning.

Before moving to take the kth sample, an intelligent network of robotic sensors might

receive updated information from an external source (a change in the environment or

network composition, or even human input). One or more of the agents may switch

from sensing mode to actuation mode, or back. The Generalized Multicircumcen-
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ter Algorithm directly applies to such a situation, because it optimizes over only

those sample locations not yet fixed. The network will arrive at a trajectory which

minimizes the maximum predictive variance over all trajectories feasible to the network

moving forward. Table 4.2 describes the Sequential Generalized Multicircum-

center Algorithm for performing this sequential optimization. The convergence

of the Sequential Generalized Multicircumcenter Algorithm follows from

Proposition 4.6.1, and Figure 4.6 depicts an illustrative example.

Goal: Sequentially updated optimization.

Input: (i) Initial trajectory, S{0} = (S
{0}
1 , . . . , S

{0}
n )T ∈ ΩRg, with S

{0}
i the ith

agent trajectory
(ii) Status information about correlation structure, domain boundaries,
and network composition

Initialization

1: network calculates the optimal trajectory, S, via the Generalized Multicircumcenter

Algorithm

For k ∈ {1, . . . , kmax}
1: move to kth location in optimal trajectory and take kth sample

2: if status input changed since previous optimization then

3: run the Generalized Multicircumcenter Algorithm to calculate a new optimal

network trajectory over ΩRg
(k+1), holding the sample locations at steps 1, . . . , k fixed

4: end if

Table 4.2: Sequential Generalized Multicircumcenter Algorithm

We next turn our attention to an entirely different strategy for optimal design:

adaptive sampling by gradient methods.
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Figure 4.6: Evolution of three steps of the Sequential Generalized Multicircumcenter
Algorithm with n = 8 robots, kmax = 5 steps, and Gaussian correlation. In (a), the initial
trajectory is calculated from the initial anchor points pi(0). In (b), the first set of samples
have been taken, and R6 has dropped out to perform another task (for this simulation,
R6 remains stationary during this task). The figure shows the result of the Generalized
Multicircumcenter Algorithm as run by the remaining 7 agents over timesteps {2, . . . , kmax}.
In (c), after the second set of samples have been taken, R6 joins the network again. The
figure shows the result of optimizing over steps {3, . . . , kmax} with all agents. In all three
plots, the anchor points and any past samples are shown as solid triangles, with solid
lines connecting the initial anchors to the first samples, the optimized samples at steps
{k∗, . . . , kmax} are empty triangles, with dashed lines connecting each agent trajectory. The
last sample location of the dropped agent is circled. In each case, the associated maximal
correlation partition is drawn, with the different colors representing different agents and
different intensities of each color representing the timestep at which the given sample is
to be taken (more intense colors represent later timesteps).
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Part II

A hybrid network for gradient

based adaptive sampling

63



Here, we relax some of the assumptions made in Part I, and consider instead

a gradient based adaptive design approach. Adaptive design is the sequential process

of choosing sampling locations which maximize the gain in information at each step.

Using adaptive design and seeking relative optima via gradient descent allow us to con-

sider a larger class of random field, in which uncertainty propagates through unknown

parameters on the mean and covariance as well as the through the joint distribution of

samples and predictions.

Of the existing work on distributed sensing tasks, those which consider ran-

dom field models do so under an assumption of known covariance. To our knowledge

this is the first work in the cooperative control arena which allows for uncertainty in

the covariance of the spatiotemporal structure as well as the mean. We make use of

a model derived in [43], which is the only spatial model we are aware of that makes

a direct analytical connection between uncertainty in the covariance and the resulting

predictive uncertainty. The key here being analytical. Aside from this model or deriva-

tives, the common practice when confronted with unknown covariance is to either run a

separate estimation procedure and then treat the covariance as known, or to use simula-

tion methods such as Markov Chain Monte Carlo to estimate the posterior distribution.

The work [80] addresses a method of choosing sample locations from a discrete space

which are robust to misspecification of the covariance. Another method for handling

unknown covariance has recently grown out of the exploration-exploitation approach of

reinforcement learning (see, e.g. [75]). The work [45] applies this approach to the spatial

estimation scenario by breaking up the objective into an exploration component which

focuses on learning about the model in a discretized space and an exploitation compo-

nent in which that knowledge is put to use in optimizing for prediction. Exploration

is handled by discretizing the unknown parameters and developing a mixture model

in which the parameters are known. Here, we provide a result in which no discretiza-

tion is necessary and we take full advantage of the mobile capabilities of networks of

autonomous sensors. We begin by describing some assumptions on the network and
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statistical model, and preliminary results which we make use of in the sequel.

4.6.1 Model assumptions

We next turn our attention to assumptions on the statistical model. Through-

out the next two chapters, we use the Kitanidis model as our base, although extension

to kriging is possible (see Remark 4.6.3). We assume a finite correlation range in space,

r ∈ R>0, and in time, rt ∈ R>0, such that if ‖si − sj‖ ≥ r or |ti − tj | ≥ rt, then

Kij = Kji = 0. For gradient calculations, we also assume that the correlation map

si 7→ Kij is C2 (which implies that sj 7→ Kij is also C2). Note that we make no restric-

tions on the correlation function itself, beyond the finite range and continuous spatial

differentiability.

Remark 4.6.3 (Extension of subsequent results to Kriging) The simple and

universal kriging results are simplified versions of our overall model, and results from

the rest of this paper may be applied to those models with minimal modifications. An

exception is that when approximating VarUK using subsets of measurements, care must

be taken to ensure well-posedness. Specifically, an assumption that n > p is required to

ensure that the matrix E is nonsingular. •

4.6.2 Network assumptions

In order to provide a stable communication structure, to allow for the complex

interaction of sample information over the entire spatial domain, and to reduce the com-

putational burden on the mobile units, we introduce here the hybrid network comprised

of mobile sensors and static nodes. Assume that each node has a limited communica-

tion radius, R ∈ R>0, and that they are positioned so that each one can communicate

with its Voronoi neighbors. We will also require that the Ni can communicate with any

robotic agents within a certain range, RN:R ∈ R>0, of the Voronoi cell, Vi(Q). In order
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to ensure this, we assume that the communication range is,

R ≥ max
i∈{1,...,m}

{CR(Vi(Q))} + RN:R. (4.16)

The actual radius RN:R will differ between Chapters 5 and 6. Figure 4.7 illustrates the

communication requirements of the hybrid network.

q1

q2

q3

q4

p1

Figure 4.7: Illustration of the communication requirements of the hybrid network. The
static nodes are depicted as filled boxes, with the Voronoi partition boundaries as solid
lines. Each node can communicate with their Voronoi neighbors, and with any mobile
robot within a radius of RN:R (dotted circle) of the Voronoi cell. For example, q2 needs to
be able to communicate with p1 in the above plot.

The robots can sense the positions of other robots within a distance of 2umax.

At discrete timesteps, each robot communicates the sample and spatial position to static

nodes within communication range, along with the positions of any other sensed robots.

The nodes then compute control vectors, and relay them back to robots within com-

munication range. The implementation does not require direct communication between

robots. We refer to this network model as N , and the communication network of just

the nodes as Q.

4.6.2.1 Voronoi contraction for collision avoidance

We begin by specifying the region of allowed movement for the robotic agents.

In addition to the maximum velocity and the restriction to D, we impose a minimum

distance requirement between robots. Beyond the benefit of collision avoidance, this
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restriction ensures that even under the assumption of zero sensor error, the posterior

predictive variance is well-defined over the space of possible configurations.

Let ω ∈ R>0 be a desired buffer width, assumed to be small compared to

the size of D. To ensure that the distance between two robots is never smaller than

ω, we introduce a contraction of the Voronoi diagram. Consider the spatial loca-

tions P = (p1, . . . , pn) of the n robotic agents at the kth timestep. Define Ωi
(k) =

(Vi(P ))ω/2∩B(pi, umax), where (Vi(P ))ω/2 denotes the ω
2 -contraction of Vi(P ). For each

j 6= i ∈ {1, . . . , n}, we have d(Ωi
(k), Ωj

(k)) ≥ ω. Between timesteps k and k + 1, we

restrict Ri to the region Ωi
(k). Figure 4.8 shows an example in R

2 of this set. The

umax p1

p2

p3

Ω
(k)
1

ω
2

Figure 4.8: Example contraction region Ω1
(k) (dashed) with Voronoi partition boundaries

(solid) for comparison.

region of allowed movement of all robotic agents at timestep k ∈ Z≥0 is then the Carte-

sian product of the individual restrictions, i.e., Ω(k) =
∏n

i=1 Ωi
(k) ⊂ (Rd)n. Note that

each Ωi
(k) is the intersection of sets which are closed, bounded, and convex, and hence

inherits this properties, which are in turn also inherited by Ω(k).

4.6.3 Projected gradient descent

Next, we describe the constrained optimization technique known as projected

gradient descent [5] to iteratively find the minima of an objective function F : R
m →
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R≥0. Let Ω denote a nonempty, closed, and convex subset of R
m, m ∈ Z>0. Assume

that ∇F is globally Lipschitz on Ω. Consider a sequence {sk} ∈ Ω, k ∈ Z>0, which

satisfies

sk+1 = projΩ (sk − ak∇F (sk)) , s1 ∈ Ω, (4.17)

where the step size, ak, is chosen according to the Line Search Algorithm described

in Table 4.3, evaluated at s = sk.

Name: Line Search Algorithm

Goal: Determine step size for algorithm (4.17)
Input: s ∈ Ω
Assumes: τ, θ ∈ (0, 1), max step αmax ∈ R>0

Output: α ∈ R≥0

1: α = αmax

2: repeat

3: snew = projΩ (s − α∇F (s))

4: ̟ = θ
α
‖s − snew‖2 + F (snew) − F (s)

5: if ̟ > 0 then

6: α = ατ

7: end if

8: until ̟ ≤ 0

Table 4.3: Line Search Algorithm.

Here the grid size τ determines the granularity of the line search. The tolerance

θ may be adjusted for a more (larger θ) or less (smaller θ) strict gradient descent. With

θ > 0, the Line Search Algorithm must terminate in finite time. The Armijo

condition (step 8) ensures that the decrease in F is commensurate with the magnitude

of its gradient. A sequence {sk}∞k=1 obtained according to Equation (4.17) and Table 4.3

converges in the limit [5] as k → ∞ to stationary points of F .
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4.6.4 Distributed computational tools

Next we switch gears and discuss some useful tools for distributed algorithms.

Consider a network, Q, of m nodes with limited communication capabilities. We write

Q = (Q, E), where Q = (q1, . . . , qm) denotes the vector of nodes, and E ∈ F({1, . . . , m}×
{1, . . . , m}) the set of communication edges (i.e. (i, j) ∈ E if qi and qj can communicate).

We say that two nodes within the graph are connected if there is at least one sequence

of edges, Lij = {l1, . . . , lk} ⊂ {1, . . . , m}, k ∈ Z≥0, with (i, l1) ∈ E, (lk, j) ∈ E, and

(lk′ , lk′+1) ∈ E for all k′ ∈ {1, . . . , k− 1}. We are only concerned with connected graphs

(i.e. graphs in which every vertex is connected to every other vertex). We will make

use of the degree, degQ, diameter, diamQ, and number of edges, EdQ of Q defined as,

degQ = max
i∈{1,...,m}

degQ(i) diamQ = max
i,j∈{1,...,m}

|Lmin(i, j)| EdQ = |E|, (4.18)

where we have used Lmin(i, j) to denote a minimum length path between vertices i and

j, and degQ(i) = | {j ∈ {1, . . . , m} | (i, j) ∈ E} | the degree of node i.

Here we briefly describe some tools for distributed computations. Let aij ∈
{0, 1}, i, j ∈ {1, . . . , m} be 1 if (i, j) ∈ E, and 0 otherwise. Let b = (b1, . . . , bm)T ∈ R

m,

C = [cij ] ∈ R
m×m, and assume node i knows bi and the ith row of C. Additionally

assume that cii 6= 0 and for i 6= j, cij 6= 0 iff i and j are communication neighbors.

An example of such matrix vector pairs are the matrix K and vector k from Propo-

sition 2.5.3, for the appropriate graph. Under these assumptions the following results

hold.

JOR: The network can compute the vector y = C−1b via a distributed Jacobi over-

relaxation algorithm [17, 6], formulated as the discrete-time dynamical system,

yi(l + 1) = (1 − h)yi(l) −
h

cii

(∑

j 6=i

cijyj(l) − bi

)
, (4.19)

for l ∈ Z≥0 and i ∈ {1, . . . , m}, where y(0) ∈ R
m and h ∈

(
0, 2

λmax(C)

)
. At the

end of the algorithm, node i knows the ith element of C−1b.
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Discrete-time average consensus: The network can compute the arithmetic mean

of elements of b via the discrete dynamical system [64],

xi(l + 1) = xi(l) + ǫ
∑

j 6=i

aij(xi(l) − xj(l)), x(0) = b,

where ǫ ∈ (0, 1
degQ

). At the end of the algorithm, all nodes know
Pn

i=1 bi

m .

Maximum consensus: The network can calculate the maximum value of elements of

b via a leader election algorithm [7]. Each node sends the current estimate of the

maximum to all neighbors, then updates its estimate. If the process is repeated a

number of times equal to the diameter of the network, then every node will know

the maximum.

The first two results above are only exact asymptotically, but convergence is exponential

with time.
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Chapter 5

Average error minimization

In this chapter we summarize the work published in the conference papers [32]

and [36], and the follow-up paper [34] (currently under revision). In it, we consider

the average predictive variance as objective function, under the kriging and Kitanidis

models. We develop a method of sequential optimization by projected gradient descent

which may be executed in a distributed manner by the hybrid network of static nodes

and robotic agents.

5.1 Problem statement

Here we outline specific assumptions on the model for the group of robotic

agents and static nodes, and detail the overall objective. Since the focus of this work

is the online planning of optimal sampling paths, any bounded delay incurred by net-

work communication or calculations may be incorporated into this maximum radius

of movement between sampling instants. Bounds on such delay may be inferred from

the complexity analysis in Section 5.3.1. Each node will need to be able to communi-

cate with any robot which may be within correlation range of the points in its Voronoi

region at the following timestep. To that end, we assume that RN:R = r + umax in

Equation 4.16.
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5.1.1 The average variance as objective function

For predictions over a region in space and time, the average variance is a

natural measure of uncertainty. Using Proposition 2.5.1, we define the average over the

spatiotemporal region of the posterior predictive variance,

A = ϕ(Y, X)

∫

D

∫

T
φ((s, t); X) dt ds. (5.1)

Here, Y ∈ (Rn)kmax is a sequence of samples taken at discrete times {1, . . . , kmax},
kmax ∈ Z>0, at space-time locations X ∈ (Dn

e )kmax . We take T = [1, kmax] to be the

time interval of interest, indicating that the goal of the experiment is to develop an

estimate of the space-time process over the entire duration. Other time intervals may

be of interest in different experiments. Their use follows with minimal changes to the

methods described here.

One would like to choose the sample locations that minimize A. Since samples

are taken sequentially, with each new set restricted to a region nearby the previous, and

since the sigma mean depends on the actual values of the samples, one cannot simply

optimize over (Dn
e )kmax a priori.

Consider, instead, a greedy approach in which we use past samples to choose

the positions for the next ones. At each timestep we choose the next locations to

minimize the average posterior variance of the predictor given the data known so far.

In Section 5.2, we develop a sequential formulation of the average posterior predictive

variance and discuss its amenability to distributed implementation over the network N .

5.2 Distributed criterion for adaptive design

In this section we develop an optimality criterion to maximally reduce the

average predictive variance at each timestep. We begin by introducing some notation

that will help us make the discussion precise.

Let Y (k) ∈ R
n, k ∈ {1, . . . , kmax}, denote the samples taken at timestep k,

at space-time positions X(k) ∈ Dn
e . Let Y (k1:k2) =

(
Y (k1), . . . , Y (k2)

)
∈ R

n(k2−k1+1),
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k1 < k2, denote the vector of samples taken over a range of timesteps, at positions

X(k1:k2) =
(
X(k1), . . . , X(k2)

)
∈ Dn(k2−k1+1)

e . At step k, the samples Y (1:k) have already

been taken. We are interested in choosing spatial locations, P ∈ Ω(k), at which to take

the next samples. To that end, let X(1:k+1) : Ω(k) → Dn(k+1)
e map a new set of spatial

locations to the vector of spatiotemporal locations which will result if the (k + 1)st

samples are taken there, i.e., X(1:k+1)(P ) =
(
X(1:k), (P, k + 1)

)
. The adaptive design

approach is then to use the samples that minimize the average prediction variance so

far,

A(k)(P ) = ϕ
(
Y (1:k+1), X(1:k+1)(P )

) ∫

D

∫

T
φ
(
(s, t); X(1:k+1)(P )

)
dt ds. (5.2)

This sequential formulation of the problem allows us to use past measurements without

worrying about the ones at steps after k + 1. However, efficient distributed implemen-

tation still suffers from three major obstacles. First, the spatially distributed nature of

the problem implies that not all sample locations are accessible to any given agent at

any given time. Second, inversion of the n(k + 1) × n(k + 1) correlation matrix, which

grows with k2, quickly becomes an unreasonable burden. Finally, the sigma mean also

depends on the actual values of the samples at step k + 1, which are not known until

the measurements are taken. We handle these problems through a series of approxima-

tions, first to the sigma-conditional variance in Section 5.2.1 then to the sigma mean

in Section 5.2.2, resulting in an approximation of A(k)(P ) which is both distributed in

nature and computationally efficient.

5.2.1 Upper bound on sigma-conditional variance

We seek an efficient approximation of the sigma-conditional variance term

φ
(
(s, t); X(1:k+1)(P )

)
in (5.2). As noted in Remark 2.5.2, φ represents the direct effect

of the sample locations on the predictive uncertainty (i.e., conditional on σ2). The

network of static nodes provides a convenient method for calculating the spatial average.

The average over the entire region may simply be written as the sum of averages over

each cell in the Voronoi partition generated by the static nodes. As those samples
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which are spatially near a given cell have the most influence on reducing the variance of

predictions there, we consider using local information only in these regional calculations.

Likewise, the interaction between current samples and those far in the past is minimal,

and we restrict attention to recent timesteps to avoid the problem of growing complexity.

The following proposition gives an approximation of the integrated sigma-conditional

variance which may be calculated by Q based on local information only.

Proposition 5.2.1 (Approximate integrated sigma-conditional variance) Let

XCor:j
(k+1)(P ) denote an ordering of the set of past or current space-time locations

correlated in space to Vj(Q) and in time to k + 1 such that

iF

(
XCor:j

(k+1)(P )
)

=
{

(s, t) ∈ iF

(
X(1:k+1)(P )

)
| d(s, Vj(Q)) < r and k + 1 − t < rt

}
.

Let φj
(k) : De × Ω(k) → R map a prediction location x ∈ De and a vector of potential

spatial locations to sample P ∈ Ω(k) to the sigma-conditional variance of a prediction

made at x using only the samples at space-time locations XCor:j
(k+1)(P ). Then the

following holds,

∫

D

∫

T
φ((s, t); X(1:k+1)(P )) dt ds ≤

m∑

j=1

∫

Vj(Q)

∫

T
φj

(k)((s, t); P ) dt ds.

Proof: Note that although XCor:j
(k+1)(P ) is not unique, the invariance of the

sigma-conditional variance to permutations of the sample locations ensures uniqueness

of φj

(
x; P

)
. The result follows from Proposition B.0.2.

Next we examine the other part of A(k), the sigma mean, and develop an

efficient approximation which may be calculated by the network.

5.2.2 Approximate sigma mean

In this section, we describe our approach to deal with the term ϕ in (5.2). Note

that the effect of the sigma mean on prediction is indirect, and its value has the same

influence on predictions regardless of the predictive location. As such, we do not use

spatially local approximations as we did for the sigma-conditional variance. However,
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to avoid the problem of complexity growth, we use samples from only a subset of the

timesteps. We discuss this next. Subsequently, we address the issue of unrealized sample

values by using a generalized least squares estimate.

5.2.2.1 Incorporating new data.

Here we consider minimizing the value of ϕ as calculated with samples from a

subset of timesteps. Let Iϕ
(k) ⊂ {1, . . . , kmax} denote an index set of sample steps used

in the approximation at step k. Since ϕ is invariant under permutations of the sample

vector, the specific ordering is irrelevant. There are various reasons for using different

sample subsets, Iϕ
(k), depending on the field under study, the objectives of the experi-

ment, and the desired accuracy of optimization. We present here three specific subsets

which trade off accuracy for computational burden, followed by a general formulation

which allows for any one of the three. Proposition 5.2.2 serves as the basis for choosing

the samples to include in an approximation of the sigma mean. The proof follows from

Equation (B.1c) in Lemma B.0.3 in Appendix B.

Proposition 5.2.2 (Approximate sigma mean) Let Y1 ∈ R
n1 and Y2 ∈ R

n2 denote

two sample vectors of lengths n1, n2 ∈ Z>0, and let Y = (Y1, Y2). Let ϕ2 = E[σ2|Y2]

denote the value of the sigma mean conditional on only the samples in Y2, and ϕ =

E[σ2|Y ] the value conditional on the whole sample vector, Y . Then,

ϕ = ϕ2

( ν + n2 − 2

ν + n1 + n2 − 2
+

(Y1 − E[Y1|Y2])
T Var[Y1|Y2]

−1(Y1 − E[Y1|Y2])

ν + n1 + n2 − 2

)
,

where E[Y1|Y2] and Var[Y1|Y2] denote the conditional expectation and variance, respec-

tively, of Y1 given Y2 (see Lemma B.0.1 in Appendix B).

This result contains some important implications with respect to the optimization prob-

lem. First, if we use the full value of ϕ(Y (1:k), X(1:k)(P )) = E[σ2|Y (1:k)] in our optimality

metric at each timestep, and all steps are optimized with respect to this measure, the

new information gained at later steps diminishes significantly, while the amount of effort
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required to glean that information increases. Second, the additional information added

by including Y1 is directly related to how well Y1 may be estimated from Y2.

These observations lead us to suggest three possible strategies for choosing

samples to use in the approximation of the sigma mean. The diminishing returns suggest

using an exploration-exploitation approach [75]. Here a block of tblk ∈ {1, . . . , kmax}
sample steps at the beginning of the experiment designates an exploration phase, during

which the sigma mean is taken into account in the optimization. Subsequent iterations

constitute an exploitation phase in which the sigma mean is treated as a fixed constant

and we optimize only the sigma-conditional variance. The sigma mean at step k is

approximated using the sample steps,

Iexplore
(k) = {1, . . . , k} ∩ {1, . . . , tblk}. (5.3)

This is a very efficient method, but suggests the question of how big to make tblk

(especially tricky in online optimization), and may place undue weight on the initial

phase of the experiment.

An alternative method is to always use the most recent samples block of sam-

ples. We call this the recent block method. Here we approximate the sigma mean at

step k from sample steps,

Irecent
(k) = {max{1, k − tblk + 1}, k}, (5.4)

i.e., those samples correlated in time to timestep k. This increases the computational

burden over the exploration-exploitation approach, but ensures that each step takes the

unknown covariance into account in optimization. Since the maximum size of correlation

matrix required is ntblk×ntblk, the complexity of the problem does not grow unbounded

with k. Here the choice of block size is somewhat arbitrary.

A third choice is to use select blocks of tblk timesteps for scheduled updates

of the sigma mean. Let tskip ∈ Z>0 be a fixed number of timesteps to skip between

updates. We call this the block update method. The advantage of this method in

reducing computational complexity comes from an assumption that tskip > ⌈rt⌉ − 1 so
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that subsequent blocks are not correlated. To simplify notation, let tcycle = tblk + tskip.

The sigma mean is approximated with samples from steps,

Iupdate
(k) = {1, . . . , k} ∩ {1, . . . , tblk, tcycle + 1, . . . , tcycle + tblk, . . . }. (5.5)

Note that using the block update approximation means alternating between the explo-

ration and exploitation phases described above. We will show that during the explo-

ration phases the complexity of this approach is only a constant number of operations

greater than that of the recent block method, while it requires no calculation during

the exploitation phases. The computational burden of this approach is thus somewhere

between the other two depending on the frequency of updates.

All three methods listed above involve one or more blocks of samples of tblk

timesteps. Since data sampled at different time lags provide different information about

σ2, we assume that tblk ≥ ⌊rt⌋ + 1. Here we present some notation and results which

are valid for each of the methods. Table 5.1 gives an example of how the following

items might look for the different methods. For reasons which will become apparent

later, we will break up the sample blocks into previous ones which have been completed

and the current one in progress (if there is one in progress). Let Bp
(k) =

⌊
|Iϕ

(k)|
tblk

⌋

denote the number of previously completed sample blocks at step k. If Bp
(k) = 0, let

Yp
(k) = Xp

(k) = ∅. Otherwise, let the previous blocks be defined by

Yp
(k) =

(
Y1, . . . , YBp

(k)

)
, Xp

(k) =
(
X1, . . . , XBp

(k)

)
,

where the block vectors Yi and Xi each correspond to a block of tblk samples. Note

that in the exploration-exploitation approach, we have only Y1 and X1, while the recent

sample method will always yield Bp
(k) = 0. Let nc

(k) = n ∗ |Iϕ
(k) ∩ Irecent

(k)| denote the

number of samples taken so far in the current block. If nc
(k) = 0, let Yc

(k) = Xc
(k) = ∅,

otherwise let the current block be defined by,

Yc
(k) = Y (k−nc

(k)

n
+1:k), Xc

(k) = X(k−nc
(k)

n
+1:k).
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k = 1 2 3 4 5 6 7 8 9

exploration-exploitation method

Yc
(k) = Y (1) Y (1:2) Y (1:3) ∅ ∅ ∅ ∅ ∅ ∅

Yp
(k) = ∅ ∅ ∅ Y1 Y1 Y1 Y1 Y1 Y1

recent sample method

Yc
(k) = Y (1) Y (1:2) Y (1:3) Y (2:4) Y (3:5) Y (4:5) Y (5:7) Y (6:8) Y (7:9)

Yp
(k) = ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

block update method

Yc
(k) = Y (1) Y (1:2) Y (1:3) ∅ ∅ Y (6) Y (6:7) Y (6:8) ∅

Yp
(k) = ∅ ∅ ∅ Y1 Y1 Y1 Y1 Y1 (Y1, Y2)

Block 1 1 1 skip skip 2 2 2 skip

Table 5.1: Example of elements used by each method of approximating ϕ with rt = 2.5,
and tblk = 3. For the block update method, tskip = 2 (thus tcycle = 5). Here Yc denotes the
vector of samples in the current block, and Yp denotes the vector of samples in previous

blocks, both give the values after the kth samples have been incorporated. The completed
block vectors are given by Y1 = Y (1:3) and Y2 = Y (5:7), so that, e.g., using the block update
method at timestep 7 yields, ϕblk

(7) = E[σ2|(Y1, Y
(6:7))].

Let Ki, Fi, and Ei, respectively Kc
(k), Fc

(k), and Ec
(k) denote the values of

the matrices K, F, and E as calculated from the space-time locations Xi, respectively

Xc
(k). For k such that nc

(k) = 0, let Kc
(k) = Fc

(k) = ∅, and let Ec
(k) = 0p×p. The

following result shows how a running estimate of the sigma mean may be calculated

from Yc
(k) and Xc

(k).

Lemma 5.2.3 (Sequential formulation of the sigma mean) Let ϕ̃k denote the

posterior predictive mean of σ2 conditional on the sample vector Yϕ
(k) =

(
Yp

(k), Yc
(k)
)
.

We may write,

ϕ̃k =
1

ν + ntblkBp
(k) + nc

(k) − 2

[
qν + βT

0 K−1
0 β0 +

Bp
(k)∑

i=1

Υi + Υc
(k)−

(
K−1

0 β0 +

Bp
(k)∑

i=1

Γi + Γc
(k)
)T (

K−1
0 +

Bp
(k)∑

i=1

Ei + Ec
(k)
)−1(

K−1
0 β0 +

Bp
(k)∑

i=1

Γi + Γc
(k)
)]

,

where

Υi = Y T
i K−1

i Yi Υc
(k) = (Yc

(k))T (Kc
(k))−1Yc

(k)

Γi = FiK
−1
i Yi Γc

(k) = Fc
(k)
(
Kc

(k)
)−1

Yc
(k).
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Here, Υc
(k), and Γc

(k) are taken to be 0 if nc
(k) = 0.

Proof: Using Lemma B.0.3, the posterior mean of σ2 from data Yϕ
(k) may be

restated as in Equation (B.1b). Since tskip ≥ ⌊rt⌋, the sample blocks Yi are uncorrelated

to each other, and uncorrelated to Yc
(k), which implies that the correlation matrix of

all samples is block diagonal. The result follows.

Lemma 5.2.3 demonstrates how an estimate of the sigma mean at step k can

be built from previous calculations. If the values of Υi, Γi, and Ei have been calculated

for all previous update blocks and their sums stored, the network need only calculate

Υc
(k), Γc

(k), and Ec
(k) from recent information and assemble the parts of ϕ̃k.

The three approximation methods mentioned here trade off computational

complexity for accuracy. Using any one of these three methods, we avoid computational

complexities which grow out of proportion to the information gain, however we still have

the problem that the sigma mean includes sample values which have not been taken yet.

We address this in the next section.

5.2.2.2 Approximating unrealized sample values.

While seeking to optimize the (k + 1)st set of measurements, we would like

to incorporate the effect of their locations on the posterior variance, but the actual

values have not yet been sampled. Our approach is to use a generalized least squares

approximation of Y (k+1) given only the samples used in ϕ̃k. We describe this in detail

in the following result. The proof is in Appendix B.

Proposition 5.2.4 (Generalized least squares estimate of sigma mean) Let

ŶLS
(k) : Ω(k) → R

n map a vector of spatial locations P ∈ Ω(k) to the generalized least

squares estimate, based on the sample vector Yϕ
(k), of a vector of samples to be taken
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at space-time positions (P, k + 1). Now, let ϕ̂(k+1) : Ω(k) → R be defined by

ϕ̂(k+1)(P ) = ϕ̃k if nc
(k+1) = 0, otherwise,

ϕ̂(k+1)(P ) =
1

ν + ntblkBp
(k+1) + nc

(k+1) − 2

[
qν + βT

0 K−1
0 β0 +

Bp
(k)∑

i=1

Υi + Υc
(k)−

(
K−1

0 β0 +

Bp
(k)∑

i=1

Γi + Γc
(k)
)T (

K−1
0 +

Bp
(k)∑

i=1

Ei + Ec
(k+1)(P )

)−1×

(
K−1

0 β0 +

Bp
(k)∑

i=1

Γi + Γc
(k)
)]

,

where Ec
(k+1)(P ) denotes the matrix E as calculated with space-time location vector

Xc
(k+1)(P ) =

(
Xc

(k), (P, k + 1)
)
. After the new samples, Y (k+1) have been taken at

locations (P, k+1), let yLS
(k) : Ω(k) → R

n denote the estimation error, i.e., yLS
(k)(P ) =

Y (k+1) − ŶLS
(k)(P ). If nc

(k+1) = 0 we have ϕ̃k + 1 = ϕ̂(k+1)(P ). Otherwise we may

write,

ϕ̃k + 1 =
ϕ̃k(yLS

(k)(P ) − 2µ2|1)
T Var[Y (k+1)|Yϕ

(k)]−1(yLS
(k)(P ))

ν + nBp
(k+1) + nc

(k+1) − 2
+

+ ϕ̂(k+1)(P ), where

µ2|1 = (F2 − F1K
−1
1 K12)

T (E1 + K−1
0 )−1

(
F1K

−1
1 Y1 + K−1

0 β0

)
.

In other words, ϕ̃k + 1 may be estimated by ϕ̂(k+1)(P ), and the estimation is exact if

Y (k+1) = ŶLS
(k)(P ).

5.2.3 The aggregate average prediction variance and its smoothness

properties

Building on the results from Sections 5.2.2 and 5.2.1, we define here the aggre-

gate average prediction variance Ã(k). Unlike A(k), the function Ã(k) may be computed

efficiently in a distributed manner over the network N . The following result is a direct

consequence of Propositions 5.2.1 and 5.2.4.

Proposition 5.2.5 (Spatiotemporal approximation for distributed implemen-

tation) Let Ã(k)
j : Ω(k) → R be defined by
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Ã(k)
j(P ) = ϕ̂(k+1)(P )

∫

Vj(Q)

∫

T
φj

(k) ((s, t), P ) dt ds.

Under the assumption that the error term from Proposition 5.2.4 satisfies,

lim
k→∞

ϕ̃k(yLS
(k)(P ) − 2µ2|1)

T Var[Y (k+1)|Yϕ
(k)]−1(yLS

(k)(P ))

ν + nBp
(k+1) + nc

(k+1) − 2
= 0,

then Ã(k)(P ) =

m∑

j=1

Ã(k)
j(P ) satisfies lim

k→∞
Ã(k)(P ) ≥ lim

k→∞
A(k)(P ).

Remark 5.2.6 (Diminishing error) Note that the assumption of diminishing error

in the sigma mean approximation is not unjustified since each step optimizes for infor-

mation gain. The denominator of the fraction continues to grow while the numerator

is likely to plateau at some threshold. Under this assumption the comparison between

Ã(k)(P ) and A(k)(P ) is somewhat stronger than the limiting result shown in Propo-

sition 5.2.5. The quantity Ã(k)(P ) is comprised of the product of two terms. The

approximate sigma mean is very close to the sigma mean in the limit, while the approx-

imate sigma-conditional variance is an upper bound to the actual sigma-conditional

variance for all k. •

Next, we characterize the smoothness properties of Ã(k). Let ∇il denote the

partial derivative with respect to pil, the lth spatial component of the spatial position of

Ri. We denote by ∇i the partial derivative with respect to pi, i.e., ∇i = (∇i1, . . . ,∇id)
T .

Thus the gradient of Ã(k) at location P may be represented as the n ∗ d-dimensional

vector
(
∇T

1 Ã(k)(P ), . . . ,∇T
n Ã(k)(P )

)T
. Given a matrix A, we denote by ∇ilA the

component-wise partial derivative of A. The proof of the following result amounts to a

careful bookkeeping of the smoothness properties of the various ingredients involved in

the expressions.

Lemma 5.2.7 (Gradient of sigma-conditional variance) If f1, . . . , fp are C1 with

respect to the spatial position of their arguments, then the map P 7→ φj
(k)(x, P ) is C1

on Ω(k) with partial derivative,
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∇ilφj
(k)(x, P ) = −2kTK−1∇ilk + kTK−1∇ilKK−1k − (f(x) − FK−1k)T×

(
K−1

0 + E
)−1 ∇ilE

(
K−1

0 + E
)−1

(f(x) − FK−1k)+

2(f(x) − FK−1k)T
(
K−1

0 + E
)−1 ∇il(f(x) − FK−1k), with

∇il(f(x) − FK−1k) = −∇ilFK−1k − FK−1∇ilk + FK−1∇ilKK−1k,

∇ilE = ∇ilFK−1FT + FK−1∇ilF
T − FK−1∇ilKK−1F,

where the matrices K, E, and F and the vectors k, are calculated from the space-time

location subvector, XCor:j
(k+1)(P ).

If, in addition, the partial derivatives of f1, . . . , fp are C1 with respect to the

spatial position of their arguments, then the map P 7→ ∇iφj
(k)(x, P ) is globally Lipschitz

on Ω(k).

It is worth noting that the matrix ∇ilF is nonzero only in column i. The matrix

∇ilK is nonzero only in row and column i. Additionally, due to the finite correlation

range in space and time, only those elements corresponding to correlation with other

measurement locations x = (s, t) which satisfy ‖pi−s‖ ≤ r and t > k+1−rt are nonzero.

Note that the value of ϕ̂(k+1)(P ) depends on P only through the matrix

Ec
(k+1), whose partial derivative is analogous to that of E in Lemma 5.2.7. This leads

us to the following result.

Lemma 5.2.8 (Gradient of sigma mean) If f1, . . . , fp are C1 with respect to the

spatial position of their arguments, then ϕ̂(k+1) is C1 on Ω(k) with partial derivative,

∇ilϕ̂
(k+1)(P ) =





0 if nc
(k+1) = 0

−Ψ(P )T ∇ilEc
(k+1)(P )Ψ(P )

ν+ntblkBp
(k+1)+nc

(k+1)−2
otherwise,

where, Ψ(P ) =
(
K−1

0 +

Bp
(k)∑

i=1

Ei + Ec
(k+1)(P )

)−1(
K−1

0 β0 +

Bp
(k)∑

i=1

Γi + Γc
(k)
)
.

Additionally, if the partial derivatives of f1, . . . , fp are C1 with respect to the spatial

position of their arguments, the gradient ∇ϕ̂(k+1) is globally Lipschitz on Ω(k).
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We are now ready to state the smoothness properties of Ã(k) and provide an

explicit expression for its gradient. This is a direct consequence of the lemmas above.

Proposition 5.2.9 (Gradient of approximate average variance) If f1, . . . , fp are

C1 with respect to the spatial position of their arguments, then Ã(k) is C1 on Ω(k) with

partial derivative,

∇iÃ(k)(P ) = ϕ̂(k+1)(P )

∫

Vj(Q)

∫

T
∇iφj

(k) ((s, t), P ) dt ds

+ ∇iϕ̂
(k+1)(P )

∫

Vj(Q)

∫

T
φj

(k) ((s, t), P ) dt ds.

Additionally, if the partial derivatives of f1, . . . , fp are C1 with respect to the spatial

position of their arguments, the gradient ∇Ã(k) is globally Lipschitz on Ω(k).

5.2.4 Distributed computation of aggregate average prediction vari-

ance and its gradient

Here, we substantiate our assertion that the aggregate average prediction vari-

ance and its gradient introduced in Section 5.2.3 are distributed over the network N .

Since V(Q) is a partition of the physical space, we may partition all sample locations

spatially by region. Thus for each (s, t) ∈ iF(X), there is exactly one j ∈ {1, . . . , m}
such that s ∈ Vj(Q). In order for the network to calculate Ã(k) and its gradient at P ,

it is sufficient for Nj to compute Ã(k)
j and ∇iÃ(k)

j for each robot in Vj(Q). Then Ã(k)

may be calculated via discrete-time average consensus (cf. Section 4.6.4), while ∇iÃ(k)

may be calculated from information local to Ri. From Propositions 5.2.5 and 5.2.9, it

can be seen that the calculation of Ã(k)
j and ∇iÃ(k)

j requires only local information in

addition to the (global) values of ϕ̂(k+1)(P ) and ∇iϕ̂
(k+1)(P ). Let us explain how these

two quantities can be calculated.

In this section we are concerned with elements of the vectors and matrices

associated with the current update block of ϕ̂(k+1)(P ). For i ∈ {1, . . . , nc
(k)}, let

xc:i
(k) and yc:i

(k) denote the ith element of the vector Xc
(k) and Yc

(k), respectively.

Let ILocal
(k) : Z>0 → F(Z>0) map the index of the node to the set of indices of samples
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in the current update block whose spatial position lies inside its Voronoi cell, and whose

time element is correlated to time k + 1,

ILocal
(k)(j) =




∅ ifnc

(k) = 0,

{
i ∈ {1, . . . , nc

(k)} | xc:i
(k) = (s, t) and s ∈ Vj(Q)

}
otherwise.

With a slight abuse of notation, define ILocal
(k+1)(j, P ) to be the equivalent set of indices

into the full vector of space-time measurement locations, Xc
(k+1)(P ), with the caveat

that ILocal
(k+1)(j, P ) = ∅ if nc

(k+1) = 0.

In the following results we assume that some (fixed) level of accuracy is known

a priori to all nodes so that an execution of the distributed JOR or average consensus

algorithms have some finite termination criterion. Unless stated otherwise, the execu-

tions of these iterative algorithms may take place in serial or parallel. Our first result

illustrates the parts of ϕ̂(k+1)(P ) which do not include the locations P .

Proposition 5.2.10 (Distributed calculations without P ) Assume that Nj, for

j ∈ {1, . . . , m}, knows xc:i
(k), yc:i

(k) for each i ∈ ILocal
(k)(j). After p + 1 executions of

the JOR algorithm and two subsequent consensus algorithms, Nj has access to,

#1: element i of (Kc
(k))−1Yc

(k) ∈ R, i ∈ ILocal
(k)(j) via JOR;

#2: coli
(
Fc

(k)(Kc
(k))−1

)
∈ R

p, i ∈ ILocal
(k)(j) via JOR;

#3: Γc
(k) ∈ R

p via consensus;

#4: Υ ∈ R
p via consensus.

Proof: Under the assumptions on N , the matrix Kc
(k), satisfies the requirements of

the distributed JOR algorithm. The results here build on this fact and the connectedness

of Q (which allows for consensus).

Next, we describe calculations that the network can execute when robotic

agents are at locations P .
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Proposition 5.2.11 (Distributed calculations with P ) Given P ∈ Ω(k), assume

that Nj, for j ∈ {1, . . . , m}, knows xc:i
(k) for each i ∈ ILocal

(k+1)(j, P ) and the results

of Proposition 5.2.10. Let Fc
(k+1)(P ) denote the matrix of basis functions evaluated

at locations Xc
(k+1). After p executions of JOR and p(p+1)

2 executions of consensus

algorithms, Nj has access to,

#5: coli
(
Fc

(k+1)(P )(Kc
(k+1)(P ))−1

)
∈ R

p, i ∈ ILocal
(k+1)(j, P ) via JOR;

#6: Ec
(k+1)(P ) ∈ R

p×p via consensus.

After these computations, Nj can calculate ∇ilEc
(k+1) for l ∈ {1, . . . , d}. Under the

assumption that Nj knows the quantities
∑Bc

(k)

i=1 Ei,
∑Bc

(k)

i=1 Υi, and
∑Bc

(k)

i=1 Γi, then Nj

can calculate ϕ̂(k+1)(P ) and ∇iϕ̂
(k+1)(P ) for each robot in {i ∈ {1, . . . , n} | pi ∈ Vj(Q)}.

Proof: The matrix Kc
(k+1)(P ) satisfies the requirements of the distributed JOR

algorithm by the assumptions on N . The itemized results follow from this, and the sym-

metry of the matrix Ec
(k+1)(P ). The calculation of ϕ̂(k+1)(P ) and its partial derivatives

follow from Lemmas 5.2.3 and 5.2.8.

5.3 Distributed optimization of the aggregate average pre-

dictive variance

Here we present a distributed projected gradient descent algorithm which is

guaranteed to converge to a stationary point of Ã(k) on Ω(k). The Distributed Av-

erage Variance Projected Gradient Descent Algorithm in Table 5.3 allows

the network of static nodes and mobile agents to find local minima of Ã(k) on Ω(k).

At timestep k, the nodes follow a gradient descent algorithm, defining a sequence of

configurations, {P †
l }, l ∈ Z>0, such that P

†
1 is P (k) ∈ Ω(k), the vector of current spatial

locations of the robotic agents and

P
†
l+1 = projΩ

(
P

†
l − α∇Ã|

P †
l

)
, α ∈ R≥0,
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Name: Distributed Average Variance Line Search Algorithm

Goal: Compute step size for projected gradient descent of Ã(k)

Input: Configuration, P = (p1, . . . , pn) ∈ Ω(k)

Assumes: (i) Connected network of static nodes
(ii) Nj knows pi, Ã(k)

j(P ), ∇iÃ(k)(P ) and Ωi for each robot within
communication range
(iii) ‖∇iÃ(k)(P )‖ 6= 0 for at least one i ∈ {1, . . . , n}
(iv) Nj knows items #3 and #4 from Proposition 5.2.10
(v) Shrinkage factor τ and tolerance θ ∈ (0, 1) known a priori by all
static nodes

Uses: (i) Projection of next set of locations on Ωi,
P ′

j(α, P ) =
{

projΩi
(pi+α∇iÃ(P )),∀ i with d (pi, Vj(Q)) ≤ r+umax+ω

}
.

(ii) Total distance traveled by robots entering Vj(Q),
dj (α, P )2 =

∑

i∈{1,...,n} such that

projΩi
(pi+α∇iÃ(P ))∈Vj(Q)

‖projΩi

(
pi + α∇iÃ(P )

)
− pi‖2.

Output: Step size τ ∈ R

Initialization

1: N1, . . . ,Nm calculate αmax =
umax

min{‖∇iÃ(P )‖ | ‖∇iÃ(P )‖ 6= 0}
via maximum consensus

For j ∈ {1, . . . ,m}, node Nj sets α = αmax, and executes concurrently

1: repeat

2: calculates ϕ̂(k+1)
(
P ′

j(α, P )
)

according to Proposition 5.2.11

3: calculates dj (α, P )
2

and Ã(k)
j

(
P ′

j(α, P )
)

4: execute consensus algorithm to calculate the following:

Ã(k) (P ′(α, P )) =

m∑

j=1

Ã(k)
j

(
P ′

j(α, P )
)
, and ‖P − P ′(α, P )‖2

=

m∑

j=1

dj (α, P )
2

5: ̟ = θ
α
‖P − P ′(α, P )‖2

+ Ã(k)(P ′(α, P )) − Ã(k)(P )

6: if ̟ > 0 then

7: α = ατ

8: end if

9: until ̟ ≤ 0

Table 5.2: Distributed Average Variance Line Search Algorithm.
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where α is chosen via the Distributed Average Variance Line Search Algo-

rithm outlined in Table 5.2. The Distributed Average Variance Line Search

Algorithm is a distributed version of the Line Search Algorithm from Table 4.3.

The maximum stepsize, αmax ∈ R>0, is designed to ensure that all robots with nonzero

partial derivatives can move the maximum distance.

When |Ã(k)(P †
l+1)−Ã(k)(P †

l )| = 0, the algorithm terminates, and the nodes set

P (k+1) = P
†
l+1. By the end of this calculation, each node knows the identity of robotic

agents in its Voronoi cell at timestep k + 1. Node Nj transmits pi(k + 1) to robot

Ri, which then moves to the location between timesteps. In the interest of brevity, we

have used the informal shorthand, Ri ∈ Rcov(j) to signify “for each robot in Rcov(j)”.

Similarly, we use Nj ∈ Scov(i) to signify “for each node in Scov(i)”. Note that although

each robot may be sending position and sample information to multiple nodes, the

approximate average prediction variance is calculated within the Voronoi cell. As the

Voronoi cells do not overlap, there is no problem with information repetition.

The following result describes some nice properties of the Distributed Av-

erage Variance Projected Gradient Descent Algorithm. Its proof is a direct

result of the construction of the algorithm and the fact that it is equivalent to a cen-

tralized projected gradient descent.

Proposition 5.3.1 (Properties of the Distributed Average Variance Projected

Gradient Descent Algorithm) The Distributed Average Variance Projected

Gradient Descent Algorithm is distributed over the network N . Moreover, if the

partial derivatives of f1, . . . , fp are C1 with respect to the spatial position of their argu-

ments, any execution is such that the robots do not collide and, at each timestep after

the first, measurements are taken at stationary configurations of P 7→ Ã(k)(P ) over

Ω(k).

The proposed algorithm is robust to failures in the mobile agents. If an agent

stops sending position updates, it ceases to receive new control vectors. The rest of the

network continues operating with the available resources and will eventually sample the
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Name: Distributed Average Variance Projected Gradient Descent

Algorithm
Goal: Find a local minimum of Ã(k) within Ω(k).

Assumes: (i) Connected network of static computing nodes and mobile robotic
sensing agents
(ii) Static nodes deployed over D such that R ≥
maxi∈{1,...,m} {CR(Vi(Q))} + r + umax, robotic agents in initial

configuration P (1) ∈ Ω(k)

(iii) Line search shrinkage factor τ and tolerance value θ ∈ (0, 1)
known a priori by all nodes
(iv) A termination marker known to all nodes and robots which may
be sent to mark the end of a gradient descent loop.

At step k ∈ Z≥0, each Nj executes:

1: Rcov(j) := {Ri | d(pi(k), Vj(Q)) ≤ r}
2: collect initial sample and position from Ri ∈

Rcov(j).

3: compute first Ã(k)
j

(
P (k)

)
and then

Ã(k)
(
P (k)

)
via consensus

4: Pnext := P (k)

5: repeat

6: Pcur := Pnext(j), compute −∇Ã(k)
j |Pcur

7: send vector ∇iÃ(k)
j(Pcur) to Ri ∈ Rcov(j)

8: collect sum ∇iÃ(k)(Pcur) from Ri ∈ Rcov(j)

9: get α via Distributed Average Vari-

ance Line Search Algorithm at Pcur

10: Pnext := Pcur + α∇Ã(k)|Pcur

11: calculate |Ã(k)(Pnext) − Ã(k)(Pcur)| from

known quantities

12: until |Ã(k)(Pnext) − Ã(k)(Pcur)| = 0

13: P (k+1) := Pnext, send next position to robots

in Vj(Q)

Meanwhile, each Ri executes:

1: take measurement at pi(k)

2: Scov(i) := {Nj | d(pi(k), Vj(Q)) ≤ r}
3: send measurement and position to all

nodes in Scov(i)

4: repeat

5: receive ∇iÃ(k)
j(P

(k)) from Nj ∈
Scov(i)

6: calculate sum ∇iÃ(k)(P (k))

7: send ∇iÃ(k)(P (k)) to Nj ∈ Scov(i)

8: until receive termination marker

from any node

9: receive next location pi(k + 1)

10: move to pi(k + 1).

Table 5.3: Distributed Average Variance Projected Gradient Descent Algorithm.
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areas previously covered by the failing agents. With minor modifications, the algorithm

could be made robust to a certain number of node failures as well. However, this would

require larger communication radius and extra storage (essentially having each node

keep track of the sample locations stored by its Voronoi neighbors).

Remark 5.3.2 (Extension to relative positioning) It is interesting to observe that,

due to the fact that the actual positions of samples are only required in a local context,

our algorithm can also be implemented in a robotic network with relative positioning.

The only requirements are the following: that each node can calculate the mean basis

function for all local samples; that each node can calculate the correlations between pairs

of local samples and that neighboring nodes can agree on the ordering of those sam-

ples within the global matrix. These modifications would not impact the convergence

properties of the algorithm. •

5.3.1 Complexity analysis

Here we examine in detail the complexity of the Distributed Average Vari-

ance Projected Gradient Descent Algorithm in terms of the number of robotic

agents and the number of static nodes. For reference, we compare our proposed algo-

rithm against a centralized algorithm that uses all-to-all broadcast and global informa-

tion, and does not take advantage of the distributed nature of the problem. Proofs of

results for this section may be found in Appendix A.3.

Given that the Distributed Average Variance Projected Gradient

Descent Algorithm is sequential, and designed to run for a fixed number of timesteps,

we are concerned here with complexities involved in performing a single step. Below,

where we refer to complexity notions over multiple iterations of an algorithm, we are

considering the nested algorithms such as JOR, or consensus, which run during a sin-

gle step of the Distributed Average Variance Projected Gradient Descent

Algorithm.

We examine the algorithm performance against the following notions of com-
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plexity, see [7, 53, 65],

Communication complexity: the maximum number of bits transmitted over all (di-

rected) communication channels between nodes in the network over the course of

the algorithm;

Time complexity: the maximum number of iterations to completion of the algorithm

times the maximum number of bits sent over any channel during one iteration;

Space complexity: the total number of bits for which space may be required by a

single node at any given time.

We consider the complexity of the algorithms in terms of the number of agents, n, and

the number of nodes, m, independently. We use the well-known Bachmann-Landau

notation for upper and lower bounds. Given functions f, g : Z>0 × Z>0 → R≥0, we say

that f ∈ O(g) (respectively f ∈ Ω(g)) if there exist A ∈ R>0 (respectively a ∈ R>0)

and γn, γm ∈ Z>0 such that f(n, m) ≤ Ag(n, m) (respectively f(n, m) ≥ ag(n, m)) for

all n ≥ γn and m ≥ γm. If f and g satisfy both f ∈ O(g) and f ∈ Ω(g), then we say

f ∈ Θ(g).

Throughout this section we make the following assumption on the diameter,

degree, and number of edges of the communication graph Q of the network of static

nodes.

Regularity Assumption- We assume that the group of static nodes is regular in the

sense that the following three bounds are satisfied as m increases:

diamQ ∈ Θ( d
√

m) EdQ ∈ Θ(m) degQ ≤ degmax,

where degmax ∈ R constant with respect to m.

Remark 5.3.3 (Network assumptions are reasonable) In two and three dimen-

sions, the maximum diameter requirement has been shown to be consistent with a

hexagonal grid network [8, 11], which is also consistent (in terms of number of neigh-

bors) with the average case for large Voronoi networks [63]. The requirement of bounded
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degree would also be satisfied by a hexagonal grid. The total number of edges is half

the sum of the number of neighbors over all nodes, so bounded degree yields EdQ ∝ m.

•

We are now ready to characterize the complexities of our algorithms, beginning

with the inner iterations.

Proposition 5.3.4 (Average consensus complexity) Let b = (b1, . . . , bm)T ∈ R
m

denote a vector distributed across Q in the sense that Nj knows bj for each j ∈ {1, . . . , m}.
The discrete time consensus algorithm to calculate bT b

m to an accuracy of ǫ has communi-

cation complexity in Oǫ

(
m2 d

√
m
)
, time complexity in Oǫ (m d

√
m), and space complexity

in Oǫ(1).

Since Ã(k) uses only measurements correlated in time, the size of the matrices

and vectors is limited to a constant multiple of n. Recall from Section 5.2.2 the defini-

tions of nc
(k) and Kc

(k) as the number and correlation matrix of samples in the current

update block.

Proposition 5.3.5 (Leader election complexity) The leader election algorithm may

be run on Q to calculate the quantity max
i∈{1,...,nc

(k)}

nc
(k)∑

j=1

[Kc
(k)]ij, with communication com-

plexity in O (m d
√

m), time complexity in O ( d
√

m), and space complexity in O(1).

For the algorithms considered next, the distribution of samples in the region

defines two different regimes for complexity. We will consider both the worst case and

the average based on a uniform distribution.

Proposition 5.3.6 (JOR complexity) Assume that there is some constant ̟λ ∈
(0, 1), known a priori, such that λmin(Kc

(k)) > ̟λ. Regarding the sparsity of Kc
(k),

assume that any one sample is correlated to at most Ncor ∈ Z>0 others, and that, for

any j ∈ {1, . . . , m}, the number of samples in D\Vj(Q) which are correlated to samples

in Vj(Q) is upper bounded by a constant, Nmsg ∈ Z>0. Let b = (b1, . . . , bnc
(k))T ∈ R

nc
(k)

be distributed on the network of nodes in the sense that if Nj knows coli(Kc
(k)), then Nj
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knows bi. Using the distributed JOR algorithm, the network may calculate (Kc
(k))−1b to

accuracy ǫ with communication complexity in Oǫ(m d
√

m), time complexity in Oǫ( d
√

m),

and space complexity in Oǫ(n) worst case, Oǫ(
n
m) average case.

Remark 5.3.7 (Interpretation of sparsity assumptions) The assumptions on the

sparsity of Kc
(k) in Proposition 5.3.6 have the following interpretation: samples do not

cluster in space as measured with respect to the distribution of the Voronoi cells and

their size relative to the correlation range. •

The above results allow us to characterize the complexities of the Distributed

Average Variance Projected Gradient Descent Algorithm.

Proposition 5.3.8 (Complexity of the Distributed Average Variance Pro-

jected Gradient Descent Algorithm) Under the assumptions of Table 5.3, the Dis-

tributed Average Variance Projected Gradient Descent Algorithm may

be completed within tolerance ǫ with communication complexity in Oǫ(m
2 d
√

m), time

complexity in Oǫ(m d
√

m), and space complexity in Oǫ(n
2) worst case, Oǫ

(
n2

m2

)
average

case.

Proof: The space complexity is dominated by the need to store the inverse corre-

lation matrix of known samples required for Ã(k)
j . Even though the correlation matrix

is sparse, the inverse is in general not, requiring the whole nc
(k)×(nc

(k)+1)
2 storage space

for the upper or lower triangle of the symmetric matrix. The worst case corresponds

to all nc
(k) samples correlated to one Voronoi region, and the average to samples dis-

tributed uniformly. The time and communication complexities are dominated by the

requirement of the consensus algorithm.

5.3.1.1 Broadcast method for comparison

One way to judge the efficiency of our method would be to compare it against

a simple algorithm which floods the network with new information at each sample time.

This algorithm would work as follows. At each timestep, all samples and locations are
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disseminated throughout the network, such that each node obtains the entire vectors X

and Y . A (centralized) projected gradient descent algorithm could then be run by Nj ,

j ∈ {1, . . . , m} to find the next sample locations for those agents within Vj(Q). Since

all nodes have the same information, any such algorithms should converge to the same

final locations, so there would be no difficulty with overlapping computations. Since this

method is only given for comparison, we will assume that this is the case. Once a node

has calculated the next location for all of the agents which will be in that Voronoi cell,

the control vectors may be transmitted to those agents. The information dissemination

in this algorithm corresponds to an all-to-all broadcast in which each node begins with

a distinct message of length |ILocal
(k+1)(j, P )| units. There are a number of different

ways this may be carried out. Here we assume the simple flooding method proposed

in [76], which is optimal for time complexity. In this method, every node continues to

transmit any new information to all neighbors until new information is exhausted.

Proposition 5.3.9 (Complexity of the broadcast method) Under the regularity

assumption on Q, local minima of Ã(k) may be found by all-to-all broadcast of agent

positions and subsequent local projected gradient descent with,

• communication complexity in Θ(nm)

• time complexity in Θ(n + m)

• space complexity in Θ(n2)

Remark 5.3.10 (Broadcast method requires global positioning) It should be

noted here that while the Distributed Average Variance Projected Gradient

Descent Algorithm might be extended to systems with relative positioning (see

Remark 5.3.2), the broadcast method requires global coordinates. •

Table 5.4 lists the complexity bounds side by side for comparison. Note that

the bounds on the broadcast method are both upper and lower bounds. It can be seen

that the distributed method scales better overall with the number of mobile agents.
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Complexity Type Broadcast Distributed PGD
Worst Average

Communication Θ(mn) Oǫ(m
2 d
√

m) Oǫ(m
2 d
√

m)

Time Θ(n + m) Oǫ(m d
√

m) Oǫ(m d
√

m)

Space Θ(n2) Oǫ(n
2) Oǫ

((
n
m

)2)

Table 5.4: Algorithm complexities. The worst and average cases are over distributions of
samples, with the average corresponding to a uniform distribution in D. The bounds for
the broadcast method are derived from results in [76].

The results with respect to increasing the number of static nodes are less favorable, but

include a tradeoff between the average storage requirement and the communication and

time complexities. There is an additional benefit to increasing the number of nodes not

mentioned here which is that the average computational burden on each node decreases.
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Chapter 6

Adaptive maximum entropy sampling

This chapter summarizes work published in the conference paper [35]. In it, we

make use of the hybrid network and the projected gradient descent methods developed

in Chapter 5 to enable adaptive sampling with the maximum entropy as optimality

criterion. While the methods used are overall similar, the challenges in adapting a

different criterion to the distributed setting are considerable.

6.1 Problem statement

Here we have a single assumption on the robotic network model in addition to

those already stated. We will require that Ni be able to communicate with any robot

which may be inside Vj(Q) at the following timestep. We therefore let RN:R = umax in

Equation 4.16. In Section 6.1.1 we detail the overall network objective.

6.1.1 Network objective

Between measurement instants, we would like to move the robots to those

locations which ensure a maximum gain in information appropriate to the goal of the

experiment. When the goal is to make inference about model parameters, we would

like an objective function which maximizes gain in information about the model. A
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generally accepted practice [48, 54, 10] is to choose a set of measurement locations

which maximize the entropy of the joint posterior predictive distribution. Intuitively,

to maximize the gain in information we choose to measure those locations about which

we currently know the least.

6.2 A distributed criterion for one-step-ahead data collec-

tion

In this section, we derive an expression for the entropy of the joint poste-

rior predictive distribution given the model (2.2). As this function is not amenable

to distributed computations, we propose instead an alternative which is. We finish

with important smoothness properties of our proposed objective function, including an

expression for its gradient.

6.2.1 Entropy of the random field estimation

We begin with a novel reformulation of the conditional entropy which will

enable an approximate objective function.

Proposition 6.2.1 (Reformulation of conditional entropy) The conditional en-

tropy presented in Section 2.5.3 may be reformulated as,

log det (φ(Xu; Xs)) = log det (Υ) + log det (K)−

− log det (Υs) − log det (Ks). (6.1)

Here Υ, respectively Υs, is the inverse of the posterior covariance matrix for the param-

eter vector β, given the all the data, respectively the sampled data. Explicitly,

Υ = K−1
0 + FK−1FT and Υs = K−1

0 + FsKs
−1Fs

T .

Note from (6.1) that log det (φ(Xu; Xs)) does not depend on the values of the measure-

ments, only on their locations, and that the last two terms do not depend on the new
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locations at all. Thus we are interested in maximizing

Ẽ = log det (Υ) + log det (K), (6.2)

over potential measurement sites. However, the full distributed computation of these

terms or their gradients over the robotic sensor network is not straightforward. We show

later that the term log det (Υ) can be handled using known distributed computation

tools. To deal with the term log det (K), we follow the route presented next.

6.2.2 Alternative criterion for adaptive design

In this section, we propose an alternative aggregate objective function to max-

imize the posterior predictive entropy at each timestep. Let E(k) : Dn → R be defined

by

E(k)(P ) = log det (Υ) − 1

2
tr
(
(K − I)2

)
, (6.3)

where the matrices Υ = Υ(k)(P ) and K = K(k)(P ) are calculated using the spatial

positions P ∈ Dn at time k+1 for unsampled locations. We avoid the explicit functional

notation for ease of exposition.

Proposition 6.2.2 (E(k)(P ) is a second order approximation of Ẽ) Let T (k) ⊂
R

n(k−1) denote the following set of configurations based on the correlation matrix,

T (k) =



P ∈ Dn | n(k−1)

max
i=1

{
n(k−1)∑

j=1

[K]ij} < 2



 .

The function E(k) is a second order approximation of Ẽ over the region T (k) in the sense

that −1
2 tr
(
(K − I)2

)
is the second order Taylor approximation of log det (K).

Throughout the sequel, we assume P ∈ T (k). Note that the trace may be

written as a sum of the form,

tr
(
(K − I)2

)
=

n(k+1)∑

i=1

rowi(K − I)coli(K − I). (6.4)
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Under the spatial model described in Section 2.5, the ith term in the sum is a function

only of the locations of measurements within a spatial distance of r from xu:i. We call

those measurements correlation neighbors of Ri.

Remark 6.2.3 (Approximating log det (K) to higher order at the cost of higher

communication complexity) If a higher order approximation is desired, it can be

done by passing information for each extra term. For example, the third order approx-

imation requires the additional term,

1

3
tr
(
(K − I)3

)
=

1

3

n(k+1)∑

i=1

rowi

(
(K − I)2

)
coli(K − I).

Here, the vector rowi

(
(K − I)2

)
can be calculated from rowj(K − I) where j ranges

over i and its correlation neighbors. Thus the third order term in the Taylor series may

be calculated with information from the two-hop correlation neighbors. Similarly, the

fourth order term may be calculated with three-hop information and so on. •

Note that it is possible to use the requirement of a minimum distance between agents to

strictly enforce the assumption P ∈ T (k). We do not provide a formal method here, but

a simple rule of thumb may be applied. Under the restriction of a minimum distance

between agents, the most dense configuration is known to be a hexagonal grid. In

two dimensions, for example, this implies that there are a maximum of six robots at

a distance of ω of any one robot, then a maximum of six others at a distance of 3
2ω,

etc. By counting the possible number of samples at each interval, including those from

previous and subsequent correlated timesteps, it is possible to obtain an upper bound

on the maximum row sum as a function of ω.

6.2.3 Smoothness properties of E (k)

Here we study the smoothness properties of E(k) and provide an expression for

its gradient. Let pi:l, l ∈ {1, . . . , d} denote the lth coordinate of pi. For notational sim-

plicity, let ∇i:l denote the partial derivative operator with respect to pi:l, i.e., ∇i:l = ∂
∂pi:l

,
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and let ∇i denote the gradient operator with respect to pi, i.e., ∇i = (∇i:1, . . . ,∇i:d)
T .

The following result establishes the smoothness of E(k).

Proposition 6.2.4 Assume that f1, . . . , fp and the covariance of z are C1 with re-

spect to the spatial positions of their arguments. Then E(k) is C1 on Ω(k). Further-

more, the gradient, ∇E(k) at P may be written as the nd-dimensional vector, ∇E(k)|P =
(
(∇1E(k)(P ))T , . . . , (∇nE(k)(P ))T

)T
, where the partial derivatives take the form,

∇i:lE(k)(P ) = tr
(
Υ−1∇i:lΥ

)
−

− 1

2
rowi (K − I) coli (∇i:lK) , where

∇i:lΥ = FK−1∇i:lF
T +

(
FK−1∇i:lF

T
)T −

− FK−1 (∇i:lK)K−1FT .

Here the matrix partials are taken component-wise.

Remark 6.2.5 The second term of ∇i:lE(k)(P ), corresponding to the partial derivative

of the second order Taylor series expansion, may be seen as a weighted sum of vectors

in directions away from correlated measurement locations, with weights determined by

the correlations. Thus optimizing this term forces the new measurements to be spread

out from each other and from the previous measurements. This agrees with previous

results [42, 71], and with the findings in Chapter 3, which suggest that the determinant

of the covariance function may be optimized by maximizing the distances between the

locations. •

Lemma 6.2.6 Under the assumptions of Proposition 6.2.4, assume, in addition, that

the partial derivatives of f1, . . . , fp and the covariance of z are C1 with respect to the

spatial positions of their arguments. Then the map P → ∇E(k)|P is globally Lipschitz

on Ω(k).
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6.3 Adaptive sampling via distributed entropy optimiza-

tion

The function E(k) depends on all of its arguments as well as all of the past

measurement locations (Xs) in a nontrivial and nonlinear way. In this section, we show

how both E(k) and ∇E(k) may be calculated in a distributed way over N . This allows

us to propose a distributed projected gradient descent algorithm which ensures that

measurements are taken at local minima of E(k) over Ω(k).

6.3.1 Distributed calculations

Here, we describe a distributed method for calculating E(k) and its gradient.

In general, the matrices involved in the calculation depend on samples and locations

known to multiple nodes. Furthermore, multiple samples and locations are known to

each node. Distributed consensus algorithms may be performed in a similar manner

whether each node knows one element or multiple elements, as long as the network is

connected and each element is known by exactly one node. Since V(Q) describes a

partition of the physical space, we may partition all measurement locations by region.

Thus for each (s, t) ∈ iF(Xs), there is exactly one j ∈ {1, . . . , m} such that s ∈ Vj(Q).

Let Rin
(1:k) : Z>0 → F(Z>0) and Rin

(k+1) : Z>0 ×Dn → F(Z>0) be defined as follows,

Rin
(1:k)(j)={i ∈ {1, . . . , nk} | xs:i = (s, t), s ∈ Vj(Q)}

Rin
(k+1)(j, P )={i + nk | i ∈ {1, . . . , n} and pi ∈ Vj(Q)} .

These index sets list columns of the matrices K and F which correspond to past (Rin
(1:k))

and hypothetical future (Rin
(k+1)) sample locations in the jth Voronoi cell. With a slight

abuse of notation, define Rin
(1:k+1) : Z>0 × Dn → F(Z>0) as the union of the two sets,

Rin
(1:k+1)(j, P ) = Rin

(1:k)(j) ∪ Rin
(k+1)(j, P ). The following result shows how pieces of

E(k) can be calculated.

Lemma 6.3.1 Let P ∈ Dn be a potential set of sites for the next measurement. Assume

that Nj for each j ∈ {1, . . . , m} knows the following quantities,
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• {xs:i = (s, t) ∈ iF(Xs) | d(s, Vj(Q)) < r}

• {pi ∈ iF(P ) | d(pi, Vj(Q)) < r};

• K0 ∈ R
p×p.

Using consensus and distributed JOR [6] algorithms, the network can calculate the ma-

trices FK−1 and Υ. After running the algorithms, Nj has access to the quantities, Υ,

and coli
(
FK−1

)
∈ R

p, i ∈ Rin
(1:k+1)(j, P ).

Next we present our main distributed computation result.

Proposition 6.3.2 For any j1 6= j2 ∈ {1, . . . , m}, and any i1 ∈ Rin
(1:k+1)(j1, P ) and

i2 ∈ Rin
(1:k+1)(j2, P ), assume that if [K]i1i2 6= 0 then Nj1 can communicate with Nj2.

Then, under the assumptions of Lemma 6.3.1, E(k) and its gradient at P ∈ Dn can be

calculated in a distributed manner by N .

6.3.2 Distributed gradient descent algorithm

Here we outline a distributed version of the projected gradient descent algo-

rithm (see, e.g. [5]), which is guaranteed to converge to a stationary point of E(k) on

Ω(k). Let κj
(k) : Dn → R denote the partial sum,

κj
(k)(P ) =

∑

i∈Rin
(1:k+1)(j,P )

rowi(K
(k)(P ) − I)coli(K

(k)(P ) − I).

Then κj
(k)(P ) may be calculated by Nj , and tr

((
K(k)(P ) − I

)2)
=
∑m

j=1 κj
(k)(P ).

Table 6.1 describes a distributed line search with a starting position of P ∈ Ω. The

maximum stepsize, αmax, ensures that all robots with nonzero partial derivatives can

move the maximum distance.

We are ready to present our technique for a greedy optimization algorithm.

At timestep k, the nodes follow a gradient descent algorithm to define a sequence of

configurations, {P †
l }, l ∈ Z>0, such that P

†
1 is P (k) ∈ Dn, the vector of current spatial

locations of the robotic agents and
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P
†
l+1 = projΩ

(
P

†
l − α∇E(k)|

P †
l

)
, α ∈ R≥0,

where α is chosen via Distributed Entropy Line Search Algorithm. When

|E(k)(P †
l+1)−E(k)(P †

l )| = 0, the algorithm terminates, and the nodes set P (k+1) = P
†
l+1.

By the end of this calculation, each node knows the identity of robotic agents in its

Voronoi cell at timestep k + 1. Node Nj transmits pi(k + 1) to robot Ri, which then

moves to that location between timesteps. The overall algorithm is in Table 6.2.

Proposition 6.3.3 The Distributed Entropy Projected Gradient Descent

Algorithm is distributed over the network N . Moreover, under the assumptions of

Lemma 6.2.6, any execution is such that the robots do not collide and, at each timestep

after the first, measurements are taken at stationary configurations of P 7→ E(k)(P ) over

Ω(k).

6.3.3 Simulations

We implemented the Distributed Entropy Projected Gradient De-

scent Algorithm in several simulations. The one presented here was run with

d=2 spatial dimensions, m=10 static nodes, n=30 robotic agents, and the domain

D={(0, .1), (2.5, .1), (3.45, 1.6), (3.5, 1.7), (3.45, 1.8), (2.7, 2.2), (1, 2.4), (0.2, 1.3)}. We

used the separable covariance function defined by Cov[z(s1, t1), z(s2, t2)] = Ctap(‖s1 −
s2‖, 0.5)Ctap(|t1 − t2|, 6.5), where

Ctap(δ, r) =





e−
δ

10r

(
1 − 3δ

2r + δ3

2r3

)
if δ ≤ r,

0 otherwise.

This is a tapered exponential function belonging to the class of covariance functions

suggested in [27]. We used ω = 0.02, and umax = 0.2. For the mean regression functions

fi, we used f((x, y), t) = (1, sin(2πx), sin(2πy))T .

Fig. 6.1 shows the trajectories taken by the robots. In Fig. 6.2 we compare the

performance of our algorithm against two algorithms that pre-plan agent trajectories.

The first is a static approach in which the agents spread out around the region and
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(a) (b)

Figure 6.1: (a) Trajectories of all robots, and (b) two representative trajectories, both
from the same run of the distributed projected gradient descent algorithm. The filled
squares represent the (static) positions of the nodes, and the filled triangles show the
starting positions of the robots.

remain in place. The second is a lawnmower-type algorithm in which the agents march

back and forth across the region in evenly space (horizontal) lines. In all cases, two

agents lost contact part way through. Note that both dynamic algorithms perform
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Figure 6.2: Plot (a) shows the progression of E(k) as k increases, resulting from the static
(triangle), lawnmower (diamond), and gradient descent (star) approaches. For the gradi-

ent descent algorithm only, plot (b) compares the value of eE (stars) against the approxi-
mation, E(k) (diamonds).

much better than the static one, but the gradient descent algorithm performs better

than the lawnmower. This is due to the facts that the gradient algorithm reacts to

the basis functions of the model and that the lawnmower does not compensate for the

dropped agents.
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Name: Distributed Entropy Line Search Algorithm

Goal: Compute step size for gradient descent of E(k)

Input: Configuration, P = (p1, . . . , pn) ∈ Dn

Assumes: (i) Connected network of static nodes
(ii) Nj knows E(k)(P ), as well as pi, ∇iE(k)(P ), rowi(K− I) and Ωi

(k)

for each robot within communication range
(iii) Shrinkage factor τ , tolerance θ ∈ (0, 1), and prior β-correlation
matrix, K0 known a priori

Uses: (i) p′i(α, P ) = projΩi
(k)(pi + α∇iE(k)(P ))

(ii) Square distance of robots entering Vj(Q),

dj (α, P )2 =
∑

i∈{1,...,n} such that
p′i(α,P )∈Vj(Q)

‖p′i(α, P ) − pi‖2

Output: Step size α ∈ R, next configuration P ′(α, P ) =
(p′1(α, P ), . . . , p′n(α, P ))T , and E(k)(P ′(α, P )).

Initialization

1: N1, . . . ,Nm calculate αmax = max
{
‖∇iE(k)(P )‖−1

∣∣∇iE(k)(P ) 6= 0
}
umax via maximum

consensus

For j ∈ {1, . . . ,m}, node Nj sets α = αmax and executes concurrently

1: repeat

2: calculates Υ according to Lemma 6.3.1

3: calculates dj (α, P )
2

and κj
(k)(P ′(α, P ))

4: executes consensus algorithm to calculate the following:

tr
(
(K − I)

2
)

=

m∑

j=1

κj
(k)(P ′(α, P )) and ‖P − P ′(α, P )‖2

=

m∑

j=1

dj (α, P )
2

5: E(k) (P ′(α, P )) = log det (Υ) + tr
(
(K − I)

2
)

6: ̟ = θ
α
‖P − P ′(α, P )‖2 − E(k)(P ′(α, P )) + E(k)(P )

7: if ̟ > 0 then

8: α = ατ

9: end if

10: until ̟ ≤ 0

Table 6.1: Distributed Entropy Line Search Algorithm.
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Name: Distributed Entropy Projected Gradient Descent Algo-

rithm
Goal: Find a local minimum of E(k) within Ω(k).

Assumes: (i) Connected network of nodes and robots
(ii) Static nodes deployed over D such that
R ≥ max

i∈{1,...,m}
{CR(Vi(Q))} + umax, initial configuration P (1) ∈ Dn

(iii) Line search shrinkage factor τ , tolerance θ ∈ (0, 1), and prior
β-correlation matrix, K0 known a priori by all nodes.

At time k ∈ Z≥0, robot Ri executes:

1: takes measurement at pi(k)

2: sends position to Nj , where pi(k) ∈ Vj(Q)

3: receives next location pi(k + 1)

4: moves to pi(k + 1).

At time k ∈ Z≥0, node Nj executes:

1: collects location from each Ri with d(pi(k), Vj(Q)) < umax as well as locations of nearby

agents

2: updates Rin
(k+1)(j, P ) and Rin

(1:k+1)(j)

3: calculates Υ (cf. Lemma 6.3.1)

4: computes κj
(k)
(
P (k)

)
, and then E(k)

(
P (k)

)
via consensus

5: sets Pnext = P (k)

6: repeat

7: stores Pcur = Pnext and E(k)(Pcur) = E(k)(Pnext)

8: calculates −∇iE(k)(Pcur) for each i ∈ Rin
(k+1)(j, Pcur) (cf. Prop. 6.3.2)

9: runs Distributed Entropy Line Search Algorithm at Pcur to get α, Pnext, and

E(k)(Pnext)

10: until |E(k)(Pnext) − E(k)(Pcur)| = 0

11: sets P (k+1) = Pnext

12: conveys pi(k + 1) to Ri for each i ∈ Rin
(k+1)(j, Pcur)

Table 6.2: Distributed Entropy Projected Gradient Descent Algorithm.
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Chapter 7

Conclusions and future work

In Chapter 3, we have used the maximum error variance and the extended

variance of the LUMVE as metrics for optimal placement of mobile sensor networks

estimating random fields. We have shown that under the assumption of near indepen-

dence, circumcenter configurations minimize the maximum error variance and incenter

configurations minimize the extended variance of the estimator. Under limited time

or energy resources, or as a starting point for further exploration, a group of robotic

sensors can begin by moving toward these configurations to start the estimation pro-

cedure. Future work in this area will explore: (i) regarding the asymptotic analysis,

the determination of lower and upper bounds on the parameter α that guarantee that

multicenter Voronoi configurations achieve a given a desired level of performance. In

particular, we would like to determine the near-optimality in general of incenter Voronoi

configurations for the extended variance criterion; and (ii) the extension of the results

to similar error metrics for the universal kriging predictor, where the mean function is

unknown.

In Chapter 4, we have considered a robotic sensor network taking samples of

a spatio-temporal process. As criterion for optimization we have taken the maximum

predictive variance of the prediction made at the end of the experiment. Under the

asymptotic regime of near-independence, we have shown that minimizing this error is

equivalent to minimizing the correlation distance disk-covering function, thus allowing
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geometric solutions. We have introduced the maximal correlation partition and showed

that it is the optimal partition of the predictive space for the disk-covering function

given a fixed network trajectory. We have introduced the novel notion of multicircum-

center trajectories and established their optimality with regards to the disk-covering

function given a fixed partition. We have also defined a notion of extended sets which

encodes a maximum movement restriction into a form of geometric centering, yielding

the constrained multicircumcenter trajectory which is optimal over the set of all range-

constrained trajectories. On the design front, we have synthesized distributed strategies

that allow the network to calculate an optimal trajectory. In an ongoing experiment,

the optimization can be executed online to recalculate the remaining sample locations in

the face of changes in the environment, network structure, or human input. Future work

will include the study of more complex predictive regions and of alternative optimality

criteria.

In Chapter 5, we have considered a network of static computing nodes and

mobile robotic sensing platforms taking measurements of a time-varying random process

with covariance known up to a scaling parameter. We have used a Bayesian approach,

treating the field as a spatiotemporal Gaussian random process, and developed a novel

approximation of the variance of the posterior predictive distribution which may be

calculated in a sequential and distributed fashion. Using this formulation, we have

developed a projected gradient descent algorithm which is distributed over the network

of nodes and robots. We have examined the complexity of this approach, and compared

it against the lower bound complexity of a centralized “broadcast” method, showing

that the distributed approach scales better with the number of mobile agents. Future

work will focus on theoretical guarantees on the accuracy of the approximation Ã(k) (see

Remark 5.2.6) and on the robustness to failure of the proposed coordination algorithm.

An interesting topic of future work would be the extension of these methods to a hybrid

network in which the static agents are replaced by slow moving ones. As mentioned in

Remark 4.6.3, special care must be taken to avoid singularities when generating local

approximations for the universal kriging model. A topic of future work will be to provide
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rigorous methods for handling this situation.

In Chapter 6, we have designed a distributed algorithm for adaptive sampling

of spatiotemporal processes with unknown mean and covariance known up to a scaling

parameter. At each time step, an heterogeneous network composed of static nodes and

mobile agents optimizes an aggregate objective function to maximize the information

provided by future data. We have shown that the objective function is a second-order

approximation of the conditional entropy, defined as the posterior predictive entropy

conditional on the covariance scaling parameter. We have characterized the correctness

of the proposed coordination algorithm and provided several simulations of its perfor-

mance. Immediate future work will investigate the invariance of the region T (k) under

the gradient of E(k), comparison against a smarter, self-adjusting lawnmower algorithm,

and quantification of the communication and computational complexity of the algo-

rithms. In the longer term, we plan to continue exploring methods to cooperatively

estimate stochastic processes considering statistical models with increasing generality.
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Appendix A

Proofs and supporting results

A.1 Proofs and supporting results from Chapter 3

Proof: [Proof of Proposition 3.3.4] We proceed by contradiction. If the statement

is false, then there exists s† ∈ D such that s† ∈ argmins∈D {Cmds(s, P ) |mds(s, P )|}, and
∣∣mds(s†, P )

∣∣ > 1. Let p∗ ∈ mds(s†, P ), and define r† = ‖s† − p∗‖. Note that

mds(s†, P ) ⊂ ∂B(s†, r†). (A.1)

Let s∗ ∈]s†, p∗[ such that ‖s∗ − s†‖ < ǫ for some ǫ ∈ R>0 and let r∗ = ‖s∗ − p∗‖.
By construction, r∗ < r†. From (A.1), we deduce that

{
p ∈ iF(P ) | p ∈ B(s∗, r∗)

}
=

{p∗}, which leads to |mds(s∗, P )| = 1. Since gs changes continuously with the distance

between its arguments, it is clear that we may choose ǫ small enough to result in

Cmds(s
∗, P ) |mds(s∗, P )| < Cmds(s

†, P )
∣∣∣mds(s†, P )

∣∣∣ ,

which is a contradiction.

A.1.1 Continuity

Here we prove our main continuity result for the estimation error variance

function. We will first need some supporting results. Let h ∈ R denote the distance

between agent locations p1 and p2, and we are interested in the behavior of VarSK as
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h → 0. For any agent location pi, i ∈ (3, . . . , n) we would like a measure of the distance

between pi and p1 in terms of h, call it hi ∈ R. To find hi, consider the triangle formed

between pi, p1, and p2. Let ujk ∈ R
d denote the unit vector from agent j to agent k,

i.e.,

ujk =
pk − pj

‖pk − pj‖
.

Let uib denote the unit vector in the direction which bisects the angle between ui1 and

ui2 (see Figure A.1). As in the figure, consider a point p∗1 which is a distance of ‖p1−pi‖

h

p∗1

pi

p2

p1

uib

ui2

u21

hi

Figure A.1: Triangle between pi, p1, and p2.

from pi, but in the direction ui2, and note that hi = ‖p∗1 − p2‖. Next, note that the

projection of the vector p∗1 − p2 onto uib is equal to the projection of the vector p1 − p2

onto the vector uib, so that we may write

hiuib
Tui2 = uib

Tu21h

hi =
uib

Tu21

uib
Tui2

h.

Note that in the limit as p1 → p2, hi → 0 and uib → ui2.

In the following treatment, we define a function f : R
d → R to be directionally

differentiable at a point a ∈ R
d if and only if the following limit exists for every u ∈ R

d

Duf(a) = lim
h↓0

f(a + hu) − f(a)

h
.
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This is a common notion in the optimization literature (see for example [23, 70]), where

it is sometimes referred to as weak directional differentiability. We will say that a

function f is directionally differentiable on D if and only if Duf(a) exists for all a ∈ D

and all u ∈ R
d. Recall from Lemma 3.3.1 the definition of P = (p2, . . . , pn) being the

ordered set of agents in P with the first agent removed. Now we are ready to present

our results.

Lemma A.1.1 Let f1, f2 : R
d → R be directionally differentiable on D. Let F : R

d ×
R

d ×Dn−1 → R be defined as

F (p1, p2, P ) =
(f1(p1) − f1(p2))(f2(p1) − f2(p2))

VarSK[p1; P ]
.

Under the assumption that g′s(0) 6= 0 then

lim
p1→p2

F (p1, p2, P ) = 0.

Proof: First note that in the limit as p1 → p2, both the numerator and denominator

of the fraction tend to zero. With a little manipulation, we can rewrite F in terms of

h. Remembering that Cor[P , p2] is the first column of the matrix K(P ), we can write

F (p1, p2, P ) =
(f1(p1) − f1(p2))(f2(p1) − f2(p2))(

Cor[P , p1]T + Cor[P , p2]T
)
Kτ (P )−1

(
Cor[P , p2] − Cor[P , p1]

) .

In terms of gs, we can write

Cor[P , p2] − Cor[P , p1] =




gs(‖p2 − p2‖) − gs(‖p1 − p2‖)
gs(‖p2 − p3‖) − gs(‖p1 − p3‖)
gs(‖p2 − p4‖) − gs(‖p1 − p4‖)

...




=




gs(0)−gs(h)
h h

gs(‖p2−p3‖)−gs(‖p1−p3‖)
h3

u3b
T u21

u3b
T u32

h

gs(‖p2−p4‖)−gs(‖p1−p4‖)
h4

u4b
T u21

u4b
T u42

h

...




= −∆h,
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where ∆ ∈ R
n−1 is the vector

∆ =




gs(h)−gs(0)
h

gs(‖p2−p3‖+h3)−gs(‖p2−p3‖)
h3

u3b
T u21

u3b
T u32

gs(‖p2−p4‖+h4)−gs(‖p2−p4‖)
h4

u4b
T u21

u4b
T u42

...




.

Note that the limit as h → 0 corresponds to the limit as p1 → p2 along the straight line

direction u12, and that

lim
h→0

∆ =




g′s(0)

u32
Tu21g

′
s(‖p2 − p3‖)

u42
Tu21g

′
s(‖p2 − p4‖)
...




.

Plugging this back into F , we can write

F (p1, p2, P )

=
h2
(

(f1(p2+hu21)−f1(p2))
h

)(
(f2(p2+hu21)−f2(p2))

h

)

−h
(
Cor[P , p1]T + Cor[P , p2]T

)
Kτ (P )−1∆

=
h
(

(f1(p2+hu21)−f1(p2))
h

)(
(f2(p2+hu21)−f2(p2))

h

)

−
(
Cor[P , p1]T + Cor[P , p2]T

)
Kτ (P )−1∆

.

Note that for any directional unit vector u ∈ R
d,

lim
p1→p2
alongu

F (p1, p2, P ) = (Duf1(p2)) (Duf2(p2))×
(

lim
h→0

h

−
(
Cor[P , p1]T + Cor[P , p2]T

)
Kτ (P )−1∆

)
.

Regardless of the direction of u, the numerator approaches zero. In the limit, the

denominator evaluates to

−2 Cor[P , p2]
TKτ (P )−1




g′s(0)

u32
Tu21g

′
s(‖p2 − p3‖)

u42
Tu21g

′
s(‖p2 − p4‖)
...




= −2g′s(0).

112



Since this is constant with respect to the direction of approach, as long as g′s(0) 6= 0,

we have

lim
p1→p2

F (p1, p2, P ) = 0.

Corollary A.1.2 Under the assumption of zero measurement error, if g′s(0) 6= 0 then

lim
p1→p2

VarSK[z(s); P ] = VarSK[z(s); P ]

Proof: Using Lemma 3.3.1 we can write

VarSK[z(s); P ] = VarSK[z(s); P ] +

(
gs(‖s − p1‖) − Cor[P , s]TKτ (P )−1 Cor[P , p1]

)2

VarSK[y1; P ]

= VarSK[z(s); P ]+
(
gs(‖s − p1‖) − Cor[P , s]TKτ (P )−1δ − gs(‖s − p2‖)

)2

VarSK[y1; P ]
,

where δ = Cor[P , p1] − Cor[P , p2]. Note that the second term here can be multiplied

out as

(gs(‖s − p1‖) − gs(‖s − p2‖))2
VarSK[y1; P ]

+

2
(gs(‖s − p1‖) − gs(‖s − p2‖))Cor[P , s]TKτ (P )−1δ

VarSK[y1; P ]
+

(
Cor[P , s]TKτ (P )−1δ

)2

VarSK[y1; P ]
.

Since C is directionally differentiable everywhere, the first term fits the criteria of

Lemma A.1.1, and goes to zero in the limit. For the other two, note that

Cor[P , s]TKτ (P )−1δ =
n∑

i=1

αi (gs(‖p1 − pi‖) − gs(‖p2 − pi‖)) ,
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where the αi’s do not depend on p1. By Lemma A.1.1, for all i, j in (1, . . . , n) we can

say

lim
p1→p2

(gs(‖p1 − pi‖) − gs(‖p2 − pi‖)) (gs(‖s − p1‖) − gs(‖s − p2‖))
VarSK[y1; P ]

= 0,

lim
p1→p2

(gs(‖p1 − pi‖) − gs(‖p2 − pi‖)) (gs(‖p1 − pj‖) − gs(‖p2 − pj‖))
VarSK[y1; P ]

= 0.

Thus all of the parts of our equation which depend on p1 go to zero in the limit and we

are left with

lim
p1→p2

VarSK[z(s); P ] = VarSK[z(s); P ].

We are now ready to present our main continuity result.

Proof: [Proof of Proposition 3.3.2] Let s ∈ D. Note that the map P 7→ VarSK[z(s); P ]

is continuous when P ∈ Dn \ Scoinc. Since the correlation function gs is differentiable

and hence continuous, it follows from Proposition 2.5.3 that VarSK is continuous with

respect to P = (p1, . . . , pn) ∈ Dn except possibly where the matrix Kτ (P ) is not full

rank. With τ2 6= 0, we have that Kτ is always full rank. Therefore, let us consider the

ideal sensor case in which τ2 = 0, Y (pi) = Z(pi), and Kτ (P ) = K(P ). Note that K

being rank deficient corresponds precisely to the case when P ∈ Scoinc. Let us then take

P † ∈ Scoinc. It suffices to show that

lim
P→P †

VarSK[z(s); P ] = VarSK[z(s); iF(P †)], (A.2)

where P ∈ Dn \Scoinc. We begin by considering the case in which only two agents sit at

the same location in the configuration P †. Since VarSK is invariant under permutations

of the agents, without loss of generality we can assume that p
†
1 = p

†
2. Let then P † =

(p†1, P ). Since all points in P are distinct, we have

lim
P→P †

VarSK[z(s); P ] = lim
p1→p†1=p†2

VarSK[z(s); P ].

Using Corollary A.1.2, we can write

lim
p1→p†1=p†2

VarSK[z(s); P ] = VarSK[z(s); P ]. (A.3)
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Since P is a specific ordering of iF(P †), equation result (A.2) follows.

The case when more than two points in P † are coincident can be dealt with

similarly. If |iF(P †)| = m ≤ n − 2, we assume without loss of generality that iF(P †) =

{p†m+1, . . . , p
†
n} using the fact that VarSK is invariant under permutations. Then, we

have

lim
P→P †

VarSK[z(s); P ] = lim
p1→p†1

lim
p2→p†2

. . . lim
pm→p†m

VarSK[z(s); P ].

Repeatedly using (A.3), the limit above is well defined and, moreover, we conclude (A.2).

A.2 Proofs and supporting results from Chapter 4

The supporting results for Chapter 4 have been organized here according to

section.

Proofs and supporting results from Section 4.2

We begin with some notation and preliminary results. We define the minimal

correlation distance set (MCDS), denoted by mcds : D × (Dkmax)n → F(Isamp), as,

mcds(s, S) = argmin
(i,k)∈Isamp

{
δk(s, si

(k))
}
.

Note that mcds defines the set of samples in S with the highest correlation to s. Let

gmax : D×(Dkmax)n → R map location and trajectory to this maximal correlation value,

i.e.,

gmax(s, S) = gs(‖s − si
(k)‖)gt(kmax, k), ∀ (i, k) ∈ mcds(s, S).

The following result describes a useful result on the dimensionality of the intersection

of any two correlation distance surfaces.

Lemma A.2.1 (Equidistant sets are at most d−1 dimensional surfaces) Assume

that S ∈ Sunique, and let (i, k), (j, l) ∈ Isamp. Let γ =
{
s ∈ R

d | δk(s, si
(k)) = δl(s, sj

(l))
}
.
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Then γ = R
d if and only if (i, k) = (j, l). Otherwise, if γ 6= ∅, then it describes a surface

in R
d which is at most d − 1 dimensional.

Proof: First, consider the shape of the correlation distance surfaces s 7→ δk(s, si
(k))

and s 7→ δl(s, sj
(l)) in R

d+1. From (4.2), it can be seen that the two surfaces differ only by

a translation which is a result of both the spatial and temporal locations of the sample.

The assumption that S ∈ Sunique implies that γ = R
d if and only if (i, k) = (j, l). Next,

assume γ 6= R
d and γ 6= ∅. It can be shown that either the two correlation distance

surfaces are tangent and that the tangent surface is contained within a one-dimensional

line, or the gradient of the function s 7→ δk(s, si
(k)) − δl(s, sj

(l)) over γ \ {si
(k), sj

(l)} is

nonzero, implying that the dimension of γ is at most d − 1.

The above lemma allows the following result on the cardinality of the MCDS.

Proposition A.2.2 (Cardinality of MCDS) Assume that S ∈ Sunique. Then,

min
s∈D

{
gmax(s, S) |mcds(s, S)|

}
= min

s∈D

{
gmax(s, S)

}
.

Proof: We proceed by contradiction. If the statement is false, then there exists

s† ∈ D such that s† ∈ argmins∈D
{
gmax(s, S) |mcds(s, S)|

}
, and |mcds(s†, S)| > 1.

Define Γ ⊂ D by Γ = {s ∈ D | |mcds(s, S)| > 1}. Note that s† ∈ Γ, and Γ ⊆ ⋃
i6=j γij .

Lemma A.2.1 shows that Γ is the union of a finite number of surfaces of dimension at

most d − 1 embedded in R
d. For any ǫ ∈ R>0, there is a location s∗ ∈ D \ Γ which

satisfies ‖s† − s∗‖ < ǫ. Thus |mcds(s∗, S)| = 1. Since gmax(s, S) changes continuously

with s, for ǫ small enough we have, gmax(s
∗, S)|mcds(s∗, S)| < gmax(s

†, S)|mcds(s†, S)|,
which is a contradiction.

We are now ready to prove the main result.

Proof: [Proof of Theorem 4.2.2] Note that minimizing M{α} on ΩRg is equivalent

to maximizing the function L{α} : ΩRg → R defined by L{α}(S) = mins∈D
{
(k{α})T ×

(K
{α}
τ )−1(k{α})

}
. Let λmin and λmax : ΩRg×R → R be such that λmin(S, α), λmax(S, α)

denote, respectively, the minimum and the maximum eigenvalue of K
{α}
τ . Note that with

τ2 6= 0, we have 0 < λmin(S, α) ≤ λmax(S, α). Gershgorin circles and Proposition A.2.2
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yield the asymptotic bounds,

g2
0

λmax(S, α)
min
s∈D

{gmax(s, S)2α(1 + o(1))} ≤ L{α}(S) ≤

g2
0

λmin(S, α)
min
s∈D

{gmax(s, S)2α(1 + o(1))}.

Consider, then, comparing an arbitrary sampling trajectory S∗ ∈ ΩRg against a global

minimizer of H on ΩRg, say Smcc. We can write,

L{α}(S∗)
L{α}(Smcc)

≤
1

λmax(S∗,α) mins∈D
{
gmax(s, S

∗)2α(1 + o(1))
}

1
λmin(Smcc,α) mins∈D

{
gmax(s, Smcc)2α(1 + o(1))

} . (A.4)

Next we take a closer look at the eigenvalues. Note that the correlation matrix, K
{α}
τ

satisfies limα→∞ K
{α}
τ = Inkmax , and thus λmax(S, α) and λmin(S, α) tend to 1 for any

sample trajectory S ∈ ΩRg. Finally, since Smcc minimizes the maximum over s of

the minimum over (i, k) of δk(s, si
(k)) = φ(‖s − si

(k)‖) − w(k), it equivalently maxi-

mizes the minimum value of gmax(s, S). For any S ∈ ΩRg, mins∈D{gmax(s, S)2α} ≤
mins∈D{gmax(s, Smcc)

2α}. Thus the ratio (A.4) is bounded by 1 + o(1). Therefore,

in the limit as α → ∞, minimizing M{α} over ΩRg is equivalent to minimizing the

maximum covariance disk-covering function, H on ΩRg.

Proofs and supporting results from Section 4.3

Proof: [Proof of Proposition 4.3.2] Let (i, k) ∈ Isamp and s∗ ∈ D be such that

H(S) = δk(s∗, si
(k)). By definition, given a partition W = {W1

(1), . . . , Wn
(kmax)} of

D, there exists a pair, (j, l) ∈ Isamp, such that s∗ ∈ Wj
(l). The definition of MC

and the assumption that I(W) ≤ I(MC(S)) leads to the implication chain, H(S) =

δk(s∗, si
(k)) ≤ δl(s∗, sj

(l)) ≤ maxs∈Wj
(l) δl(s, sj

(l)) ≤ HW(S).

Proofs and supporting results from Section 4.4

Proof: [Proof of Lemma 4.4.1] For c ≤ w(k), we have Ωsublvl(MCDi
(k), c) = ∅.

Otherwise, it is the intersection of an infinite set of closed d-spheres, which is a strictly

convex set.
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Proof: [Proof of Proposition 4.4.3] First, note that MCDi
(k) and the map s 7→

dmax(s, Wi
(k)) have the same extrema. In [18] it is shown that the latter function has

a unique global minimum at CC(Wi
(k)), when Wi

(k) is taken to be a convex polygon.

Identical reasoning yields the same result for any closed, bounded and nonempty Wi
(k).

Thus CC(Wi
(k)) is a global minimum of MCDi

(k). The requirement that φ′(d) > 0 for

all d > 0 suffices to ensure that MCDi
(k) does not have any critical points which are not

critical points of the Euclidean maximum distance function. Since that function has no

critical points other than CC(Wi
(k)), the result follows.

Proof: [Proof of Proposition 4.4.6] For each (i, k) ∈ Isamp with Wi
(k) 6= ∅, we can

write,

max
s∈Wi

(k)

{
δk

(
s,CC(Wi

(k), s̃i
(k))
)}

= φ
(

max
s∈Wi

(k)
‖s − CC(Wi

(k), s̃i
(k)))‖

)
+ w(k) ≤

≤ φ( max
s∈Wi

(k)
‖s − si

(k)‖) + w(k) = max
s∈Wi

(k)

{
δk(s, si

(k))
}
.

Taking the maximum over all nodes implies (4.11).

Proofs and supporting results from Section 4.5.1

We begin with this supporting result on strictly convex sets.

Lemma A.2.3 (Strict convexity) Let G ⊂ R
d be closed, bounded, and strictly con-

vex. For any s1, s2 ∈ G and v ∈ NG(s2) \ {0}, vT vrs(s1 − s2) < 0. Equivalently,

vrs(s1 − s2) ∈ int(TG(s2)).

Proof: Since s1, s2 ∈ G, vrs(s1−s2) ∈ TG(s2), and because of the strict convexity of

G, we can choose an ǫ ∈ R>0 small enough that w ∈ TG(s2) for all w ∈ B(vrs(s1−s2), ǫ).

Since v ∈ NG(s2) and vrs(s1 − s2) ∈ TG(s2), we have vT vrs(s1 − s2) ≤ 0. But we know

that vT vrs(s1−s2) 6= 0 because if it did then there would be some w ∈ B(vrs(s1−s2), ǫ)

such that vT w > 0, which violates the assertion that w ∈ TG(s2). The result follows.

Proof: [Proof of Proposition 4.5.1] Necessity is a result of [15, Corollary to Propo-

sition 2.4.3]. To show sufficiency, assume that 0 ∈ ∂MCDi
(k)(s∗) + NΓ(s∗), and we
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consider two cases. If CC(Wi
(k)) ∈ Γ, the result follows by Proposition 4.4.3. We pro-

ceed by contradiction. Assume that s∗ 6= CC(Wi
(k)), and 0 ∈ ∂MCDi

(k)(s∗) + NΓ(s∗),

but s∗ is not a unique minimizer. Then ∃s† ∈ Γ such that MCDi
(k)(s†) ≤ MCDi

(k)(s∗).

By Proposition 4.4.3, s∗ is not a critical point of MCDi
(k). It follows that there

is at least one nonzero vector, vG ∈ ∂MCDi
(k)(s∗) with −vG ∈ NΓ(s∗), which im-

plies vT
G vrs(s† − s∗) ≥ 0. We know that s† ∈ Ωsublvl(MCDi

(k), MCDi
(k)(s∗)), and by

Lemma 4.4.1, Ωsublvl(MCDi
(k), MCDi

(k)(s∗)) is strictly convex. By [15, Theorem 2.4.7

Corollary 1], vG ∈ NΩsublvl(MCDi
(k),MCDi

(k)(s∗))(s
∗). Lemma A.2.3 yields, vT

G vrs(s†−s∗) <

0, a contradiction. Therefore s∗ is the unique global minimizer of MCDi
(k) over Γ.

We will need this supporting result on the circumcenter of the extended set.

Lemma A.2.4 (s = CC(W̃i
(k)(Si)) implies s ∈ Γ(k)(Si)) Assume that Wi

(k) 6= ∅. Let

Si ∈ Dkmax such that Γ(k)(Si) 6= ∅. If si
(k) = CC

(
W̃i

(k)(Si)
)

then si
(k) ∈ Γ(k)(Si)

⋂D.

Proof: Assume that si
(k) = CC

(
W̃i

(k)(Si)
)
. Equation (4.13) and the fact that

si
(k) ∈ co

(
W̃i

(k)(Si)
)

imply that si
(k) ∈ D. That si

(k) ∈ Γ(k)(Si) follows by contradiction

from the fact that si
(k) 6∈ Γ(k)(Si) implies that si

(k) = CC(co{Scs(k, Si)}), and the fact

that Γ(k)(Si) is the nonempty intersection of d-spheres of equal radii centered at points

in Scs(k, Si).

Proof: (Proof of Proposition 4.5.2) As a result of Lemma A.2.4, si
(k) =

CC
(
W̃i

(k)(Si)
)

implies that si
(k) ∈ Γ(k)(Si). We may therefore assume si

(k) ∈ Γ(k)(Si).

Note that since si
(k) ∈ Γ(k)(Si), we may write, dmax(si

(k), W̃i
(k)(Si)) = rk(HWi

(Si)) =

rk

(
MCDi

(k)(si
(k))
)
. If, in addition, d (k:k′)(Si) = umax for some k′ ∈ Kcs(k), then we

also have, rk(HWi
(Si)) = ‖si

(k) − EPt(k:k′)(Si)‖. Let ξEPt ⊂ R
d, respectively ξW ⊂ R

d

denote the sets of unit vectors pointing from si
(k) to the extended constraint points at a

distance of rk(HWi
(Si)), respectively to the points in Wi

(k) at a distance of rk(HWi
(Si)),

i.e.,

ξEPt =
{

vrs(si
(k′) − si

(k))
∣∣k′ ∈ Kcs(k) s.t. ‖si

(k) − EPt(k:k′)(Si)‖ = rk(HWi
(Si))

}

ξW =
{

vrs(s − si
(k)) | s ∈ Wi

(k) s.t. ‖si
(k) − s‖ = rk(HWi

(Si))
}

.
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It can be deduced from Equation (4.13) that the set {0⋃ ξEPt} spans NΓ(k)(Si)
(si

(k)).

By extension of Proposition 4.4.3, we may conclude that si
(k) = CC

(
W̃i

(k)(Si)
)

if

and only if 0 ∈ co{ξW
⋃

ξEPt}. It can be seen that 0 ∈ co{ξW
⋃

ξEPt} if and only if

0 ∈ ∂MCDi
(k)(si

(k)) + NΓ(k)(Si)
(si

(k)). By Proposition 4.5.1, we have our result.

Proofs and supporting results from Section 4.5.2

Proof: [Proof of Lemma 4.5.3] The result follows by simple contradiction from

two observations for any k′ ∈ Kcs(k) ∩ KC . First, if d (k:k′) > umax, then si
(k) =

CC(W̃i
(k)(Si; KC)) implies that Kcs(k)∩KC = {k− 1, k + 1} and si

(k) = si
(k−1)+si

(k+1)

2 .

Second, the first and last samples in the sequence must satisfy δk

(
EPt(k:k′)(Si), si

(k)
)
≤

MCDi
(k)(Si).

Proof: [Proof of Lemma 4.5.4] From Equation (4.13), we can write,

‖EPt(k:k′)(Si) − si
(k)‖ =

rk(HWi
(Si))

umax
d (k:k′)(Si).

It has been established that HW is locally Lipschitz and regular, as is d (k:k′). The

gradient is derived from [15, Proposition 2.3.13] and a special case of [15, Theorem

2.3.9].

The following result characterizes critical points of ∂CDEi
(k:k′) ⊂ ∂HfWi

(Si).

Corollary A.2.5 (Critical points of ∂CDEi
(k:k′)(Si)) Let Si ∈ ΩRgi

, and let k, k′ ∈
{1, . . . , kmax}. If 0 ∈ ∂CDEi

(k:k′)(Si) ⊂ ∂HfWi
(Si) then all of the following hold,

HWi
(Si) = MCDi

(k)(Si) = MCDi
(k′)(Si) (A.5a)

0 ∈ co{∂MCDi
(k)(si

(k)), ∂MCDi
(k′)(si

(k′))} (A.5b)

si
(k) = CC

(
W̃i

(k)(Si; {k′})
)
. (A.5c)

Proof: First, note that since Si ∈ ΩRgi
, we have ∂CDEi

(k:k′)(Si) ⊂ ∂HfWi
(Si) if

and only if d (k:k′)(Si) = umax. From Lemma 4.5.4 it can be seen that ∂CDEi
(k:k′)(Si)

is proportional to the sum of two vector sets, one of which consists of a single vector

which is nonzero only in the kth and k′th components, and the other is ∂HWi
(Si). Any
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vector in ∂HWi
(Si) is zero everywhere except (possibly) the element corresponding to

a single timestep. Thus 0 ∈ ∂CDEi
(k:k′)(Si) only if Equation (A.5a) holds. Solving the

two simultaneous equations 0 ∈ πk(∂CDEi
(k:k′)) and 0 ∈ πk′(∂CDEi

(k:k′)) yields the

other results.

Proof: (Proof of Lemma 4.5.5) Note that we may write,

MCDfW
(k)(Si) = max

{
MCDi

(k)(Si), CDEmax
(k)(Si)

}
.

By Lemmas 4.5.4 and 4.4.2, MCDfW
(k)(Si) can be seen to be the maximum of locally

Lipschitz and regular functions, and therefore locally Lipschitz and regular itself. The

form of the gradient follows from application of [15, Proposition 2.3.12].

Proof: [Proof of Proposition 4.5.6] The MCDfW
(k) is locally Lipschitz and regular

for all k ∈ argmaxk∈{1,...,kmax} MCDfW
(k)(Si). Since HfWi

is the maximum of locally

Lipschitz and regular functions, it is locally Lipschitz and regular itself. The form of

the gradient follows from application of [15, Proposition 2.3.12].

Proof: [Proof of Lemma 4.5.7] For any k ∈ {1, . . . , kmax} and k′ ∈ Kcs(k), Si ∈ ΩRg

implies that CDEi
(k:k′)(Si) ≤ HWi

(Si). By definition, we also have MCDi
(k)(Si) ≤

HWi
(Si), with equality for at least one k. We may then write,

HfWi
(Si) = max

k∈{1,...,kmax}
MCDfW

(k)(Si) = HWi
(Si).

Proof: [Proof of Lemma 4.5.8] First, note that since Si ∈ ΩRgi
, for any k ∈ KC and

k′ ∈ Kcs(k), we have CDEi
(k:k′)(Si) ≤ HWi

(Si), with equality if and only if d (k:k′)(Si) =

umax. If this condition is not met, then sample si
(k′) is not active in the centering of si

(k).

Furthermore, if MCDfW
(k′)(Si) < HWi

(Si), then CDEi
(k′:k)(Si) < HWi

(Si). Thus any

sample which does not have maximal distance to its extended set can not be active in the

centering of a sample which does. If k is maximal, and k′ is not, then the sub-sequence

which includes k but not k′ is also centered. Thus a maximally centered sequence may

be constructed around any maximal sample in KC .

Proposition A.2.6 (Maximally centered trajectories are optimal) Let Wi ⊂
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P(D) and Si ∈ ΩRgi
such that the entire sequence, Si is maximally centered. Then Si

is the unique strict global minimizer of HfWi
over ΩRgi

.

Proof: Let S̃i = (s̃i
(1), . . . , s̃i

(kmax))T ∈ ΩRgi
such that HfWi

(S̃i) ≤ HfWi
(Si).

By Lemma 4.4.1, the set GSub
(k) = Ωsublvl(MCDi

(k),HfWi
(Si)) is convex for any k ∈

{1, . . . , kmax}. Let GCSub
(0) = {pi(0)}, and let

GCSub
(k) =

{
s ∈ R

d | ∃k′ ∈ Kcs(k), s′ ∈ GSub
(k′) with ‖s − s′‖ ≤ umax

}
,

also a convex set. Since S̃i ∈ ΩRgi
, s̃i

(k) ∈ GCSub
(k) for each k ∈ {1, . . . , kmax}, and since

HfWi
(S̃i) ≤ HfWi

(Si), s̃i
(k) ∈ GSub

(k). Making use of the similarity between the extended

set formulation and the Lagrangian of the constrained one-center problem, it can be

shown that GESub
(k) ∩ GSub

(k) = {si
(k)}. Thus S̃i = Si is the unique global minimum

of HfWi
over ΩRgi

.

Proof: [Proof of Proposition 4.5.9] We begin with the critical point result. We

consider three separate cases inspired by Lemma 4.5.5 and Proposition 4.5.6. First, if

there is a k ∈ {1, . . . , kmax} with 0 ∈ ∂MCDi
(k)(Si) ⊂ ∂HfWi

(Si), then {k} defines a

maximally centered sequence in Si.

Second, assume that 0 6∈ HWi
(Si), but that ∃k ∈ argmax

k′∈{1,...,kmax}
MCDfW

(k′)(Si)

with 0 ∈ ∂CDEmax
(k)(Si). From Corollary A.2.5, it can be deduced that ∃k′ ∈

argmaxl∈Kcs(k) CDEi
(k:l)(Si) such that {k, k′} is a maximally centered sequence.

Finally, assume that 0 6∈ HWi
(Si) and there is no k with 0 ∈ ∂CDEmax

(k)(Si) ⊂
∂HfWi

(Si). With a slight abuse of notation, let MCDfW
(k)(Si; K) = max

s∈fWi
(k)(Si;K)

δk

(
s, si

(k)
)
.

In this case it can be shown that 0 ∈ ∂HfWi
(Si) if and only if there is a sequence

K∗ ⊆ {1, . . . , kmax} of two or more consecutive samples which satisfies,

0 ∈ co
{

MCDi
(k)(Si) | k ∈ K∗

}
,

and for all k ∈ K∗, 0 ∈ πk(∂MCDfW
(k)(Si; K

∗)) and ∂MCDfW
(k)(Si; K

∗) ⊂ HfWi
(Si).

It can be shown that the first two conditions are satisfied if and only if K∗ defines a

centered sequence, while the last requires that it be maximal.
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This proves that Si is a critical point if and only if it contains at least one

maximally centered sequence. That any critical point is a global minimum follows by

applying Proposition A.2.6 to any maximally centered sequence in Si.

Proofs and supporting results from Section 4.6

Proof: [Proof of Proposition 4.6.1] We use the discrete-time LaSalle invariance

principle [47] to show convergence. Let T : (Dkmax)n → (Dkmax)n denote the evolution

map of the Generalized Multicircumcenter Algorithm, i.e., S{j} = T(S{j−1}).

Note that Ω is positively invariant with respect to T, and that H is non-increasing along

T on Ω. Since Ω is bounded, any evolution is bounded. The maps T and H are both

continuous on Ω. By the discrete time LaSalle invariance principle, any evolution with

initial condition S{0} ∈ Ω must converge to M , the largest invariant set with respect to

T contained in z = {S ∈ Ω | H(T(S)) = H(S)} ⊂ Ω.

Now, let Mmin denote the set of all global minimizers of H on Ω, and note

that Mmin ⊆ M . We reason by contradiction to show that Mmin = M . Assume that

there is a trajectory, S{0} ∈ M \ Mmin. Since M ⊂ z, we have H(S{1}) = H(S{0}).

Consider the fixed-partition optimization at step 0. Let W = MC(S{0}), and let

i ∈ argmaxi′∈{1,...,n}HWi
(S

{0}
i ). Since S{0} is not a global minimizer of H over Ω,

it is not a global minimizer of HfW over Ω, thus S
{0}
i is not a global minimizer of

HfWi
over Ωi. On the other hand, S

{1}
i is a global minimizer of HfWi

, and we have

HfWi
(S

{1}
i ) < HfWi

(S
{0}
i ). This is true for all such i, thus HfW(S{1}) < HfW(S{0}). By

Lemma 4.5.10 and Proposition 4.3.2, we can write, HW(S{0}) > HW(S{1}) ≥ H(S{1}).

Thus H(S{0}) > H(S{1}), which contradicts the assumption that S{0} ∈ z. Therefore

Mmin = M , and the result follows.

A.3 Proofs and supporting results from Chapter 5

Proof: [Proof of Proposition 5.3.4] Each node sends a single message to each

neighbor at each step, so the time complexity is bounded by the number of itera-
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tions to completion. The error at iteration t may be written eave(t) = ‖wave(t) − w‖,
where w is the m-vector whose elements are all bT b, and wave(t) is the vector of

current approximate values. This may be bounded in terms of the initial error as

eave(t) ≤
(
1 − 4

m diamQ

)t
eave(0), where we have used [59, Equation (6.10)] to lower

bound the algebraic connectivity of Q. Thus the number of steps required to guaran-

tee error less than ǫ is bounded by, t∗ave ∈ Oǫ

(
− log−1

(
1 − 4

m diamQ

))
. Applying the

bound on the growth of the network diameter yields t∗ave ∈ Oǫ

(
− log−1

(
1 − 4

m d
√

m

))
.

For large m, we can replace the logarithm with the series representation. The higher

order terms drop off and we are left with t∗ave ∈ Oǫ (m d
√

m). At each step of the al-

gorithm, each node stores a single value for each neighbor, and a constant number of

other values. Thus the space requirement is bounded simply by degQ, which is in Oǫ(1)

by assumption. Communication complexity is bounded by a single message over each

channel of the network at each iteration. The total number of such messages from each

node is bounded by a constant, which gives us the final result.

Proof: [Proof of Proposition 5.3.5] First, note that for each j ∈ {1, . . . , m}, Nj can

calculate the row sums which correspond to samples within Vj(Q) and subsequently

their maximum, so calculating the maximum row sum is simply a matter of finding the

largest value in the network. At each step of the algorithm, each node sends a single

message to each neighbor. The algorithm is complete after a number of iterations equal

to the diameter of the network. This proves the time and communication complexities

under the regularity assumption on Q. At each iteration, all nodes store a single value,

the current maximum, which takes care of the space complexity result.

Proof: [Proof of Proposition 5.3.6] The first step of the JOR algorithm is to cal-

culate the relaxation parameter. For correlation matrices, Appendix C describes a

near optimal relaxation parameter in the sense of minimizing the completion time.

Using two leader election algorithms, the network can calculate the maximum off-

diagonal element, β = maxi6=j∈{1,...,n}[Kc
(k)]ij and the maximum off-diagonal row sum

α = maxi∈{1,...,n}
∑n

j 6=1[Kc
(k)]ij . The relaxation parameter is then given by, h∗ = 2

2+α−β .

The time complexity of the JOR algorithm can be broken down into the maximum num-
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ber of messages any node sends over any channel times the number of iterations. The

number of messages Nj will send is equal to the number of nonzero off-diagonal entries

[Kc
(k)]ii′ , i 6= i′, where si ∈ Vj(Q) and si′ ∈ Vj′(Q), with j 6= j′. By assumption,

this number is bounded by Ncor. The error at iteration t of the JOR algorithm may

be written eJOR(t) = ‖wJOR(t) − (Kc
(k))−1b‖, where wJOR(t) is the vector of current

approximate values. An upper bound on the error at step t may be obtained by [6]

eJOR(t) ≤
(
sprad

(
I −hKc

(k)
))t

eJOR(0), where I is the nc
(k)×nc

(k) identity matrix. By

Proposition C.0.8, we have the bounds, 0 ≤ sprad (I − hK) < 1 − h∗̟λ. The assump-

tion of sparsity, and the fact that Kc
(k) is a correlation matrix give us 0 ≤ α < Nmsg,

and 0 ≤ β < 1, which results in 1 − h∗̟λ < 1 − 2̟λ

2+Nmsg
. Since both ̟λ and Nmsg

are positive, we have 1 − 2̟λ

2+Nmsg
< 1. Thus the number of iterations required to reach

error ǫ is upper bounded by t∗ = (e(0) − e∗)
(
− log−1

(
1 − 2̟λ

2+Nmsg

))
in Oǫ(1). The

time complexity is dominated by the time complexity of the leader election algorithm

outlined in Proposition 5.3.5. For space complexity, we note that the maximum number

of samples in a given Voronoi cell is bounded by nc
(k), while the average number is

nc
(k)

m . The space complexity is dominated by the requirement to store vectors of length

given by the number of samples in the cell, and the same number of rows of Kc
(k). This

yields the given result. For communication complexity, the overall algorithm requires

a maximum of one message to be sent per nonzero off-diagonal entry in Kc
(k), each

iteration, plus the number of messages required for the leader election.

Proof: [Proof of Proposition 5.3.9 The time and communication complexities of this

method are dominated by the requirement of an all-to-all broadcast. For the flooding

method, complexities are given in [76] in terms of the quantities m, EdQ, and the total

number of initial messages to be disseminated, M . This last quantity in our case is n

times the number of bits required to convey a spatial location plus the number required

to convey a sample value. Since the last two are constant, we have M ∈ Θ(n). The

time complexity is given as M + m − 2 and the communication complexity is between

M EdQ and 2M EdQ. The results for time and communication complexity follow from

the assumptions on Q. The space complexity of the algorithm is dominated by the
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requirement to store the entire inverse correlation matrix at each node.

A.4 Proofs and supporting results from Chapter 6

Proof: [Proof of Proposition 6.2.2] First, note that since K is positive definite, it

admits a matrix logarithm. The Gershgorin Circle Theorem yields the implication chain

P ∈ T (k) =⇒ λmax(K) < 2 =⇒ λmax(K − I) < 1.

Since the matrix K − I is nonnegative and Hermitian, the inequality (2.8) holds for

all P ∈ T (k), using the maximum eigenvalue which is a normalized, submultiplicative

norm. Thus the series log(K) in (2.9) converges, and we write log det (K) = tr (log(K)).

Writing the corresponding Taylor series,

log det (K) = tr
( ∞∑

i=1

(−1)i+1

i
(K − I)i

)
,

we conclude the result.

Proof: [Proof of Proposition 6.2.4] The first term is a result of (2.10) and the

product rule for matrices. The second term stems from (6.4).

Proof: [Proof of Lemma 6.3.1] Under the given assumptions, Nj knows rowi(K) and

coli(F) for each i ∈ Rin
(1:k+1)(j, P ). Recall that Υ = K−1

0 +FK−1FT . The result follows

from using p iterations of the JOR algorithm to calculate FK−1, and an additional p2

consensus algorithms to calculate FK−1F.

Proof: [Proof of Proposition 6.3.2] By Lemma 6.3.1, the quantity Υ and thereby

its determinant may be calculated by all nodes. From (6.4), we can see that the quan-

tity tr
(
(K − I)2

)
is a sum over quantities known to each node and may therefore be

calculated by consensus. This gives us E(k)(P ).
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For the gradient, once Υ is known to all nodes, the network must calculate the

following for each l ∈ {1, . . . , d},

rowi (K − I) coli (∇i:lK) ; (A.6)

FK−1∇i:lF
T ; (A.7)

FK−1∇i:lKK−1FT . (A.8)

Let j1 ∈ {1, . . . , m} such that i ∈ Rin
(1:k+1)(j1, P ). Note that the partial derivatives

∇i:lK and ∇i:lF
T for each l ∈ {1, . . . , d} may be calculated by Nj1 . Calculation of (A.6)

follows directly. Since the only nonzero part of ∇i:lF
T is the i+nkth row, we can write,

FK−1∇i:lF
T = coli

(
FK−1

)
rowi

(
∇i:lF

T
)
∈ R

p×p,

which is accessible to Nj1 via Lemma 6.3.1. This gives us (A.7). Lastly, the matrix

∇i:lK may be written as ζ + ζT , where ζ is nonzero only in the i + nkth row. This

yields,

FK−1∇i:lKK−1FT = FK−1ζK−1FT +

+
(
FK−1ζK−1FT

)T
.

Note that the quantity FK−1ζ ∈ R
p×n(k+1) is nonzero only in the columns,

h ∈ {1, . . . , n(k + 1)},

corresponding to measurements with nonzero correlation to the space-time location

(pi, k + 1). This implies, by the first assumption of the proposition, that the spatial

position corresponding to the hth measurement either lies within Vj1(Q), or within

Vj2(Q) for some j2 ∈ {1, . . . , m} such that Nj1 can communicate with Nj2 . In the

former case, rowh(K−1FT ) is known to Nj1 , while in the latter case it is known by Nj2 .

Thus with communication from its neighbors, Nj can compute (A.8).
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Appendix B

Predictions with a subset of

measurements

We present here a series of results on the Kitanidis model concerning the

relationship between subsets of sample locations and hypothetical predictions made

from partial information. We present here a series of results concerning the relationship

between subsets of spatiotemporal sample locations and hypothetical predictions made

from partial information. Let Y ∈ R
n denote a full set of measurements at locations X ∈

Dn
e . Let n1, n2 ∈ Z>0 such that n1 + n2 = n. Consider a partition of the measurements

Y = (Y1, Y2) such that Y1 ∈ R
n1 and Y2 ∈ R

n2 , and a similar partition of X. Note that

due to the invariance of ϕ and φ under permutations of the samples, the subsequent

results do not require that the elements of the partition be sequential. We will use K1,

respectively K2, to denote the correlation matrix of locations X1, respectively X2, and

analogous notation for the matrices F1,F2,E1,E2. Let K12 = KT
21 ∈ R

n1×n2 denote

the matrix of cross-correlation between the two location vectors.

We begin with a multivariate version of the posterior predictive variance from

Proposition 2.5.1, which can be considered the hypothetical distribution of the mea-

surements at space-time locations X2 given the samples Y1. As in the univariate case,

this result can be obtained by applying Bayes Theorem to the prior model.
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Lemma B.0.1 (Multivariate posterior predictive distribution) Under the prior

assumptions in Equations (2.2) and (2.3), the multivariate posterior predictive distribu-

tion of hypothetical samples Y2 conditional on data Y1 is the n2-variate shifted Students

t distribution with ν + n1 degrees of freedom, which takes the form,

p(Y2|Y1) ∝ det (Var[Y2|Y1])
− 1

2×
(

1 +
(Y2 − E[Y2|Y1])

T Var[Y2|Y1]
−1 (Y2 − E[Y2|Y1])

ν + n1 − 2

)− ν+n1+n2
2

.

Here, the expectation is given by

E[Y2|Y1] = ξT
2|1(E1 + K−1

0 )−1
(
F1K

−1
1 Y1 + K−1

0 β0

)
+ K21K

−1
1 Y1,

where ξ2|1 = F2 − F1K
−1
1 K12. The covariance matrix is given by

Var[Y2|Y1] = ϕ(Y1, X1)φ(X2; X1),

where, with a slight abuse of notation, we have used φ(X2; X1) to denote the following

multivariate extensions of φ and ϕ,

φ(X2; X1) = K2 − K21K
−1
1 K12 + ξT

2|1
(
K−1

0 + E1

)−1
ξ2|1,

ϕ(Y1, X1) =
1

ν + n1 − 2

(
qν +

(
Y1 − FT

1 β0

)T (
K1 + FTK0F

)−1 (
Y1 − FT

1 β0

))
.

In the sequel, we will find useful the matrices M ∈ R
(n+p)×(n+p) and M2 ∈

R
(n2+p)×(n2+p) and vectors U ∈ R

n+p and U2 ∈ R
n2+p defined as,

M =


K FT

F −K−1
0


 , U =


 Y

−K−1
0 β0


 , M2 =


K2 FT

2

F2 −K−1
0


 , U2 =


 Y2

−K−1
0 β0


 .

Note that M2 is the lower right submatrix of M under a different partition, and U2 is

the corresponding subvector of U . It can be shown that the matrices M and M2 are

invertible.
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Proposition B.0.2 (Approximate conditional variance) The term φ(x; X) may

be written in terms of spatiotemporal locations X2 as,

φ(x; X) = φ(x; X2) − (k1 − µ1)
T φ(X1; X2)

−1 (k1 − µ1) , where

µ1 =


K21

F1




T

M−1
2


 k2

f(x)


 , k1 = Cor[Z(x), Y1], k2 = Cor[Z(x), Y2].

Therefore φ(x; X) ≤ φ(x; X2) with equality if and only if k1 = µ1.

Proof: First, we note that the conditional variance can be written using M as,

φ(x; X) = Cor[Z, Z] −


 k

f(x)




T

M−1


 k

f(x)


 .

Next, we point out that with the proper partitioning of M, the matrix φ(X1; X2) is the

Schur Complement, (M2 |M). Using this, and a similar partition of the vector k, one

arrives at the result.

The following result illustrates a number of ways in which the sigma mean may be

restated.

Lemma B.0.3 (Restated sigma mean) The quadratic form UTM−1U admits the

following representations,

UTM−1U = (Y − FT β0)
T (K + FTK0F)−1(Y − FT β0) − βT

0 K−1
0 β0 (B.1a)

= Y TK−1Y −
(
K−1

0 β0 + FK−1Y
)T (

K−1
0 + E

)−1(
K−1

0 β0 + FK−1Y
)

(B.1b)

= UT
2 M−1

2 U2 + (Y1 − E[Y1|Y2])
T φ(X1; X2)

−1(Y1 − E[Y1|Y2]). (B.1c)

Furthermore, the term ϕ(Y, X) may be written as,

ϕ(Y, X) =
qν + βT

0 K−1
0 β0 + UTM−1U

ν + n − 2
. (B.2)

Proof: Each of the three representations of the quadratic form may be derived

directly by using [4, Proposition 2.8.7] to expand the inverse matrix onto Schur com-

plements. Plugging representation (B.1a) into equation (B.2) yields the form given in

Proposition 2.5.1.
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The generalized least squares (GLS) approximation arises naturally from par-

titioning the elements of the term K−1Y . The following lemma gives explicit form in

terms of the GLS error.

Lemma B.0.4 (Generalized least squares approximations) Let ŶLS = K21K
−1
1 Y1

be the generalized least squares estimate of Y2 based on samples Y1 (conditional on all

parameters), and let yLS = Y2 − ŶLS. Then we can write,

K−1Y =


K

−1
1 Y1

0


+


−K−1

1 K12(K1 |K)−1yLS

(K1 |K)−1yLS


 . (B.3)

Proof: [Proof of Proposition 5.2.4] If nc
(k+1) = 0, then ϕ̂(k+1)(P ) = ϕ̃k. By

Lemma 5.2.3, we also have ϕ̃k + 1 = ϕ̃k. For nc
(k+1) > 0, we use Equation (B.3) in

Lemma B.0.4 to write,

Y TK−1Y = Y T
1 K−1

1 Y1 + (Y2 − ŶLS)
T (K1 |K)(Y2 − ŶLS)

FK−1Y = FT
1 K−1

1 Y1 + ξ2|1(K1 |K)(Y2 − ŶLS).

Here we have used the simpler indexed notation, Y1 = Yϕ
(k) and Y2 = Y (k+1) to simplify

the algebra. Applying these results to Equation (B.1b) in Lemma B.0.3 yields,

UTM−1U = Y T
1 K−1

1 Y1 − (K−1
0 β0 + F1K

−1
1 Y1)

T (K−1
0 + E)−1(K−1

0 β0 + F1K
−1
1 Y1)+

+ (Y2 − ŶLS)
T (K1 |K)−1(Y2 − ŶLS)−

− 2(K−1
0 β0 + F1K

−1
1 Y1)

T (K−1
0 + E)−1(ξ2|1(K1 |K)−1(Y2 − ŶLS))−

− (ξ2|1(K1 |K)−1(Y2 − ŶLS))
T (K−1

0 + E)−1(ξ2|1(K1 |K)−1(Y2 − ŶLS)).

Using, e.g. [40, Equation (12,17)], we can write,

φ(X2; X1) = (K1 |K)−1 + (K1 |K)−1ξT
2|1(K

−1
0 + E)−1ξ2|1(K1 |K)−1.

With some algebraic manipulation we arrive at the result,

UTM−1U = Y T
1 K−1

1 Y1 − (K−1
0 β0 + F1K

−1
1 Y1)

T (K−1
0 + E)−1(K−1

0 β0 + F1K
−1
1 Y1)+

+ (yLS − 2µ2|1)φ(X2; X1)
−1yLS.

The result follows from Lemma B.0.3.
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Appendix C

Near optimal relaxation parameter for

JOR

Here we present some results regarding a relaxation parameter for the JOR al-

gorithm which is nearly optimal with respect to the rate of convergence of the algorithm

for a certain class of matrices. Specifically we are interested in the class of symmetric,

positive definite matrices C with ones on the diagonal. Let y(t) = (y1(t), . . . , yn(t))T ∈
R

n be the vector updated during the JOR iteration in (4.19). Let e(t) = ‖C−1y − y(t)‖
denote the error at iteration t. We may write,

e(t) ≤ (sprad(I − hC))t e(0), (C.1)

giving a bound on the error at step t based on the initial error. The value of sprad(I −
hC) therefore controls the rate of convergence, and choosing the relaxation parameter,

h, is of vital importance. Throughout this section we will use the shorthand λmax =

λmax(C) and λmin = λmin(C). The work [78] provides results concerning the convergence

of the JOR algorithm, including an optimal relaxation parameter, which in our case is

equivalent to hopt = 2
λmax+λmin

. In this section we will introduce an approximation to

this optimal value which may be calculated in a distributed manner.

Proposition C.0.5 Assume that C ∈ R
n×n is a symmetric positive definite matrix

with all diagonal entries equal to 1. Let β and α denote the maximum off-diagonal
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entry of C and the maximum off-diagonal row sum of C, respectively,

β = max
i6=j∈{1,...,n}

{cij} ≥ 0, α = max
i∈{1,...,n}

{ n∑

j=1
j 6=i

cij

}
≥ 0.

Let h∗ = 2
2+α−β . Then using h∗ as the relaxation parameter in the JOR algorithm to

solve y = C−1b results in guaranteed convergence.

Proof: Recall from Section 4.6.4 that convergence of the JOR algorithm is guar-

anteed as long as h∗ ∈
(
0, 2

λmax

)
. This can also be seen from Equation C.1, since h

outside of this range would yield sprad(I − hC) > 1. Since C is symmetric positive

definite with 1’s on the diagonal, all off-diagonal entries must have magnitude strictly

less than 1. Thus 1− β > 0. The Gershgorin circle theorem (e.g. [4, Fact 4.10.13]) tells

us that λmax ≤ 1 + α. Together these two results yield 2 + α− β > λmax, which implies

that 2
2+α−β < 2

λmax
, and the result follows.

Lemma C.0.6 Under the assumptions of Proposition C.0.5, h∗ ≤ 1
λmin

, with equality

if and only if C is the n × n identity matrix.

Proof: First, note the following implication chain,

λmin ≤ 1 =⇒ 2λmin ≤ 2 + α − β =⇒ h∗ ≤ 1

λmin
.

Now, assume that h∗ = 1
λmin

. This implies that λmin = 1 + α − β, but λmin ≤ 1, and

α ≥ β. So we must have λmin = 1. Since the diagonal entries of C are all 1, the smallest

eigenvalue can only be 1 if all off-diagonal entries are zero, i.e., if C = In.

Lemma C.0.7 Under the assumptions of Proposition C.0.5, |1−h∗λmin| ≥ |1−h∗λmax|.

Proof: Using Lemma C.0.6, we have |1 − h∗λmin| = 1 − h∗λmin. The result may

then be shown by two separate cases. First, note that if h∗ ≤ 1
λmax

then we have,

|1 − h∗λmax| = 1 − h∗λmax ≤ |1 − h∗λmin|,

so the result holds in this case. For the second case, assume that h∗ > 1
λmax

. Then

|1 − h∗λmax| = h∗λmax − 1. The inclusion principle and the fact that C is positive
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definite give us the bounds 0 < λmin ≤ 1−α. Combined with the previously mentioned

Gershgorin bound, λmax ≤ 1 + α, this allows us to write,

λmax + λmin

2 + α − β
≤ 1

2
λmax + λmin

2 + α − β
≤ 2

h∗ (λmax + λmin) ≤ 2

h∗λmax − 1 ≤ 1 − h∗λmin.

Thus in all cases, |1 − h∗λmax| ≤ |1 − h∗λmin|.

Proposition C.0.8 Under the assumptions of Proposition C.0.5, further assume that

λmin ≥ ̟λ for some ̟λ ∈ (0, 1). Then 0 ≤ sprad(I − h∗C) < 1 − 2̟λ

2+α−β

Proof: First note that the spectral radius is given by

sprad(I − h∗C) = max {|1 − h∗λmin|, |1 − h∗λmax|} ,

and is clearly nonnegative. From Lemma C.0.7, we have sprad(I −h∗C) = |1−h∗λmin|.
From Lemma C.0.6, we can infer sprad(I−h∗C) = 1−h∗λmin. The upper bound follows

by comparing 1 − h∗λmin against 1 − h∗̟λ.
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