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SUMMARY

This paper considers autonomous robotic sensor networks takingirageents of a physical process for predictive
purposes. The physical process is modeled as a spatiotemporahrdigld. The network objective is to take
samples at locations that maximize the information content of the data.drhbiration of information-based
optimization and distributed control presents difficult technical challeagestandard measures of information
are not distributed in nature. Moreover, the lack of prior knowledge ersthtistical structure of the field can
make the problem arbitrarily difficult. Assuming the mean of the field is amawi linear combination of known
functions and its covariance structure is determined by a function knpwman unknown parameter, we provide
a novel distributed method for performing sequential optimal designristwork comprised of static and mobile
devices. We characterize the correctness of the proposed algorithexamine in detail the time, communication,
and space complexities required for its implementation. Copy@ 009 John Wiley & Sons, Ltd.
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1. Introduction

Networks of environmental sensors are playing an incrghsimportant role in scientific studies, with
applications to a variety of scenarios, including detectid chemical pollutants, animal monitoring,

and mapping of ocean currents. Among their many advantagiestic sensor networks can improve
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2 R. GRAHAM AND J. CORES

the efficiency of data collection, adapt to changes in thérenmnent, and provide a robust response
to individual failures. The design of coordination algbnits for networks performing these spatially-
distributed sensing tasks faces the major challenge ofjiocating the complex statistical techniques
that come into play in the analysis of environmental proegs3raditional statistical modeling and
inference assume full availability of all measurements egntral computation. While the availability
of data at a central location is certainly a desirable priypéne paradigm for motion coordination
builds on partial, fragmented information. Coordinatidgoaithms need to be distributed and scalable
to make robotic networks capable of operating in an autonusmand robust fashion. At the same time,
these algorithms must be statistically driven to steer #igvark towards locations that provide the
most informative samples about the physical processes.\ildrik is a step forward in bridging the gap
between sophisticated statistical modeling and distitbuotion coordination.

In this paper, we are interested in a predictive scenariahiich the goal is to estimate the value of
a physical process at unmeasured locations based on théesarofpected. We assume that the model
of the underlying process is stochastic. This can be a uaefuloach if the dynamics of the field are
not well known, require a high dimensional parameter spagaddel, or require extremely accurate
specification of initial conditions. Treating the field as auSsian Process, we use a Bayesian modeling
approach, in which the prediction at any given location satkee form of adistribution with a full
accounting of the predictive uncertainty. When choosinddbations to take samples, this uncertainty
should inform any measure of their utility. This presentsfficdit challenge in a distributed setting,

because the predictive uncertainty depends on all sampkesantrivial way.

Literature review Complex statistical techniques allow a detailed accounnegrtainty in modeling
physical phenomena. Of particular relevance to this work [dj], regarding statistical models,
and [2, 3], regarding the application of optimal design teghes to Bayesian models. Under certain
conditions on the covariance structure, data taken far ftwrprediction site have very little impact
on the predictor [4]. When the random field does not have a @vwee structure with finite spatial
correlation, an approximation which does may be generateccavariance tapering [5]. Optimal

design [6, 7] addresses the problem of choosing sampladosathich optimize estimation.

In cooperative control, various works consider mobile sengtworks performing spatial estimation
tasks. [8] introduces performance metrics for oceanogcaptirveys by autonomous underwater
vehicles. [9] considers a robotic sensor network with adizied control estimating a static field from
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COOPERATIVE ADAPTIVE SAMPLING OF RANDOM FIELDS WITH PARTIALY KNOWN COVARIANCE 3

measurements with both sensing and localization errol. §h@oses optimal sampling trajectories
from a parameterized set of paths. [11] discusses the trgoldf level curves in a noisy scalar
field. [12] develops distributed estimation techniques fioedictive inference of a spatiotemporal
random field and its gradient. In [13, 14, 15, 16] the focusrniestimating deterministic fields with
random measurement noise. Of the above references, thicle @amsider random field models do so
under an assumption of known covariance. To our knowledigegtihe first work in the cooperative
control arena which allows for uncertainty in the covarmras well as the mean. We make use
of a model derived in [17], which is the only spatial model we aware of that makes a direct
analytical connection between uncertainty in the covagaand the resulting predictive uncertainty.
Aside from this model or derivatives, the common practicembonfronted with unknown covariance
is to either run a separate estimation procedure and thahttre covariance as known, or to use
simulation methods such as Markov chain Montecarlo to edénthe posterior distribution. The
work [18] addresses a method of choosing sample locatiams & discrete space which are robust
to misspecification of the covariance. Another method fardiag unknown covariance has recently
grown out of the exploration-exploitation approach of feinement learning (see, e.g. [19]). The
work [20] applies this approach to the spatial estimaticanscio by breaking up the objective into
an exploration component which focuses on learning abautrtbdel in a discretized space and an
exploitation component in which that knowledge is put to useptimizing for prediction. Here, we
provide a result in which no discretization is necessary wandtake full advantage of the mobile
capabilities of networks of autonomous sensors. Our workaised in part on previous material
presented in [21] and [22].

Statement of contributionsWe begin with a widely accepted Bayesian model for the ptixsticof

a spatiotemporal random field, designed to handle variogseds of knowledge about the mean and
covariance. The predictive variance of this model can b#ewas a scaled product of two components,
one corresponding to uncertainty about the covariance effigld, the other corresponding to
uncertainty of the prediction conditional on the covarrur first contribution is the development of
an approximate predictive variance which may be calculafédently in a sequential and distributed
manner. This includes introducing a scheduled update otsfienated covariance parameter based
on uncorrelated clusters of samples. Our second contitigithe characterization of the smoothness

properties of the objective function and the computatioitsafradient. Using consensus and distributed
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4 R. GRAHAM AND J. CORES

Jacobi overrelaxation algorithms, we show how the objedtimction and its gradient can be computed
in a distributed way across a network composed of robotimtagand static nodes. Our third

contribution is the design of a coordination algorithm lohea projected gradient descent which
guarantees one-step-ahead locally optimal data collediioe to the nature of the solution, optimality
here takes into account both the unknown parameter in theriemece and the (conditional) uncertainty
in the prediction. Finally, our fourth contribution is thbaracterization of the communication, time,
and space complexities of the proposed algorithm. For eafer, we compare these complexities
against the ones of a centralized algorithm in which all danmformation is broadcast throughout

the network at each step of the optimization.

Organization Section 2 introduces basic notation and describes thetitatimodel. Section 3 states
the robotic network model and the overall network objectiee following two sections present the
main results of the paper. Section 4 introduces the obgdftinction, with attention to its smoothness
properties, and discusses how the network can make theredoealculations in a distributed way.
Section 5 presents the cooperative strategy for optimal dallection along with correctness and

complexity results. Section 6 contains our conclusions.

2. Preliminary notions

Let R, R-, andR>( denote the set of reals, positive reals and nonnegative, nepectively. We
consider a convex polytof@ ¢ R?, d € N. Let D, = D x R denote the space of points ovBrand
time. Forp € R? andr € R, let B(p,r) be theclosed ballof radiusr centered ap. We denote by
|z |, respectively{z] the floor, respectively ceiling af € R. Givenu = (uy,...,u.)", a € Z~¢, and
v=(vi,...,u)T, b € Zso, we denote byu, v) the concatenatiofw, v) = (u1, ..., uq,v1,..., )" .
We denote by)S the boundary of a set. Letiy : (R?)" — F(R?) be the natural immersion, i.éx(P)
contains only the distinct points iR = (p1, ..., p,). Note thatir is invariant under permutations of
its arguments and that the cardinalityig{p, ..., p,) is in general less than or equal #0 The e-
contractionof a setS, with e > 0, is the setS. = {q € S| d(g, dS) > €}. A convex polytopés the
convex hull of a finite point set. For a bounded setC R?, we letCR(S) denote thecircumradius
of S, that is, the radius of the smallest-radiltsphere enclosing. We denote byf(S) the collection

of finite subsets of. TheVoronoi partitionV(s) = (Vi (s),..., V,(s)) of D generated by the points
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COOPERATIVE ADAPTIVE SAMPLING OF RANDOM FIELDS WITH PARTIALY KNOWN COVARIANCE 5

5= (81,...,8,) is defined byV;(s) = {g € D | |lg — si|| < [lg — s;|l, Vi # i}. EachV;(s) is called
aVoronoi cell Two pointss; ands; areVoronoi neighborsf their Voronoi cells share a boundary.
We uselmin(A), respectively\max(A) to denote the smallest, respectively largest eigenvaltieeof
square matrixA, and spra@A) to denote the spectral radius df We denote by{AJ;; the (7, j)th
element of the matrix4, and by col(A) its ith column. Let0;,; denote thei x j zero matrix. If
the dimensions are clear from the context we may omit thecsigts and us®. Given a partitioned
A1 Aiz

matrix, A = Aal Az, we denote by A;; |A), respectively(Azs |A) the Schur complement oA,

respectivelyd,s in A, i.e.,

(Au |A) = Agy — AQlAfllAlg and (A22 |A) = A1 — A12A521A21.

2.1. Projected gradient descent

Next, we describe the constrained optimization techniquanvk as projected gradient descent [23] to
iteratively find the minima of an objective functidn: R™ — Rx(. Let{2 denote a nonempty, closed,
and convex subset @™, m € N. Assume tha¥ F' is globally Lipschitz o). Letproj,, : R™ — Q

denote the orthogonal projection onto theQet
projo(x) = argmin [z — y||.
yeR
Consider a sequende } € Q, k € N, which satisfies
ZTgp41 = projq (zr — axVF(zr)), z1 € Q, 1)

where the step sizey, is chosen according to theNE SEARCH ALGORITHM described in Table I,
evaluated at = zy,.

Here the grid size determines the granularity of the line search. The toles@nmay be adjusted
for a more (largem) or less (smalle) strict gradient descent. With > 0, the LINE SEARCH
ALGORITHM must terminate in finite time. The Armijo condition (stBensures that the decreaserin
is commensurate with the magnitude of its gradient. A secgiery, }7° , satisfying these requirements

converges in the limit [23] aB — oo to stationary points of".

2.2. Bayesian modeling of space-time processes

Let Z denote a random space-time process taking valueBonety = (yi,... ,yn)T € R" be

n € N measurements taken frot at corresponding locations = (z1,...,2,)T € D™, with
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6 R. GRAHAM AND J. CORES

Name: LINE SEARCH ALGORITHM
Goal: Determine step size for algorithm (1)
Input: x €Q

Assumes. 7,60 € (0,1), max steprmax € R>o
Output: a€Rxo

1 o = amax

2: repeat

3:  Tnew = projq (z — aVF(z))
4 v= "2z — el + F(znew) — F(x)
5. if v > 0then
6
7

o = QT

until v <0

Table I. LLINE SEARCH ALGORITHM.

x; = (si,t;), i € {1,...,n}. Given these data, various models allow for predictiorzoét any
point in D., with associated uncertainty. Optimal design is the proaéshoosing locations to take
measurements in order to reduce the uncertainty of thetimgstatistical prediction. Since prediction
uncertainty drives the problem, it should be modeled asrately as possible.

In a Bayesian setting, the prediction takes the form of aridigion, called the posterior
predictive [24]. If the field is modeled as a Gaussian Progéts known covariance, the posterior
predictive mean corresponds to tBest Linear Unbiased Predictpand its variance corresponds to the
mean-squared prediction error. Predictive modeling is tlointext is often referred to in geostatistics
assimple krigingif the mean is also known, amiversal krigingif the mean is treated as an unknown
linear combination of known basis functions. If the covada of the field is not known, however, few
analytical results exist which take the full uncertaintioiaccount. We present here a model [1] which
allows for uncertainty in the covariance process and stdbdpces an analytical posterior predictive

distribution. We assume that the measurements are distdlas then-variate normal distribution,
y~N, (F'8,0°K). 2

Here 3 € R? is a vector of unknown regression parameters,c R is the unknown variance
parameter, an& is a correlation matrix whosg jth element isK;; = Cor{y;, y;]. Note thatK is
symmetric, positive definite, witi’s on the diagonal. We assume a finite correlation range inespa
rs € Ry, and in time; € R, such that ifl|s; — s;|| > rsor|t; —t;| > r, thenK;; = K;; = 0.
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COOPERATIVE ADAPTIVE SAMPLING OF RANDOM FIELDS WITH PARTIALY KNOWN COVARIANCE 7

The matrixF is determined by a set gf € N known basis functiong; : D. — R evaluated at the

locationsz, i.e.,

f1($1) fl(l”n)

fp(xl) S fp(xn)

We will also usef(z) = (fi(z),..., fo(z))T € RP to denote the vector of basis functions evaluated
at a single location. To ensure an analytical form for thelgxés predictive distribution, we assume

conjugate prior distributions for the parameters,

Blo® ~ N, (Bo, o°Ko) , (3a)
(v qV
T (5 5) (30)

Hereg, € RP, Ky € RP*P, andq, v € R+ are constants, known &sning parametergor the model,
andT'~!(a,b) denotes the inverse gamma distribution with shape parametad scale parametér
(see, e.g. [25]). Since it is a correlation matrix, it shobédnoted thak, must be positive definite. A

common practice in statistics is to uKg o I.

Proposition 2.1 (Posterior predictivedistribution) Under the Bayesian mod€PR), the posterior
predictive at locationey € D, is a shifted Students t distribution (see, e.g. [25]) with- n degrees of

freedom, which takes the form, far= Z(z),

_ v4n41

(7 - E[Z|y,2))? ) :

v+n—2) Var[Zly, x|

Zly, z Var[Z@,g]*% (1 + (

Here, the expectation is given by
E(Zly.z] = (f(z0) - FK k)" g1 + KTK "y,
ot = E+K7) " (B+K5' ).
where = E-'FK 'y, E = FK~'F”, andk = Corly, Z] € R". The variance is given by
Var[Zly, z] = ¢ (y, z)(x0; ),
$(wo;z) = ColZ, Z) — kK"K 'k + &8 (K; ' + B) ' &,

o = f(zg) — FK 'k,

1 -1
ply2) = —— (v + (y— F00)" (K+FTKF) " (y—F)).
v4+n—2
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8 R. GRAHAM AND J. CORES

Proof. This result can be obtained from application of Bayes Thaore the model outlined by
Equations (3), or from results in [1] and [17] using a teclugigimilar to the one used in the proof of
Proposition 1.4 in Appendix |m

Note that sincK, andK are positive definite, the quantitié$z; 2) andy(y, z) are well posed.

Remark 2.2 (Termsin the posterior predictive variance) Note the form for the posterior predictive
variance in Proposition 2.1 as a product of two terms. Thetérsn,¢(y, z), is the posterior mean of
the parametes?, given the sampled data. We will call it tisegma meanThe second termy(zo; z),
can be thought of as the scaled posterior predictive vagimonditioned orv2. We will call it the

conditional variance °

The conditional variance is very close to what the predéctigriance would look like it-2 were
known, as we show in the next. The following results may bévddrby applying Bayes Theorem to

the prior model.

Proposition 2.3 (Kriging variance) If the variance parameter? is known, the result is theniversal

kriging predictor and the posterior predictive variance takes the form,
Varyk[Z]y, z] = 0® (CoifZ, Z] — kK"K 'k + { E7'¢) .

If, in addition, the mean of the field is known, the result &stimple kriging predictgrand the posterior

predictive variance is given by,
Varsk[Z]y, z] = o* (ConZ, Z] — k'K 'k) .

Remark 2.4 (Extension of subsequent resultsto Kriging) The simple and universal kriging results
are simplified versions of our overall model, and resultsnfithe rest of this paper may be applied
to those models with minimal modifications. An exceptionhiattwhen approximatingaryx using
subsets of measurements, care must be taken to ensureosetlfqess. Specifically, an assumption that

n > pis required to ensure that the matkixis nonsingular. .

2.3. Distributed computational tools

Here we briefly describe some tools for distributed compartat Consider a network of agents with
limited communication capabilities. Assume that the uectied communication grap&, is connected

(i.e., there is a two way communication path connecting avy dgents). Let,;; € {0,1}, 4,5 €
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COOPERATIVE ADAPTIVE SAMPLING OF RANDOM FIELDS WITH PARTIALY KNOWN COVARIANCE 9

{1,...,n} bel if agentsi and;j are neighbors iz, and0 otherwise. Leb = (by,...,b,)T € R,
C = [¢;;] € R™™", and assume agehknowsb; and theith row of C'. Additionally assume that; # 0

and fori # j, ¢;; # 0iff ¢ andj are communication neighbors. Then the following resulls.ho

JOR: The network can compute the vectgr = C~'b via a distributed Jacobi overrelaxation
algorithm [26], formulated as the discrete-time dynamgyetem,
h
pall+1) = (L= () = = (D ey = b)), (4)
R
forl € Z>o andi € {1,...,n}, wherey(0) € R™ andh € (0, ﬁ(m) At the end of the

algorithm, agent knows theith element ofC 4.

Discrete-time average consensus: The network can compute the arithmetic mean of elements of
via the discrete dynamical system [27],
il +1) = 2i(0) + €Y aij(@i(l) — 2;(1)), 2(0) =b,
J#i
o} {Z#i aij} is the maximum degree of the network.

At the end of the algorithm, all agents knc@%—“.

wheree € (0, x) andA = max;c(;

Maximum consensus: The network can calculate the maximum value of elementswid a leader
election algorithm [28]. Each agent sends the current eséiof the maximum to all neighbors,
then updates its estimate. If the process is repeated a mwhbmes equal to the diameter of

the network, then every agent will know the maximum.

The first two results above are only exact asymptoticallyconvergence is exponential with time.

3. Problem statement

Here we introduce the model for the group of robotic agentsstatic nodes, and detail the overall
objective.
3.1. Robotic sensor network model

Consider agroupss, . .., S, } of m € N static nodes at locatior$ = (q1, . ..,¢n,)T € D™. Assume

that each node has a limited communication radiig, R, and that they are positioned so that each
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10 R. GRAHAM AND J. CORTES

one can communicate with its Voronoi neighbors. In additenhe static nodes, consider a group
{Rs,...,R,} of n. mobile robotic sensor agents. The position of robeat {1,...,n} attimet € R
is denoted by, (t) € D. The robots take point samples of the spatial field at disarettants of time

in Z>(. Between sample instants, each robot moves according tligbeete dynamics
pi(k+1) = pi(k) + ui(k),

where||u;|| < umaxfor someumax € R<o. The communication radius of the robotic agents is &so
Each node will need to be able to communicate with any robatlwmmay be within covariance range
of the points in its Voronoi region at the following timestfjp that end, we assume that

R > max ) {CR(V;(@))} + rs + tmax- (5)

i€{l,....m

The robots can sense the positions of other robots withistamiie oRumax. At discrete timesteps, each
robot communicates the sample and location to static nodtégwveommunication range, along with
the locations of any other sensed robots. The nodes thenuteropntrol vectors, and relay them back
to robots within communication range. The implementatioesinot require direct communication

between robots. We refer to this network modehas

3.1.1. Voronoi contraction for collision avoidancéNVe begin by specifying the region of allowed
movement for the robotic agents. In addition to the maximwioaity and the restriction t®, we

impose a minimum distance requirement between robots. igkttee benefit of collision avoidance,
this restriction ensures that even under the assumptioerof gensor error, the posterior predictive

variance is well-defined over the space of possible configursa

Letw € R ( be a desired buffer width, assumed to be small compared tsizbeofD. To ensure
that the distance between two robots is never smallerdhare introduce a contraction of the Voronoi
diagram. Consider the locatiods = (p1, ..., p,) of then robotic agents at thith timestep. Define
ng) = (Vi(P))w/2 N B(pi, umax), where(V;(P)),,» denotes theg-contraction ofV;(P). For each
j#ied{l,...,n}, we haved(QEk), Qg.k)) > w. Between timesteps andk + 1, we restrictR; to the
regionQ{*). Figure 1 shows an example R? of this set. We denote b(¥) = [T, Q% ¢ (rI)n
the region of allowed movement of all robotic agents at tiegs < Z>(. Note thatQ(*) is closed,

bounded, and convex.

Copyright(© 2009 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Contr@009;1:1-2
Prepared usingncauth.cls



COOPERATIVE ADAPTIVE SAMPLING OF RANDOM FIELDS WITH PARTIALY KNOWN COVARIANCE 11

/// k ¢ [
ol P2

p3

Figure 1. Example of regioﬂ(l’” (red) with Voronoi partition boundaries (black) for comparison.

3.2. The average variance as objective function

For predictions over a region in space and time, the averag@nce is a hatural measure of uncertainty.
Using Proposition 2.1, we define the average over the spatimral region of the posterior predictive

variance,
A=ty [ olGotoyodtads ©)

Here,y € (R")’“max is a sequence of samples taken at discrete tifies. . , kmax}, kmax € Z>o, at

space-time locationg € (Dg)kmf“. T = [1, kmax is the time interval of interest.

One would like to choose the sample locations that minimite Since samples are taken
sequentially, with each new set restricted to a region netird previous, and since the sigma mean

depends on the actual values of the samples, one cannoysiptphize over(D?)*max a priori.

Consider, instead, a greedy approach in which we use pagiesto choose the positions for the
next ones. At each timestep we choose the next locationsrtomnize the average posterior variance
of the predictor given the data known so far. In Section 4, exetbp a sequential formulation of the

average posterior predictive variance and discuss its ahiléy to distributed implementation ovey.
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12 R. GRAHAM AND J. CORES
4. Distributed criterion for adaptive design

In this section we develop an optimality criterion to maxilpaeduce the average predictive variance
at each timestep. We begin by introducing some notationthitielp us make the discussion precise.
Let y®) € R™, k € {1,...,kmas, denote the samples taken at time stgpat locations
z®) € pr. Letykike) ¢ Rrlka=ki+l) 'k < [, denote the vector of samples taken over a range
of timesteps, at locationg(k1:#2) ¢ pplk2=Fi+1) i.e., ylkike) = ((y(’“))T,...,(y(’”))T)T and
glkik2) = ((g(’“l))T, . (@"‘2))T)T. At stepk, the sampleg!**) have already been taken. We
are interested in choosing locatiom®, € Q(®), at which to take the next samples. To that end, let
z(Lk+D M) DD man a new set of spatial locations to the vector of spatioteaifocations
which will result if the(k-+1)st samples are taken there, i€ %+D (P) = (2T (P, k + 1)T)T.
The adaptive design approach is then to use the samplesithiatine the average prediction variance

so far,

AR(P) = p(yt 0, 2D (P)) / / 6 ((s0.t0); 2TV (P)) dto dso. @)
This sequential formulation of the problem aIIowz uz to us&t pneasurements without worrying about
the ones at steps after- 1. However, efficient distributed implementation still s from three major
obstacles. First, both terms (*) ( P) require inversion of the(k + 1) x n(k + 1) covariance matrix
of all sample locations up to stép+ 1. The complexity of this inversion grows wift?, which quickly
becomes an unreasonable burden. Second, the sigma meatepésuals on the actual values of the
samples at step + 1, which we do not know until the measurements are taken. Iticded.1 we
discuss an approximate sigma mean which addresses thess.i$be third obstacle to our distributed
implementation is the integration of the conditional vada over the entire spatial region. This integral
involves a complex interaction between every sample anénkiee predictive region, which does not
lend itself to distributed calculation. In Section 4.2, wadduce a distributed approximation based on
regional integrals, each of which may be calculated loc&llyally, Section 4.3 combines these results

to propose an approximate average prediction variancedmabe optimized via gradient descent.

4.1. Approximate sigma mean

In this section, we describe our approach to deal with tha tei(y 1+ z(L:k+D(P)) in (7). We
would like an approximation which may be calculated befbeesamples are taken and that scales with
increasingk. This involves two steps. First, we develop a running edeénoéy which uses scheduled
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COOPERATIVE ADAPTIVE SAMPLING OF RANDOM FIELDS WITH PARTIALY KNOWN COVARIANCE 13

updates based on a subset of the overall samples. Seconddvessthe issue of unrealized sample

values by using a generalized least squares estimate.

4.1.1. Incorporating new data. From Lemma 1.6 in Appendix |, it can be seen that minimizing
results in minimal values of both the posterior mean andavae ofo2. As the number of samples
increases, the posterior meancof should approach some finite constant. Under the assumption o
a Gaussian Process prior, any finite vector of realizaticass & consistent joint distribution. This
implies that if we evaluate the posterior mean with any sulb$dhe samples, the result should
asymptotically approach the same constant, regardleshiohvgamples are used for inference. Using
samples from all timesteps results in quick convergendagojuires a large computational burden later
on, with little information gain. Instead, we consider aulkeg, scheduled update, using select blocks
of measurements to perform the estimation, as described nex

Lettsip € N be a fixed number of timesteps to skip between updates, atikletN denote a fixed
number of steps to include in our estimation block. Sinca dampled at different time lags provide
different information about?, a natural choice is blocks of samples coveripg = [r] timesteps.
To simplify notation, we will denote the time to complete grdate cycle ascycie = toik + tskip- We
will use the firsttyy timesteps out of eversyie to update our estimate. For reasons which will become
apparent later, we will break up the sample blocks previousones which have been completed and
the current one in progress (if there is one in progress). Lemma 4.1 filyndafines the vectors of

previous and current samples used in the update at timestep

Lemma4.1. Assume thatg, > [r¢]. Letk € {1,..., kmad and IetBF(,k) =1+ {%J denote the

number of previously completed sample blockﬁéﬁ) =0, Ietgé’” = @é’“) = (). Otherwise, let the

previous blocks be defined by
k T i—1)teyclet 11 Loycle— ki
y,() ) = (QT» . ,ygék)) Whereyi = y((z Dteyclet1:d teycle—t kp)’
glgk) — (&{, . 7££ék)>T Wheregi — g((i_l)tcycle‘f‘l:i tcycle—tskip)_

Let nék) = max{0,k — Bék)tcyde} denote the number of samples taken so far in the current blbck
n =0, Ietg((:’f) = 2 = ), otherwise let the current block be defined by,

(k) _ y(Bék)tcyc|e+1:k)’ k) _ Q(Bémtcyde—&-l:k).

v z

Then the previous sample blo%sare uncorrelated to each other, and uncorrelated to the entr

bIockgé’“).
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14 R. GRAHAM AND J. CORTES

Proof. By construction, there argy, timesteps between each of the successive previous blocks an
between the last of them and the current block. This meangthéime lag between blocksfigi,+ 1,
and by the assumption th&ki, > |7¢], the blocks are uncorrelates.

Table Il shows an example of the vectors used to calculatestimated sigma mean at a given

timestep.
Value ofk | 1 2 3 4 5 6
Value ofy™ | g | 0 | 0 | y® 0 0
k T ,T\T T ,T\T
Value ofyé 0y oy |y | WD | Tyl
Block Number| 1 1 | skip| 2 2 skip

Table Il. Example of update schedule for estimating sigma meannwith 1.5, tskip = 1, andéuk = 2 (thus
teydle = 3). Herey, denotes the vector of samples in th&rent block, andgp denotes the vector of samples in

previousblocks, both give the valuesfter the kth samples have been incorporated. The completed block vectors

are given byg1 = g“:?) andg2 — g(“).

LetK;, F;, andE;, respectivel;Kék), Fék), andEé’“) denote the values of the matridks F', andE
as calculated from the locations, respectivelygék). For k such thatnék) =0, let Kf;k) = F((;k') =0,
and letEY = 0, - The following lemma illustrates how a running estimatet® sigma mean may

be calculated frongé’“ andz®.

L emma 4.2 (Sequential formulation of the sigmamean) Let »(*) denote the posterior predictive

(’“))T)T. Under the assumptions of Lemma 4.1,

mean o2 under the sample vectgfo’“) = ((g'()"’>)T, (y!

we may write,

Bk
1 p
(k) — [ Tre—1 _ (k) _
o = v+ B Ky Bo+ ) Ti+ T
v+ ntka,gk) + n((;k) -2 ; ¢
Bék) Bék) Bék)
— (Ky' 6o + Z I+ Fék))T(Kgl + Z E; + Eék))_l(Kglﬂo + Z I+ Fé"'))}, where
i=1 i=1 i=1
Ti=y Ky, T =) ED) P
_ X —1
i =FK 'y TP =FMEKHM) y».
Here,Ték), andl“ék) are taken to b@ if nf;k) =0.
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COOPERATIVE ADAPTIVE SAMPLING OF RANDOM FIELDS WITH PARTIALY KNOWN COVARIANCE 15

Proof. Under the assumption th&di, > |7/, the sample blockgi are uncorrelated to each other,
and uncorrelated tgg"’). Using Lemma 1.4 in Appendix I, the posterior meanodf from datagfp’“)
may be restated as in Equation (11). Successive applisatidaquation (10) from Lemma 1.3 (also in
Appendix |) yield the resultm

Lemma 4.2 demonstrates how an estimate of the sigma meagpdt san be built from previous
calculations. If the values df ;, T';, andE; have been calculated for all previous update blocks and
their sums stored, the network need only calcumi@, Fé"'), andEé"') from recent information and

assemble the parts @f*).

4.1.2. Approximating unrealized sample valuegVhile seeking optimal locations to take tffe+1)st

set of measurements, we would like to incorporate the effigtieirlocationson the posterior variance,
but the actual values have not yet been sampled. Our appieadctuse a generalized least squares
approximation of,**1) given only the samples usedif*). We describe this in detail in the following

result.

Proposition 4.3 (Generalized least squares estimate of sigma mean) Under the assumptions of
Lemma 4.2, Ieg(L’;) - Q) — R™ map a vector of locationsP € Q%) to the generalized least
squares estimate, based on the sample veg‘gﬁr, of a vector of samples to be taken at locations
(P, k + 1). Then we may write,

(k) (k)y—1, (k) it (k)

yLS
0 otherwise

where K% (P) is the correlation matrix between the new set of locationd a8 Now, letg®) -
Q®*) — R be defined as,

M (P)=® i (nTD =0), otherwise,
B{M
1
pM(P) = TR )
¢"(P) = [qurﬁoKo ot ) Tit+Te"—
v+ ntowBST 4 ndFTY — 2 1:21 ¢
Bék) Bék) Bék)
- T te— —1
50 3T T (GG S BB 5+ 3 T4 T,
=1 i=1 i—1

whereEék“)(P) denotes the matri¥ as calculated with space-time location vec@ﬂFH)(P) =

(@NT, (P k + 1)T)T. After the new sampleg(**!) have been taken at locatiori®, k + 1), let

Copyright(© 2009 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Contr@009;1:1-2
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16 R. GRAHAM AND J. CORTES

7.9 - Q¥ — R" denote the estimation error, i.gis (P) = y*+1) — 5 (P). Then we may write,

. —(k
P = M (P) + GyEHD, 2l 7L (P),

k (k+1)
Bé +1) « D;Ltb\ch

for some functiorG : R"fok — R. In other words**t1) may be estimated by

¢(®) (P), and the estimation is exactgjfs = 0.

Proof. Under the assumption thgé’“ is not correlated tg*), Equation (8) can be derived using
Lemma 1.2 in Appendix I. The estimation result takes two fermint™ " = 0, theng®) (P) = x*).
By Lemma 4.2, we also have*+1) = (), soG(-) = 0 satisfies the result. Forl* ™" > 0, the

((:k-i-l), ngﬂ)’ and

result can be obtained by applying Equation (9) in Lemmad.ghe quantitiesl’
EF)(P). m
In the next section, we examine the other part4f), the conditional variance, and develop an

efficient approximation which may be calculated locally lagle node.

4.2. Upper bound on conditional variance

Next, we seek an efficient approximation of the conditiorefiance termy((so, to); 23+ (P))
in (7). As noted in Remark 2.2 represents the direct effect of the sample locations onrbdigive
uncertainty (i.e., conditional o). The following proposition gives an approximation of thesigrated

conditional variance which may be calculated by the netvedrkodes.

Proposition 4.4 (Approximate integrated conditional variance) Let g(k“_“‘]:k“)

; (P) denote an

ordering of the set of past or current locations correlatadspace td/; (@) and in time tok + 1, such

that,
in (gg’““*’“:’“*”(za)) - {(s,t) € i (gﬂ:“l)(P)) | d(s,V;(Q)) < reandk +1— ¢t < n} .

Let gb;k) : D, x Q%) — R map a prediction locationz;y € D, and a vector of sample locations,
P € Q) to the conditional variance of a prediction madexgtusing only the samples at space-time

locationsz**'~"/***1)( p)_ Then the following holds,

/D/qu((s()’to);i(l:kjtl)(lp))dto dsy < ;\/VAQ) A¢§k)((80,t0);P) dto dsg.

Proof. Note that althoug@§k+1_L7"J’k+1)(P) is not unique, the invariance of the conditional variance
to permutations of the sample locations ensures uniqumfecsjs(mo; P). The result follows from

Proposition 1.5 in Appendix |m
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COOPERATIVE ADAPTIVE SAMPLING OF RANDOM FIELDS WITH PARTIALY KNOWN COVARIANCE 17

4.3. The aggregate average prediction variance and its $hmass properties

Building on the results from Sections 4.1 and 4.2, we defirre tieeaggregate average prediction
variance A¥). Unlike A®), the functionA*) may be computed efficiently in a distributed manner

over . The proof of the following result is a direct consequencthefresults above.

Proposition 4.5. (Spatiotemporal approximation for distributed implementation) Let Ag“
Q%) — R be defined by

APy =gy [ o (0.p) dras.
Vi(Q)JT

m

ThenA® (P) = Y~ A" (P) satisfies the inequalitylim AR (P) > Jim AF)(P),

Remark 4.6. Note that the comparison betweght*) (P) and.A*) (P) is somewhat stronger than the
limiting result shown in Proposition 4.5. The quanti#*) (P) is comprised of the product of two
terms. The approximate sigma mean is equal to the sigma metae iimit, while the approximate

conditional variance is an upper bound to the actual candhilivariance for alk. °

Next, we characterize the smoothness propertieslét. Let V;; denote the partial derivative
with respect top;;, the ith spatial component of the location &f;. We denote byV; the partial
derivative with respect t@;, i.e., V; = (V;1,...,Viq)T. Thus the gradient ofA®) at location P
may be represented as the: d-dimensional vectof V7. A®)(P), ..., VI A® (P))". Given matrix,
A, we denote by ;; A the component-wise partial derivative 4f The proofs of the following results
amount to a careful bookkeeping of the smoothness propeastithe various ingredients involved in

the expressions.

Lemma 4.7 (Gradient of conditional variance) Assume thaf,..., f, and the covariance of are
C'! with respect to the spatial position of their arguments. Ttiee mapP — ¢;k> (w9, P) is C* on
Q) and admits the partial derivative,
V'™ (2o, P) = —2kTK 'Vk + KTK 'V, KK 'k~
— ¢l (Ky'+E) T VB (Ko ' +E) 6 +2¢0 (K" +E) ' Vo, with
Viéo = —ViFK 'k — FK~'V,;k + FK'V; KK 'k,
ViE = VyFK'FT + FK'V,,;FT - FK 'V, KK 'F,

Copyright(© 2009 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Contr@009;1:1-2
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18 R. GRAHAM AND J. CORTES

where the matriceK, E, andF and the vectork, and&, are calculated from the location subvector,

£§k+17 [rt]:k+1) (P)

It is worth noting that the matri¥/; F is nonzero only in columr. The matrixV ;K is nonzero
only in row and columri. Additionally, due to the finite correlation range in space dime, only
those elements corresponding to correlation with othersomegnent locations = (s, t) which satisfy

|pi — s|| < rsandt > k + 1 — r, are nonzero.

Lemma 4.8 (Gradient of conditional varianceisLipschitz) Under the assumptions of Lemma 4.7,
assume, in addition, that the partial derivatives faf . .., f, and the covariance of are C* with
respect to the spatial position of their arguments. Thenrtep P +— Vigb;k) (o, P) is globally
Lipschitz onQ(¥) .

Note that the value ofp(*)(P) depends onP only through the matrixEék“), whose partial

derivative is analogous to that &f in Lemma 4.7. This leads us to the following continuity résul

Lemma 4.9 (Gradient of sigma mean) Under the assumptions of Lemma 457%) is C'* onQ*) and
admits the partial derivative,

0 it nt —o

_w(P)T v EFTD(P) w(P)
V—‘rntkaékH)-i-nékH)—Q

Vi (P) =
otherwise, where,

BF()k) BF()k)
U(P) = (Kg' + Y E; + EXMD(P) (Ko + DTy +T0).

=1 =1
Additionally, under the assumptions of Lemma 4.8, the gratd7»(*) is globally Lipschitz orf2(%),

Proof. This result stems from the fact that®) (P) depends o only throughES ™ (P). m
We are now ready to state the smoothness propertig’dfand provide an explicit expression for

its gradient. This is a direct result of the Lemmas above.

Proposition 4.10 (Gradient of sigma mean is Lipschitz) Under the assumptions of Lemma 447*)

is C' on Q) and admits the partial derivative,
VAW (P) = ¢®)(P) / / V.o ((5,1), P) dt ds
vi(@)JT
+ Vg (P) / / o\ ((s,1), P) dtds.
V(@) JT
Additionally, under the assumptions of Lemma 4.8, the gratd7.A(*) is globally Lipschitz o).
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4.4. Distributed computation of aggregate average prédlicvariance and its gradient

Here, we substantiate our assertion that the aggregatagev@rediction variance and its gradient
introduced in Section 4.3 are distributed over the netwdtkSinceV(Q) is a partition of the physical
space, we may partition all sample locations by region. Thugach(s,t) € ir(z), there is exactly
onej € {1,...,m} such thats € V;(Q). In order for the network to calculatd*) and its gradient
at P, itis sufficient fors; to computed'*) andv;4\*) for each robot inV;(Q). Then A*) may be
calculated via discrete-time average consensus (cf.@e218), whileV,;.A(*) may be calculated from
information local toR;. From Propositions 4.5 and 4.10, it can be seen that cailcnlaf A;k) and
ViA§k) requires only local information in addition to the (globadlues ofp(¥)(P) andV,; (%) (P).
Let us explain how these two quantities can be calculated.

In this section we are concerned with elements of the ve@nds matrices associated with the

(k)

currentupdate block of2*) (P). Letz®) respectivelyy,. l) denote theath element of the vectare

cit !

respectivelyy(¥) fori € {1,... 3 Let 1™ - N — F(N) map the index of the node to the set of

indices of samples in the current update block whose spatiition lies inside its Voronoi cell, and

whose time element is correlated to tife- 1,

0 if nd® =0
k . 9
II(_ozzal( ) =

{i e{1,... ,nék)} | zé’? = (s,t) ands € Vj(Q)} otherwise

With a slight abuse of notation, deflr{@;, (4, P) to be the equivalent set of indices into the full vector

of measurement locations{* ) (P), with the caveat that [ (j, P) = 0 if n**") = 0.

Our first result illustrates the parts ¢f*) (P) which do not include the locationB.

Proposition 4.11 (Distributed calculationswithout P) Assume thag;, for j € {1,...,m}, knows
(k) (k)

e Yo Z) foreachi € I} .y

x (7). Afterp+1 executions of the JOR algorithm adubsequent consensus

algorithms,S; has access to,

element of (K{)~ Y eR, ie 15)_(5) via JOR;

LocallJ
coli (F&(KEY) 1) e R, i € 1{k,(j) via JOR;

LocallJ

Fék’) € RP via consensus;
T € RP via consensus.
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20 R. GRAHAM AND J. CORTES

Proof. Under the assumptions dvi, the matrixKé’“), satisfies the requirements of the distributed JOR
algorithm. The results here build on this fact and the cotetess of the network of nodes (which
allows for consensusm

Next, we describe calculations that the network can exegh robotic agents are at locatioRs

Proposition 4.12 (Distributed calculationswith P) Given P € Q(*), assume thatS;, for j <
{1,...,m}, knowsz" for eachi € 1511 (j, P) and the results of Proposition 4.11. LEE" " (P)

denote the matrix of basis functions evaluated at |Ocat'@(ﬁ§ U After p executions of JOR ang?

executions of consensus algorithrfig has access to,

Loca

col; (FékH)(P)(Kék“)(P))*l) eR?, i ¢ 154D (. P) via JOR;

E{ Y (P) € RP*P via consensus.

After these computations,; can calculateVﬂEék“) forl € {1,...,d}. Under the assumption that
(k) (k) (k)

S, knows the quantities ", E;, Y75, T;, and Y7, T, thenS; can calculateg(¥)(P) and

V") (P) for each robot in{i € {1,...,n} | p; € V;(Q)}.

Proof. The matrixKékH)(P) satisfies the requirements of the distributed JOR algorittynthe
assumptions oV The itemized results follow. The calculation f*) (P) and its partial derivatives

follow from Lemmas 4.2 and 4.9

5. Distributed optimization of the aggregate average pt@i variance

Here we present a distributed projected gradient descgatitdm which is guaranteed to converge to
a stationary point ofA(*) on Q). Table IIl outlines the DSTRIBUTED LINE SEARCH ALGORITHM,
which is a distributed version of thelle SEARCH ALGORITHM from Table I. The maximum stepsize,
amax € Ry, is designed to ensure that all robots with nonzero pargaivdtives can move the
maximum distance.

The DISTRIBUTED PROJECTEDGRADIENT DESCENTALGORITHM in Table IV allows the network
of static nodes and mobile agents to find local minimal6? onQ(*). At timestepk, the nodes follow
a gradient descent algorithm, defining a sequence of coatigus,{PlT}, [ € N, such thatPlT is

P& ¢ Q) the vector of current spatial locations of the robotic agemd

PZT+1 = prOjQ (PZT - Ofvdqul‘r) , v € RZ()’
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COOPERATIVE ADAPTIVE SAMPLING OF RANDOM FIELDS WITH PARTIALY KNOWN COVARIANCE 21

1. a= Gmax

2: repeat

Name: DISTRIBUTED LINE SEARCH ALGORITHM
Goal: Compute step size for projected gradient descept 6t
Input: Configuration,P = (p1,...,pn) € QW
Assumes. (i) Connected network of static nodes
(i) S; knowsp;, A (P), v, A®)(P) andQ; for each robot within communication range
(iii) [|V: A (P)|| # 0 for at leastoné € {1,...,n}
(iv) S; knows items#3 and#4 from Proposition 4.11
(v) Shrinkage factor and tolerancé < (0, 1) known a priori by all static nodes
Uses: (i) Projection of next set of locations ap,
P]{(oz7 P) = {projﬂi (pi + aVifl(P)), for each: such thatd (ps, V;(Q)) < 7s + Umax + w}.
(i) Total distance traveled by robots enterilig(Q),
4 (, P) = > llproje, (pi + aViA(P)) = pil.
i€{1,...,n} such that
projq, (Pi+aV; A(P))eV;(Q)
Output: Step sizer ¢ R
Initialization
1: S1,...,Sm calculateomax = _ Umax via a consensus algorithm
min[|ViA(P)[| | [[ViA(P)|| # 0}
Forj € {1,...,m}, nodeS; executes concurrently

3: calculates; (a, P)?

4:  calculatesy®) (P} (a, P)) according to Proposition 4.12
T(k

5:  calculatesd (Pj(a, P))

6: execute consensus algorithm to calculate the following:

A® (P'(a, P)) = i«‘ﬁ-k) (Pi(a, )

j=1

|P =P (e, P)]” =" dj (e, P)?
j=1

7. v="2|P—Pl(a,P) + AP (P (a, P)) - A®(P)
8: ifv > 0then
9: a=aT

10: until v <0

Table Ill. DISTRIBUTED LINE SEARCH ALGORITHM.
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22 R. GRAHAM AND J. CORTES

wherea is chosen via DSTRIBUTED LINE SEARCH ALGORITHM. When| A®) (B[ ) — A® (P)| =
0, the algorithm terminates, and the nodesRét!) = PITH. By the end of this calculation, each node
knows the identity of robotic agents in its Voronoi cell anéistep: + 1. NodeS; transmitsp; (k + 1)
to robot R;, which then moves to the location between timesteps.

The following proposition describes some nice propertiéghe DISTRIBUTED PROJECTED
GRADIENT DESCENTALGORITHM. Its proof is a direct result of the construction of the aition

and the fact that it is equivalent to a centralized projegtediient descent.

Proposition 5.1. (Properties of the DISTRIBUTED PROJECTED GRADIENT DESCENT ALGO-
RITHM) TheDISTRIBUTED PROJECTEDGRADIENT DESCENTALGORITHM is distributed over the
network . Moreover, under the assumptions of Lemma 4.8, any exedstiuch that the robots do
not collide and, at each timestep after the first, measurésrame taken at stationary configurations of
P — A®)(P) overQ®),

The proposed algorithm is robust to agent failures. If amag®ps sending position updates, it
ceases to receive new control vectors. The rest of the nkteamtinues operating with the available

resources and will eventually sample the areas previousigred by the failing agents.

Remark 5.2 (Extension to relative positioning) It is interesting to observe that, due to the fact that
the actual positions of samples are only required in a localtext, our algorithm can also be
implemented in a robotic network with relative positionifigne only requirements are: that each node
can calculate the mean basis function for all local samheseach node can calculate the correlations
between pairs of local samples; and that neighboring ncaleagree on the ordering of those samples
within the global matrix. These modifications would not impthe convergence properties of the

algorithm. .

5.1. Complexity analysis

Here we examine the complexity of the |S¥YRIBUTED PROJECTED GRADIENT DESCENT
ALGORITHM in detail. We are interested in characterizing the compftexif the algorithm
implementation in terms of the number of robotic agents Aedtimber of static nodes. For reference,
we compare our proposed algorithm against a centralizaatitlion that uses all-to-all broadcast and
global information, and does not take advantage of theibiiged nature of the problem.

Given that the DSTRIBUTED PROJECTEDGRADIENT DESCENTALGORITHM is sequential, and
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12: until |A®) (Prext) — A% (Pow)| = 0
13: setsP*+1) = P, and sends next position to robots

in V;(Q)

Name: DISTRIBUTED PROJECTEDGRADIENT DESCENTALGORITHM

Goal: Find a local minimum of4A*) within Q.

Assumes: (i) Connected network of static computing nodes and mobile robotic seagengs
(i) Static nodes deployed ovéP such thatR > max;cq1,...,m} {CR(Vi(Q))} + s + tmax,
robotic agents in initial configuratioR" e Q)

(iii) Line search shrinkage facterand tolerance valug € (0, 1) known a priori by all nodes
(iv) A termination marker known to all nodes and robots which may béetsemark the end of g
gradient descent loop.

Uses: (i) Each node uses the temporary vectBxs, respectivelyPrex to hold the configuration at the
current, respectively next step of the gradient projection algorithme&se of exposition, we use
global notation althougl§; only calculates and uses the parts of these vectors which corres
to agents currently within communication range.

Attime k € Z>o, nodeS; executes: Meanwhile, robotR; executes:
1: setsReov(j) = {Ri | d(pi(k),V;(Q)) < rs} 1: takes measurement@t(k)
2: collects initial samples and locations fraf) for each  2: sets Seov(i) =
i € Reov(j)- {55 | d(pi(k), V;(Q)) < rs}

3: computes firstd(*) (P*)) and thenA® (P™) via  3: sends measurement and position to all nod

consensus in Scov(7)

4: setsPex = P 4: repeat

5: repeat 5: receives V; A (P®)) from nodes

6:  setsPeur = Prexi(j) and CalCUlateS—v./I;-k) | Peur in Scov(4)

7. transmits vectorV; A" (Pur) to all robots in 6 calculates sunv; A% (P*))

Reo(j) 7. sends V;A® (P®) to all nodes in

8: collects sumV; A% (Py,) from all robots in Seov(i)

Reov(7) 8: until receives termination marker from any

9:  runs DSTRIBUTED LINE SEARCH ALGORITHM at node

Py to geta 9: receives next locatiop; (k + 1)
10:  SetsPiex = Peur + aVAF| g, 10: moves top; (k + 1).
11:  calculates| A™ (Prex) — A®) (Peur)| from known

quantities

Copyright(© 2009 John Wiley & Sons, Ltd.
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24 R. GRAHAM AND J. CORTES

designed to run for a fixed number of timesteps, we are coadenare with complexities involved in
performing a single step. Below, where we refer to compjenitions over multiple iterations of an
algorithm, we are considering the nested algorithms suclO#, or consensus, which run during a
single step of the B3TRIBUTED PROJECTEDGRADIENT DESCENTALGORITHM.

We examine the algorithm performance against the followiotipns of complexity, see [29, 30, 28]

Communication complexity: the total number of bits transmitted over all (directed) cwmication

channels between nodes in the network over the course ofgbsthm;

Time complexity: the number of iterations of the algorithm times the maximwmber of bits sent

over any channel during one iteration;

Space complexity: the total number of bits for which space may be requlvg@ single node at any

given time

We are now ready to characterize the complexities of ourrikgos, beginning with the inner

iterations.

Proposition 5.3. (Average consensus complexity) Assume that the group of static nodes is regular
in the sense that its diameter, diame Z., satisfies dialg € O(/m). Further assume that
the maximum number of neighbors of a given node is bounded dpnstant deg € Z-. Let

b= (by,...,b,)T € R™ denote a vector distributed across the network of nodesérstéinse that

S; knowsb; for eachj € {1,...,m}. The discrete time consensus algorithm may be run on the
network of nodes to calculate an arithmetic mean of the féghwith communication complexity in

O (m?/m), time complexity irD (m ¢/m), and space complexity if(1).

Proof. Each node sends a single message to each neighbor at eachostap time complexity
is bounded by the number of iterations to completion. The lmemof iterations may be bounded
by the number required to reach a desired tolerance level.€Ftor at iteration may be written
eave(t) = |lwave(t) — wl||, Wwherew is the m-vector whose elements are &lb, and waye(t) is
the vector of current approximate values. This may be bodirideterms of the initial error as
eave(t) < (1 — m)teave(o), where we have used [31, Equation (6.10)] to lower bound the

algebraic connectivity of the network of nodes. Thus the beimof steps required to guarantee a

4
mdiamg

particular error is bounded by, € O (— log™* (1 — )) . Applying the bound on the growth

Copyright(© 2009 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Contr@009;1:1-2

Prepared usingncauth.cls



COOPERATIVE ADAPTIVE SAMPLING OF RANDOM FIELDS WITH PARTIALY KNOWN COVARIANCE 25

of the network diameter yields;,, € O (—log‘1 (1 — f%)) . For largem, we can replace
the logarithm with the series representation. The highdemoterms drop off and we are left with
tre € O (m+¥/m). At each step of the algorithm, each node stores a single\falueach neighbor,
and a constant number of other values. Thus the space rewarités bounded simply by the number
of neighbors, which is irO(1) by assumption. Communication complexity is bounded by glsin
message over each channel of the network at each iteratfi@ntofal number of such messages from

each node is bounded by a constant, which gives us the finat.ras

Remark 5.4. In two and three dimensions, the maximum diameter requinéimes been shown to be
consistent with a hexagonal grid network [32, 33], which lsbaconsistent (in terms of number of
neighbors) with the average case for large Voronoi netwfa4k The requirement of bounded degree

(maximum number of neighbors) would also be satisfied by agexal grid. °

SinceA(®) uses only measurements correlated in time, the size of thécemand vectors is limited
to a constant multiple ofi. Recall the definitions from Section 4.1 Kék), respectivelynék), the

correlation matrix, respectively number, of samples indlweentupdate block.

Proposition 5.5. (Leader election complexity) Under the assumptions of Proposition 5.3, the

leader election algorithm may be run on the network of nodescalculate the quantity

0

max > KM, with communication complexity i@ (m {/m), time complexity irO ({/m),
ie{l,...,n¢ }j:1

and space complexity i@ (1).
Proof. First, note that for eachi € {1,...,m}, S; can calculate the row sums which correspond
to samples withi//;(Q) and subsequently their maximum, so calculating the maximumsum is
simply a matter of finding the largest value in the networkeAth step of the algorithm, each node
sends a single message to each neighbor. The algorithm @et@after a number of iterations equal to
the diameter of the network. This proves the time and comoatioin complexities. At each iteration,
all nodes store a single value, the current max, which taesaf the space complexitm

For the following algorithms, the distribution of sampleghe region defines two different regimes

for complexity. We will consider both the worst case and therage based on a uniform distribution.

Proposition 5.6. (JOR complexity) Under the assumptions of Proposition 5.5, assume that tisere

some constard, € (0, 1), known a priori, such thakmm(Kék)) > ). Regarding the sparsity cKék),
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assume that any one sample is correlated to at M@st € N others, and that, forany € {1,...,m},

the number of samples i\ V;(Q) which are correlated to samples 1 (@) is upper bounded by a
constant,Nmsg € N. Letb = (b1,. .. ,bném)T ¢ R™" be distributed on the network of nodes in the
sense that i&; knows col( é’“)), thensS; knowsb;. Then the distributed JOR algorithm may be run to
calculate(Kék))—lb with communication complexity i (m &/m), time complexity irO (&m), and

space complexity iV(n) worst case()(>) average case.

Proof. The first step of the JOR algorithm is to calculate the relaraparameter. For correlation
matrices, Appendix Il describes a near optimal relaxatianameter in the sense of minimizing
the completion time. Using two leader election algorithithg, network can calculate the maximum
off-diagonal elements = max#je{lwn}[Kék)]ij and the maximum off-diagonal row sum =

MAaX;e (1, n} Z;?#[Kék)]ij. The relaxation parameter is then given by, = The time

complexity of the JOR algorithm can be broken down into theiimam number of messages any
node sends over any channel times the number of iteratidresnlimber of message will send

is equal to the number of nonzero off-diagonal entl[Kék)]W, i # ¢, wheres; € V;(Q) and
sy € Vi (Q), with j # j'. By assumption, this number is bounded By, The error at iteratiomn of
the JOR algorithm may be writtetyor(t) = ||wior(t) — (Kék))—lbn, wherew;or(t) is the vector of
current approximate values. An upper bound on the erroegttshay be obtained by [26];0r(t) <
(sprad(I — hKEk)))t ejor(0), wherel is thené’“) X né’“) identity matrix. By Proposition 1.4, we
have the bound$), < sprad(I — hK) < 1 — h*ey. The assumption of sparsity, and the fact ﬁ(éf)

is a correlation matrix give U < o < Nisg, and0 < 8 < 1, which results inl — h*ey <1 — 2€x

2+Nmsg-
Since bothey, and Nmsgare positive, we have — ij\;msg < 1. The minimum number of steps required
to reach an error of* is then upper bounded by = (e(0) — e*) (—log‘1 (1 - ij@msg)). Thus

the number of iterations required to reach a given erroraolee is inO(1). The time complexity is
then dominated by the time complexity of the leader electilgorithm outlined in Proposition 5.5.
For space complexity, we note that the maximum number of &Brip a given cell is bounded by
nék), while the average number?énﬁ. The space complexity is dominated by the requirement te sto
vectors of length given by the number of samples in the cell, the same number of rows Kék).
This yields the given result. For communication complestitg overall algorithm requires a maximum
of one message to be sent per nonzero off-diagonal enﬂ%’fﬁ, each iteration, plus the number of

messages required for the leader electimn.
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Remark 5.7. The assumptions on the sparsity B in Proposition 5.6 have the following
interpretation: samples do not cluster in space as measuthdespect to the distribution of the

Voronoi cells and their size relative to the correlationgan °

Proposition 5.8. (Complexity of the DISTRIBUTED PROJECTED GRADIENT DESCENT ALGO-
RITHM) Under the assumptions of Proposition 5.5 and Table IVOl&rRIBUTED PROJECTEDGRA-
DIENT DESCENTALGORITHM may be completed with communication complexity)i(m2 \d/ﬁ)

time complexity irO (m /m), and space complexity if(n?) worst caseo(%i) average case.

Proof. First it should be noted that the number of iterations to detigm of both the DSTRIBUTED
LINE SEARCHALGORITHM and the DSTRIBUTED PROJECTEDGRADIENT DESCENTALGORITHM
are independent of andm. Thus the complexities of each are given by the requiremaraissingle
step. The space complexity is dominated by the need to dtermterse covariance matrix of known
samples required faﬂ§k). The worst case corresponds to mﬁf) samples correlated to one Voronoi
region, and the average to samples distributed uniforntg fime and communication complexities

are dominated by the requirement of the consensus algorshm

5.1.1. Broadcast method for compariso®ne way to judge the efficiency of our method would be
to compare it against a simple algorithm which floods the pétwvith new information at each
sample time. This algorithm would work as follows. At eaahéstep, all samples and locations are
disseminated throughout the network, such that each notnslithe entire vectors andy. Each
node then runs a projected gradient descent given globainmaftion. Since all nodes have the same
information, they should converge to the same final locati®ince this method is only given for
comparison, we will assume that this is the case. Once a nmslediculated the next location for all
of the agents which will be in that Voronoi cell, the contrelctors may be transmitted to those agents.
The information dissemination in this algorithm corresgmo an all-to-all broadcast in which each

node begins with a distinct message of Ien|gﬁf;é“a1|)(j, P)| units.

Proposition 5.9. (Complexity of the broadcast method) Under the assumptions of Proposition 5.8,
local minima of A(*) may be found by all to all broadcast of agent positions andsegbent local

projected gradient descent with,

communication complexity i@ (m?n) worst case() (mn) average case

time complexity irO (n ¢/m) worst case( (% «d/m) average case
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space complexity i0(n?)

Proof. The time and communication complexity of this method are idated by the requirement of

an all to all broadcast. Given a networksafnodes, each of which has a distinct messagi/ djits, an
absolute lower bound on the number of bits that must be tratezhtan be found by noting that each
node must end up with altn — 1)M bits from the other nodes. Thus the number of message units
to be transmitted must be at leas{m — 1) M. The worst and average cases correspont/toc n

(for all agents in a single region) and o - (for agents spread among regions). The longest path
any message must take in a standard all to all broadcast ididhgeter of the network. The time
complexity is then given by the number of bits in a messagedithe diameter, and by assumption,
diamg € O({/m). The space complexity of the algorithm is dominated by tiggirement to store the
entire inverse covariance matrix at each node. Even thdwghbdvariance matrix is sparse, the inverse

is in general not, requiring the whotg™ x n” storage spacem

Remark 5.10 (Broadcast method requires global positioning) It should be noted here that while the
DISTRIBUTED PROJECTEDGRADIENT DESCENTALGORITHM might be extended to systems with

relative positioning (see Remark 5.2), the broadcast niethquires global coordinates.

Table V lists the complexities side by side for comparisbnah be seen that the distributed method
scales better overall with the number of mobile agents. Hsalts with respect to increasing the
number of static nodes are less favorable, but it should bedriinat the results presented here for
the broadcast method are known lower bounds on the comntiam@@mplexity, not representative of
any achievable algorithm. In particular, we did not accdantedundant transmissions, multi-hop path
requirements, or stalled communication channels. Any é@mgntable all-to-all broadcast algorithm

must balance communication complexity against time corilyi¢éo account for these issues.

5.2. Simulations

We show here an implementation of thelSDRIBUTED PROJECTED GRADIENT DESCENT
ALGORITHM with the following parametersin = 5 static nodesy = 20 robotic agents, and
the convex polygorD with vertices{(0,.1), (2.5,.1), (3.45,1.6), (3.5,1.7), (3.45,1.8), (2.7,2.2),
(1,2.4), (0.2,1.3)}. We used the separable covariance function defindddsyZ (s1,t1), Z(s2, t2)] =
Cirunc(|ls1 — 52, 0-3) Crrunc(|t1 — t2[, 3.5), where
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Complexity Type Broadcast Distributed PGD
Worst Average Worst Average
Communication | O(m?n) O(mn) | O (m?¢m) | O (m?ym)
Time O(nym) | O Vm) | O(mym) | O(mym)
Space O(n?) O(n?) O (n?) @) ((%)2)

Table V. Algorithm complexities. The worst and average cases ared@tebutions of samples, with the average
corresponding to a uniform distribution 2. The time and communication complexities for the broadcast method
are lower bounds, not simultaneously achievable by any known algorithm

e (R if 5 <,

CtI'UnC((Sa Ts) =
0 otherwise

While the covariance function is nat! everywhere, the difference lies within the error marginhef t
simulation. We usev = 0.02 andumax = 0.3. The values of our hyperparameters were= 0.1,
q = 2,0 =0,andK, = I. We simulated the sampled data by drawing random variabtes f
the distributionN (5, 03K.,), whereo§ = -2, the prior mean ob?, andK, is the correlation
matrix of y . For the mean regression functiofis we usedf(((z,y),t)) = (1,z,y)T. To illustrate
the robustness to failur&, ceased communications after timestepndR; after timeste@. Figure 2
shows the trajectories taken by the robots. Note that thegecof the objective function begins
with a steep decline, then begins to level off after a fewaiiens. This may be seen as a natural
progression from an exploration phase, when much infoonas being gained about the covariance,
to exploitation phase, where new samples are chosen mastiptimize the conditional variance.
This example is representative of cases for which the datelss lie within a reasonable range of
the predictive model. In the cases where the samples do nimhritae model, the surface of(*)

is relatively flat, signifying that the amount of informatido be gained is not significantly different

whether the agents move or not. As information is a mode&ddent quantity, this is not surprising.

6. Conclusions and future work
We have considered a network of static computing nodes amdenobotic sensing platforms taking
measurements of a time-varying random process with covai&nown up to a scaling parameter.
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@ (b) ©

Figure 2. (a) Trajectories of all robots, (b) two representative rtlaggctories and (c) evolution of the objective
function. The filled squares represent the (static) positions of the naddshe filled triangles show the starting
positions of the robots. The X’s represent the positions of the two robwsdnopped communication.

We have used a Bayesian approach, treating the field as atspapioral Gaussian random process,
and developed a novel approximation of the variance of tretepior predictive distribution which
may be calculated in a sequential and distributed fashisindJthis formulation, we have developed
a projected gradient descent algorithm which is distrihuteer the network of nodes and robots. We
have examined the complexity of this approach, and comptegghinst the lower bound complexity
of a more centralized “broadcast” method, showing that tls&riduted approach scales better with
the number of mobile agents. Future work will focus on théoaé guarantees on the accuracy of
the approximationd*) and on the robustness to failure of the proposed coordmatigorithm. As
mentioned in our discussion, special care must be taken g#eerating local approximations for the
universal kriging model. A topic of future work will be to priole rigorous methods for handling this

case.
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APPENDIX
|. Predictions with a subset of measurements

We present here a series of results concerning the relatpphstween subsets of sample locations and
hypothetical predictions made from partial informatioety € R™ denote a full set of measurements
at locationst € D'. Letny,ny € N such that; + ny = n. Consider a partition of the measurements
y = (le,QQT)T such thaty, € R™ andy, € R" and a similar partition ofc. We will useK;,
respectivelyK,, to denote the correlation matrix of locatioms, respectivelyz,, and analogous
notation for the matrice¥, Fo, E1,Es. Let Ko = K%, € R™*"2 denote the matrix of cross-

correlation between the two location vectors.

We begin with a multivariate version of the posterior prédevariance from Proposition 2.1, which
can be considered the hypothetical distribution of the messents at locations, given the samples

y,-As in the univariate case, this result can be obtained blyagpBayes Theorem to the prior model.
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Lemmal.l (Multivariate posterior predictive distribution) Under the Bayesian moddR), the
multivariate posterior predictive distribution at locatisz, € Dg2 from datay is the np-variate

shifted Students t distribution with+ n; degrees of freedom, which takes the form,

v4ng+ng
2

T 1
(yz - E[yzlgl,zl) Varly, |y, z]~ (y2 - E[QQIQPQD
v+ng —2

_1
Yoly,, 2 o Varly, |y, z]72 | 1+

Here, the expectation is given by
Ely,ly,. 2] = &p (B +Kg') ™! (Bl + K6150> +KuKi'y,,
wheref; = Elelelgl, andé,; = F» — F1 K 'Kj,. The covariance matrix is given by
Var[Zly,z] = o(y,, 21)(22;21),

where, with a slight abuse of notation, we have ugégd,; =, ) to denote the following multivariate

extensions op and ¢y,
_ _ -1
P(ay;21) = Kz — KKy 'Kiz + &1 (Kg' +E1) &,

ey, z,) = vtn -2

T -1
(QV + (y1 - F1T50) (K; + FTK(F) (y1 - F?ﬁo)) .
If we treat all parameters as known then a generalized lgastss (GLS) technique may be used to
estimate one vector of samples from the values of anotherfdllowing lemma is useful for isolating

a correlated block of samples in a GLS estimate.

Lemmall.2 (Generalized least squares by block) Assume thag1 is partitioned according toy, =
(y1,,y1,)", and assume tha€orly, ,,y,,] = 0 andCorly, ,,y,] = 0. Lety o = Kleflgl be the
generalized least squares estimat%)based on sampleis1 (conditional on all parameters). Then we

may write,

. -1
Ys— Cor[g27g12]COr[g12,y12} Y120

i.e., the generalized least squares estimate may be cébclfeom only those samples in the block

correlated t0y2.

Proof. Since the two parts qf  are uncorrelated, we have,

-1

-1
Kol Corly, - y,,! 0 _ Corly,,»y,,] 0
-1
0 Cor[gm,gm] 0 Cor[gm,gm]
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Multiplying by the matrixKi» = (0, Cory,,y,,|) ields the resultm
The GLS approximation arises naturally from partitionimg telements of the terrK‘lg. The

following lemma allows us to write this in terms of the GLSaetr

Lemmal.3 (Generalized least squares approximations) Lety ¢ = Kglelgl be the generalized
least squares estimateggc based on samplegi;s1 (conditional on all parameters) and Igts = Y, —QLS.

Then we can write,

Ki'y, N ~K; 'Ky (K1 [K) 7' gis

Kilg = 1 ©)
0 (K1 [K) Y
Furthermore, ify, andy, are uncorrelated (i.eK2 = 0), then this equation takes the form,
_1,
Kly=| 1£1 . (10)
K>y,

Proof. Equation (9) is a direct result of the Schur complement foomtiie inverse of a partitioned
matrix (see, e.g. [35, Proposition 2.8.7]). Equation (tipfvs by evaluating aK> = 0. m

In the sequel, we will find useful the matrixt € R(*+»)*(»+P) and vectoi/ € R™*? defined as,

K F7 Y

M , U= T,
K5 5o

The following lemma gives a useful a restatement of the sigrean.

Lemma .4 (Restated sigma mean) The termp(y, z) may be written as,

oly.z) =qv+ B Ky Bo+y K y—

— (K;'B+FK ') (K;' +E) ' (K; '+ FK'y) . (11)

Proof. SinceK andK are positive definite, the matrlk + F7 K F is also positive definite. Therefore

the matrixM defined above is nonsingular. We can write,
ey, z) = qu+ B3 Ko ' Bo +UT MU (12)

Using [35, Proposition 2.8.7] for the inverse of a partigdmmatrix, we arrive at the resuli
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Proposition 1.5 (Approximate conditional variance) The term¢(xo; z) may be written in terms of

locationsz, as,

P(z0;z) = d(zo;z5) — (ki — m1)” dlay;2,) " (ki — p1), where
T

K k K FT
1y = 21 My 2 7 M, — 2 2 1

F1 f(JZQ) F2 —Kg
k1 = COf[Z(JJ()),gJ, k2 = COI‘[Z(Z’O),gz].

Thereforep(xzo; x) < ¢(xo; z4) With equality if and only ik; = p4.

Proof. First, we note that the conditional variance can be writ®ngiM as,

T

k k
¢(zo;2) = CoNZ, Z] — e
£(x0) f(xo)

Next, we point out that with the proper partitioning @#, the matrix ¢(z;z,) is the Schur

Complement(M> | M ). Using this, and a similar partition of the vectorone arrives at the resuli
The following lemma, while not directly related to partit® of measurements, is instrumental in

approximating the sigma mean from a subset of samples. Tdwf B a result of applying Bayes

Theorem to the prior model.

Lemmall.6 (Posterior distribution of ¢2) Under the Bayesian modé®), the posterior distribution

of o2 after incorporating samplegis an inverse Gamma distribution with me,ar(g, g) and variance

1p(y.z)°
(v4+n—4)"

Il. Near optimal relaxation parameter for JOR

Here we present some results regarding a relaxation pagafoethe JOR algorithm which is nearly
optimal with respect to the rate of convergence of the algorifor a certain class of matrices.
Specifically we are interested in the class of symmetricjtpesdefinite matrice<C with ones on
the diagonal. Ley(t) = (y1(),...,yn(t))T € R™ be the vector updated during the JOR iteration
in (4). Lete(t) = ||C~ty — y(t)|| denote the error at iteratign\We may write,

e(t) < (spradI — hC))" ¢(0),
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giving a bound on the error at stefbased on the initial error. The value of spfad- hC) therefore
controls the rate of convergence, and choosing the retaxgtarameterh, is of vital importance.
Throughout this section we will use the shorthafdyx = Amax(C) andAmin = Amin(C). The work [36]
provides results concerning the convergence of the JORitdgy including an optimal relaxation

parameter, which in our case is equivalenttg; = . In this section we will introduce an

2
)\max“l’)\min
approximation to this optimal value which may be calculdted distributed manner.

Proposition I1.1. Assume thaC' € R™*™ is a symmetric positive definite matrix with all diagonal
entries equal tol. Let 3,a € R>( denote the maximum off-diagonal entry @f respectively the

maximum off-diagonal row sum 6f, i.e.,

= max Ciif, o = max Cii (-
b i;eje{l,...,n}{ al 7:6{1,...,n}{;1 ”}
J#i

Leth* = Then using:* as the relaxation parameter in the JOR algorithm to sgjve C—'b

results in guaranteed convergence.

Proof. Convergence is guaranteed as longas (0, ﬁ) SinceC is symmetric positive definite
with 1's on the diagonal, all off-diagonal entries must have miagi@ strictly less thari. Thus
1 — 8 > 0. The Gershgorin circle theorem tells us thaf.x < 1 + «. Together these two results

yield the inequality? + o — 3 > Amaxwhich implies that;-2— < ;2. The result follows.m

Lemmall.2. Under the assumptions of Proposition 171 < ﬁ with equality if and only itC' is

then x n identity matrix.

Proof. First, note the following implication chain,

Amin <1l = 2 min<24+a-F = A" < —.
)\min

Now, assume that* = ﬁ This implies that\min = 1 + a — G, but \pin < 1, anda > 5. So we

must have\min = 1. Since the diagonal entries 6fare all1, the smallest eigenvalue can only bé

all off-diagonal entries are zero, i.e.(f=1,,. m
Lemmall.3. Under the assumptions of Proposition Il|1,— A* Amin| > |1 — A* Amax-

Proof. Using Lemma 1.2, we havel — h*Apin] = 1 — h* Amin. The result may then be shown by

two separate cases. First, note that'if< 5 then we have,

ax

|1 - h*/\max‘ =1- h*)\max < ‘1 - h*)\min|a
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so the result holds in this case. For the second case, ashairie t> ﬁ Then|l — h*Amax| =
h*Amax — 1. The inclusion principle and the fact thét is positive definite give us the bounds
0 < Amin < 1 — a. Combined with the previously mentioned Gershgorin boungyx < 1 + «,
this allows us to write,

Trap <!

2)\max + >\min < 9
24+a—-p

h* (/\max+ /\min) <2
h*)\max— 1<1- h*)\min-
Thus in all casedl — A*Amax < |1 — h*Amin|. ®
Proposition I1.4. Under the assumptions of Proposition I1.1, further assuha ki, > €, for some

ex € (0,1). Then0 < sprad I — h*C) < 1 — 3225

Proof. First note that the spectral radius is givenibyx {|1 — 2*Amin|, |1 — 2*Amax }, @nd is clearly
nonnegative. From Lemma 1.3, we have sfbe- h*C) = |1 — h* Amin|. From Lemma I1.2, we can
infer spradl — h*C') = 1 —h* Amin. The upper bound follows by comparitig- A* Amin and comparing

againstl — h*e,. m
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