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SUMMARY

This paper considers autonomous robotic sensor networks taking measurements of a physical process for predictive

purposes. The physical process is modeled as a spatiotemporal random field. The network objective is to take

samples at locations that maximize the information content of the data. The combination of information-based

optimization and distributed control presents difficult technical challengesas standard measures of information

are not distributed in nature. Moreover, the lack of prior knowledge on the statistical structure of the field can

make the problem arbitrarily difficult. Assuming the mean of the field is an unknown linear combination of known

functions and its covariance structure is determined by a function known up to an unknown parameter, we provide

a novel distributed method for performing sequential optimal design by anetwork comprised of static and mobile

devices. We characterize the correctness of the proposed algorithm and examine in detail the time, communication,

and space complexities required for its implementation. Copyrightc© 2009 John Wiley & Sons, Ltd.
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1. Introduction

Networks of environmental sensors are playing an increasingly important role in scientific studies, with

applications to a variety of scenarios, including detection of chemical pollutants, animal monitoring,

and mapping of ocean currents. Among their many advantages,robotic sensor networks can improve
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2 R. GRAHAM AND J. CORT́ES

the efficiency of data collection, adapt to changes in the environment, and provide a robust response

to individual failures. The design of coordination algorithms for networks performing these spatially-

distributed sensing tasks faces the major challenge of incorporating the complex statistical techniques

that come into play in the analysis of environmental processes. Traditional statistical modeling and

inference assume full availability of all measurements andcentral computation. While the availability

of data at a central location is certainly a desirable property, the paradigm for motion coordination

builds on partial, fragmented information. Coordination algorithms need to be distributed and scalable

to make robotic networks capable of operating in an autonomous and robust fashion. At the same time,

these algorithms must be statistically driven to steer the network towards locations that provide the

most informative samples about the physical processes. This work is a step forward in bridging the gap

between sophisticated statistical modeling and distributed motion coordination.

In this paper, we are interested in a predictive scenario, inwhich the goal is to estimate the value of

a physical process at unmeasured locations based on the samples collected. We assume that the model

of the underlying process is stochastic. This can be a usefulapproach if the dynamics of the field are

not well known, require a high dimensional parameter space to model, or require extremely accurate

specification of initial conditions. Treating the field as a Gaussian Process, we use a Bayesian modeling

approach, in which the prediction at any given location takes the form of adistribution, with a full

accounting of the predictive uncertainty. When choosing thelocations to take samples, this uncertainty

should inform any measure of their utility. This presents a difficult challenge in a distributed setting,

because the predictive uncertainty depends on all samples in a nontrivial way.

Literature review Complex statistical techniques allow a detailed account ofuncertainty in modeling

physical phenomena. Of particular relevance to this work are [1], regarding statistical models,

and [2, 3], regarding the application of optimal design techniques to Bayesian models. Under certain

conditions on the covariance structure, data taken far fromthe prediction site have very little impact

on the predictor [4]. When the random field does not have a covariance structure with finite spatial

correlation, an approximation which does may be generated via covariance tapering [5]. Optimal

design [6, 7] addresses the problem of choosing sample locations which optimize estimation.

In cooperative control, various works consider mobile sensor networks performing spatial estimation

tasks. [8] introduces performance metrics for oceanographic surveys by autonomous underwater

vehicles. [9] considers a robotic sensor network with centralized control estimating a static field from
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COOPERATIVE ADAPTIVE SAMPLING OF RANDOM FIELDS WITH PARTIALLY KNOWN COVARIANCE 3

measurements with both sensing and localization error. [10] chooses optimal sampling trajectories

from a parameterized set of paths. [11] discusses the tracking of level curves in a noisy scalar

field. [12] develops distributed estimation techniques forpredictive inference of a spatiotemporal

random field and its gradient. In [13, 14, 15, 16] the focus is on estimating deterministic fields with

random measurement noise. Of the above references, those which consider random field models do so

under an assumption of known covariance. To our knowledge this is the first work in the cooperative

control arena which allows for uncertainty in the covariance as well as the mean. We make use

of a model derived in [17], which is the only spatial model we are aware of that makes a direct

analytical connection between uncertainty in the covariance and the resulting predictive uncertainty.

Aside from this model or derivatives, the common practice when confronted with unknown covariance

is to either run a separate estimation procedure and then treat the covariance as known, or to use

simulation methods such as Markov chain Montecarlo to estimate the posterior distribution. The

work [18] addresses a method of choosing sample locations from a discrete space which are robust

to misspecification of the covariance. Another method for handling unknown covariance has recently

grown out of the exploration-exploitation approach of reinforcement learning (see, e.g. [19]). The

work [20] applies this approach to the spatial estimation scenario by breaking up the objective into

an exploration component which focuses on learning about the model in a discretized space and an

exploitation component in which that knowledge is put to usein optimizing for prediction. Here, we

provide a result in which no discretization is necessary andwe take full advantage of the mobile

capabilities of networks of autonomous sensors. Our work isbased in part on previous material

presented in [21] and [22].

Statement of contributionsWe begin with a widely accepted Bayesian model for the prediction of

a spatiotemporal random field, designed to handle various degrees of knowledge about the mean and

covariance. The predictive variance of this model can be written as a scaled product of two components,

one corresponding to uncertainty about the covariance of the field, the other corresponding to

uncertainty of the prediction conditional on the covariance. Our first contribution is the development of

an approximate predictive variance which may be calculatedefficiently in a sequential and distributed

manner. This includes introducing a scheduled update of theestimated covariance parameter based

on uncorrelated clusters of samples. Our second contribution is the characterization of the smoothness

properties of the objective function and the computation ofits gradient. Using consensus and distributed
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4 R. GRAHAM AND J. CORT́ES

Jacobi overrelaxation algorithms, we show how the objective function and its gradient can be computed

in a distributed way across a network composed of robotic agents and static nodes. Our third

contribution is the design of a coordination algorithm based on projected gradient descent which

guarantees one-step-ahead locally optimal data collection. Due to the nature of the solution, optimality

here takes into account both the unknown parameter in the covariance and the (conditional) uncertainty

in the prediction. Finally, our fourth contribution is the characterization of the communication, time,

and space complexities of the proposed algorithm. For reference, we compare these complexities

against the ones of a centralized algorithm in which all sample information is broadcast throughout

the network at each step of the optimization.

Organization Section 2 introduces basic notation and describes the statistical model. Section 3 states

the robotic network model and the overall network objective. The following two sections present the

main results of the paper. Section 4 introduces the objective function, with attention to its smoothness

properties, and discusses how the network can make the required calculations in a distributed way.

Section 5 presents the cooperative strategy for optimal data collection along with correctness and

complexity results. Section 6 contains our conclusions.

2. Preliminary notions

Let R, R>0, andR≥0 denote the set of reals, positive reals and nonnegative reals, respectively. We

consider a convex polytopeD ⊂ R
d, d ∈ N. LetDe = D × R denote the space of points overD and

time. Forp ∈ R
d andr ∈ R>0, let B(p, r) be theclosed ballof radiusr centered atp. We denote by

⌊x⌋, respectively⌈x⌉ the floor, respectively ceiling ofx ∈ R. Givenu = (u1, . . . , ua)T , a ∈ Z>0, and

v = (v1, . . . , vb)
T , b ∈ Z>0, we denote by(u, v) the concatenation(u, v) = (u1, . . . , ua, v1, . . . , vb)

T .

We denote by∂S the boundary of a setS. Let iF : (Rd)n → F(Rd) be the natural immersion, i.e.,iF(P )

contains only the distinct points inP = (p1, . . . , pn). Note thatiF is invariant under permutations of

its arguments and that the cardinality ofiF(p1, . . . , pn) is in general less than or equal ton. The ǫ-

contractionof a setS, with ǫ > 0, is the setSǫ = {q ∈ S | d(q, ∂S) ≥ ǫ}. A convex polytopeis the

convex hull of a finite point set. For a bounded setS ⊂ R
d, we letCR(S) denote thecircumradius

of S, that is, the radius of the smallest-radiusd-sphere enclosingS. We denote byF(S) the collection

of finite subsets ofS. TheVoronoi partitionV(s) = (V1(s), . . . , Vn(s)) of D generated by the points
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COOPERATIVE ADAPTIVE SAMPLING OF RANDOM FIELDS WITH PARTIALLY KNOWN COVARIANCE 5

s = (s1, . . . , sn) is defined byVi(s) = {q ∈ D | ‖q − si‖ ≤ ‖q − sj‖, ∀j 6= i}. EachVi(s) is called

aVoronoi cell. Two pointssi andsj areVoronoi neighborsif their Voronoi cells share a boundary.

We useλmin(A), respectivelyλmax(A) to denote the smallest, respectively largest eigenvalue ofthe

square matrixA, and sprad(A) to denote the spectral radius ofA. We denote by[A]ij the (i, j)th

element of the matrixA, and by coli(A) its ith column. Let0i×j denote thei × j zero matrix. If

the dimensions are clear from the context we may omit the subscripts and use0. Given a partitioned

matrix, A = A11 A12

A21 A22
, we denote by(A11 |A ), respectively(A22 |A ) the Schur complement ofA11,

respectivelyA22 in A, i.e.,

(A11 |A ) = A22 − A21A
−1
11 A12 and (A22 |A ) = A11 − A12A

−1
22 A21.

2.1. Projected gradient descent

Next, we describe the constrained optimization technique known as projected gradient descent [23] to

iteratively find the minima of an objective functionF : R
m → R≥0. Let Ω denote a nonempty, closed,

and convex subset ofRm, m ∈ N. Assume that∇F is globally Lipschitz onΩ. Let projΩ : R
m → Ω

denote the orthogonal projection onto the setΩ,

projΩ(x) = argmin
y∈Ω

‖x − y‖.

Consider a sequence{xk} ∈ Ω, k ∈ N, which satisfies

xk+1 = projΩ (xk − ak∇F (xk)) , x1 ∈ Ω, (1)

where the step size,ak, is chosen according to the LINE SEARCH ALGORITHM described in Table I,

evaluated atx = xk.

Here the grid sizeτ determines the granularity of the line search. The tolerance θ may be adjusted

for a more (largerθ) or less (smallerθ) strict gradient descent. Withθ > 0, the LINE SEARCH

ALGORITHM must terminate in finite time. The Armijo condition (step7) ensures that the decrease inF

is commensurate with the magnitude of its gradient. A sequence{xk}∞k=1 satisfying these requirements

converges in the limit [23] ask → ∞ to stationary points ofF .

2.2. Bayesian modeling of space-time processes

Let Z denote a random space-time process taking values onDe. Let y = (y1, . . . , yn)T ∈ R
n be

n ∈ N measurements taken fromZ at corresponding locationsx = (x1, . . . , xn)T ∈ Dm
e , with
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6 R. GRAHAM AND J. CORT́ES

Name: L INE SEARCH ALGORITHM

Goal: Determine step size for algorithm (1)

Input: x ∈ Ω

Assumes: τ, θ ∈ (0, 1), max stepαmax ∈ R>0

Output: α ∈ R≥0

1: α = αmax

2: repeat

3: xnew = projΩ (x − α∇F (x))

4: ν = θ
α
‖x − xnew‖

2 + F (xnew) − F (x)

5: if ν > 0 then

6: α = ατ

7: until ν ≤ 0

Table I. LINE SEARCH ALGORITHM.

xi = (si, ti), i ∈ {1, . . . , n}. Given these data, various models allow for prediction ofZ at any

point in De, with associated uncertainty. Optimal design is the process of choosing locations to take

measurements in order to reduce the uncertainty of the resulting statistical prediction. Since prediction

uncertainty drives the problem, it should be modeled as accurately as possible.

In a Bayesian setting, the prediction takes the form of a distribution, called the posterior

predictive [24]. If the field is modeled as a Gaussian Processwith known covariance, the posterior

predictive mean corresponds to theBest Linear Unbiased Predictor, and its variance corresponds to the

mean-squared prediction error. Predictive modeling in this context is often referred to in geostatistics

assimple krigingif the mean is also known, oruniversal krigingif the mean is treated as an unknown

linear combination of known basis functions. If the covariance of the field is not known, however, few

analytical results exist which take the full uncertainty into account. We present here a model [1] which

allows for uncertainty in the covariance process and still produces an analytical posterior predictive

distribution. We assume that the measurements are distributed as them-variate normal distribution,

y ∼ Nn

(

F
T β, σ2

K
)

. (2)

Here β ∈ R
p is a vector of unknown regression parameters,σ2 ∈ R>0 is the unknown variance

parameter, andK is a correlation matrix whosei, jth element isKij = Cor[yi, yj ]. Note thatK is

symmetric, positive definite, with1’s on the diagonal. We assume a finite correlation range in space,

rs ∈ R>0, and in time,rt ∈ R>0, such that if‖si − sj‖ ≥ rs or |ti − tj | ≥ rt, thenKij = Kji = 0.
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COOPERATIVE ADAPTIVE SAMPLING OF RANDOM FIELDS WITH PARTIALLY KNOWN COVARIANCE 7

The matrixF is determined by a set ofp ∈ N known basis functionsfi : De → R evaluated at the

locationsx, i.e.,

F =











f1(x1) . . . f1(xn)
...

. . .
...

fp(x1) . . . fp(xn)











.

We will also usef(x) = (f1(x), . . . , fp(x))T ∈ R
p to denote the vector of basis functions evaluated

at a single location. To ensure an analytical form for the posterior predictive distribution, we assume

conjugate prior distributions for the parameters,

β|σ2
∼ Np

(

β0, σ
2
K0

)

, (3a)

σ2
∼ Γ−1

(ν

2
,
qν

2

)

. (3b)

Hereβ0 ∈ R
p, K0 ∈ R

p×p, andq, ν ∈ R>0 are constants, known astuning parametersfor the model,

andΓ−1(a, b) denotes the inverse gamma distribution with shape parameter a and scale parameterb

(see, e.g. [25]). Since it is a correlation matrix, it shouldbe noted thatK0 must be positive definite. A

common practice in statistics is to useK0 ∝ I.

Proposition 2.1 (Posterior predictive distribution) Under the Bayesian model(2), the posterior

predictive at locationx0 ∈ De is a shifted Students t distribution (see, e.g. [25]) withν + n degrees of

freedom, which takes the form, forZ = Z(x0),

Z|y, x ∝ Var[Z|y, x]−
1
2

(

1 +

(

Z − E[Z|y, x]
)2

(ν + n − 2) Var[Z|y, x]

)− ν+n+1
2

.

Here, the expectation is given by

E[Z|y, x] =
(

f(x0) − FK
−1

k
)T

β† + k
T
K

−1y,

β† = (E + K
−1
0 )−1

(

β̂ + K
−1
0 β0

)

,

whereβ̂ = E
−1

FK
−1y, E = FK

−1
F

T , andk = Cor[y, Z] ∈ R
n. The variance is given by

Var[Z|y, x] = ϕ(y, x)φ(x0;x),

φ(x0;x) = Cor[Z,Z] − k
T
K

−1
k + ξT

0

(

K
−1
0 + E

)−1
ξ0,

ξ0 = f(x0) − FK
−1

k,

ϕ(y, x) =
1

ν + n − 2

(

qν + (y − F
T β0)

T
(

K + F
T
K0F

)−1
(y − F

T β0)
)

.
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8 R. GRAHAM AND J. CORT́ES

Proof. This result can be obtained from application of Bayes Theorem to the model outlined by

Equations (3), or from results in [1] and [17] using a technique similar to the one used in the proof of

Proposition I.4 in Appendix I.

Note that sinceK0 andK are positive definite, the quantitiesφ(x0;x) andϕ(y, x) are well posed.

Remark 2.2 (Terms in the posterior predictive variance) Note the form for the posterior predictive

variance in Proposition 2.1 as a product of two terms. The first term,ϕ(y, x), is the posterior mean of

the parameterσ2, given the sampled data. We will call it thesigma mean. The second term,φ(x0;x),

can be thought of as the scaled posterior predictive variance conditioned onσ2. We will call it the

conditional variance. •

The conditional variance is very close to what the predictive variance would look like ifσ2 were

known, as we show in the next. The following results may be derived by applying Bayes Theorem to

the prior model.

Proposition 2.3 (Kriging variance) If the variance parameterσ2 is known, the result is theuniversal

kriging predictor, and the posterior predictive variance takes the form,

VarUK[Z|y, x] = σ2
(

Cor[Z,Z] − k
T
K

−1
k + ξT

0 E
−1ξ0

)

.

If, in addition, the mean of the field is known, the result is thesimple kriging predictor, and the posterior

predictive variance is given by,

VarSK[Z|y, x] = σ2
(

Cor[Z,Z] − k
T
K

−1
k
)

.

Remark 2.4 (Extension of subsequent results to Kriging) The simple and universal kriging results

are simplified versions of our overall model, and results from the rest of this paper may be applied

to those models with minimal modifications. An exception is that when approximatingVarUK using

subsets of measurements, care must be taken to ensure well-posedness. Specifically, an assumption that

n > p is required to ensure that the matrixE is nonsingular. •

2.3. Distributed computational tools

Here we briefly describe some tools for distributed computations. Consider a network ofn agents with

limited communication capabilities. Assume that the undirected communication graph,G, is connected

(i.e., there is a two way communication path connecting any two agents). Letaij ∈ {0, 1}, i, j ∈

Copyright c© 2009 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control2009;1:1–2
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COOPERATIVE ADAPTIVE SAMPLING OF RANDOM FIELDS WITH PARTIALLY KNOWN COVARIANCE 9

{1, . . . , n} be1 if agentsi andj are neighbors inG, and0 otherwise. Letb = (b1, . . . , bn)T ∈ R
n,

C = [cij ] ∈ R
n×n, and assume agenti knowsbi and theith row ofC. Additionally assume thatcii 6= 0

and fori 6= j, cij 6= 0 iff i andj are communication neighbors. Then the following results hold.

JOR: The network can compute the vectory = C−1b via a distributed Jacobi overrelaxation

algorithm [26], formulated as the discrete-time dynamicalsystem,

yi(l + 1) = (1 − h)yi(l) −
h

cii

(

∑

j 6=i

cijyj(l) − bi

)

, (4)

for l ∈ Z≥0 and i ∈ {1, . . . , n}, wherey(0) ∈ R
n andh ∈

(

0, 2
λmax(C)

)

. At the end of the

algorithm, agenti knows theith element ofC−1b.

Discrete-time average consensus: The network can compute the arithmetic mean of elements ofb

via the discrete dynamical system [27],

xi(l + 1) = xi(l) + ǫ
∑

j 6=i

aij(xi(l) − xj(l)), x(0) = b,

whereǫ ∈ (0, 1
∆ ) and∆ = maxi∈{1,...,n}

{

∑

j 6=i aij

}

is the maximum degree of the network.

At the end of the algorithm, all agents know
Pn

i=1 bi

n .

Maximum consensus: The network can calculate the maximum value of elements ofb via a leader

election algorithm [28]. Each agent sends the current estimate of the maximum to all neighbors,

then updates its estimate. If the process is repeated a number of times equal to the diameter of

the network, then every agent will know the maximum.

The first two results above are only exact asymptotically, but convergence is exponential with time.

3. Problem statement

Here we introduce the model for the group of robotic agents and static nodes, and detail the overall

objective.

3.1. Robotic sensor network model

Consider a group{S1, . . . , Sm} of m ∈ N static nodes at locationsQ = (q1, . . . , qm)T ∈ Dm. Assume

that each node has a limited communication radius,R ∈ R>0, and that they are positioned so that each

Copyright c© 2009 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control2009;1:1–2
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10 R. GRAHAM AND J. CORT́ES

one can communicate with its Voronoi neighbors. In additionto the static nodes, consider a group

{R1, . . . , Rn} of n mobile robotic sensor agents. The position of roboti ∈ {1, . . . , n} at timet ∈ R

is denoted bypi(t) ∈ D. The robots take point samples of the spatial field at discrete instants of time

in Z≥0. Between sample instants, each robot moves according to thediscrete dynamics

pi(k + 1) = pi(k) + ui(k),

where‖ui‖ ≤ umax for someumax ∈ R>0. The communication radius of the robotic agents is alsoR.

Each node will need to be able to communicate with any robot which may be within covariance range

of the points in its Voronoi region at the following timestep. To that end, we assume that

R ≥ max
i∈{1,...,m}

{CR(Vi(Q))} + rs + umax. (5)

The robots can sense the positions of other robots within a distance of2umax. At discrete timesteps, each

robot communicates the sample and location to static nodes within communication range, along with

the locations of any other sensed robots. The nodes then compute control vectors, and relay them back

to robots within communication range. The implementation does not require direct communication

between robots. We refer to this network model asN .

3.1.1. Voronoi contraction for collision avoidanceWe begin by specifying the region of allowed

movement for the robotic agents. In addition to the maximum velocity and the restriction toD, we

impose a minimum distance requirement between robots. Beyond the benefit of collision avoidance,

this restriction ensures that even under the assumption of zero sensor error, the posterior predictive

variance is well-defined over the space of possible configurations.

Let ω ∈ R>0 be a desired buffer width, assumed to be small compared to thesize ofD. To ensure

that the distance between two robots is never smaller thanω, we introduce a contraction of the Voronoi

diagram. Consider the locationsP = (p1, . . . , pn) of then robotic agents at thekth timestep. Define

Ω
(k)
i = (Vi(P ))ω/2 ∩B(pi, umax), where(Vi(P ))ω/2 denotes theω2 -contraction ofVi(P ). For each

j 6= i ∈ {1, . . . , n}, we haved(Ω
(k)
i ,Ω

(k)
j ) ≥ ω. Between timestepsk andk + 1, we restrictRi to the

regionΩ
(k)
i . Figure 1 shows an example inR2 of this set. We denote byΩ(k) =

∏n
i=1 Ω

(k)
i ⊂ (Rd)n

the region of allowed movement of all robotic agents at timestepk ∈ Z≥0. Note thatΩ(k) is closed,

bounded, and convex.

Copyright c© 2009 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control2009;1:1–2

Prepared usingrncauth.cls
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p1

p2

p3

Ω
(k)
1

ω
2

Figure 1. Example of regionΩ(k)
1 (red) with Voronoi partition boundaries (black) for comparison.

3.2. The average variance as objective function

For predictions over a region in space and time, the average variance is a natural measure of uncertainty.

Using Proposition 2.1, we define the average over the spatiotemporal region of the posterior predictive

variance,

A = ϕ(y, x)

∫

D

∫

T

φ((s0, t0);x) dt0 ds0. (6)

Here,y ∈ (Rn)
kmax is a sequence of samples taken at discrete times{1, . . . , kmax}, kmax ∈ Z>0, at

space-time locationsx ∈ (Dn
e )

kmax. T = [1, kmax] is the time interval of interest.

One would like to choose the sample locations that minimizeA. Since samples are taken

sequentially, with each new set restricted to a region nearby the previous, and since the sigma mean

depends on the actual values of the samples, one cannot simply optimize over(Dn
e )kmax a priori.

Consider, instead, a greedy approach in which we use past samples to choose the positions for the

next ones. At each timestep we choose the next locations to minimize the average posterior variance

of the predictor given the data known so far. In Section 4, we develop a sequential formulation of the

average posterior predictive variance and discuss its amenability to distributed implementation overN .
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12 R. GRAHAM AND J. CORT́ES

4. Distributed criterion for adaptive design

In this section we develop an optimality criterion to maximally reduce the average predictive variance

at each timestep. We begin by introducing some notation thatwill help us make the discussion precise.

Let y(k) ∈ R
n, k ∈ {1, . . . , kmax}, denote the samples taken at time stepk, at locations

x(k) ∈ Dn
e . Let y(k1:k2) ∈ R

n(k2−k1+1), k1 < k2 denote the vector of samples taken over a range

of timesteps, at locationsx(k1:k2) ∈ Dn(k2−k1+1)
e , i.e., y(k1:k2) =

((

y(k1)
)T

, . . . ,
(

y(k2)
)T )T

and

x(k1:k2) =
((

x(k1)
)T

, . . . ,
(

x(k2)
)T )T

. At stepk, the samplesy(1:k) have already been taken. We

are interested in choosing locations,P ∈ Ω(k), at which to take the next samples. To that end, let

x(1:k+1) : Ω(k) → Dn(k+1)
e map a new set of spatial locations to the vector of spatiotemporal locations

which will result if the(k+1)st samples are taken there, i.e.,x(1:k+1)(P ) =
(

(x(1:k))T , (P, k + 1)T
)T

.

The adaptive design approach is then to use the samples that minimize the average prediction variance

so far,

A(k)(P ) = ϕ
(

y(1:k+1), x(1:k+1)(P )
)

∫

D

∫

T

φ
(

(s0, t0);x
(1:k+1)(P )

)

dt0 ds0. (7)

This sequential formulation of the problem allows us to use past measurements without worrying about

the ones at steps afterk+1. However, efficient distributed implementation still suffers from three major

obstacles. First, both terms inA(k)(P ) require inversion of then(k + 1)×n(k + 1) covariance matrix

of all sample locations up to stepk +1. The complexity of this inversion grows withk2, which quickly

becomes an unreasonable burden. Second, the sigma mean alsodepends on the actual values of the

samples at stepk + 1, which we do not know until the measurements are taken. In Section 4.1 we

discuss an approximate sigma mean which addresses these issues. The third obstacle to our distributed

implementation is the integration of the conditional variance over the entire spatial region. This integral

involves a complex interaction between every sample and theentire predictive region, which does not

lend itself to distributed calculation. In Section 4.2, we introduce a distributed approximation based on

regional integrals, each of which may be calculated locally. Finally, Section 4.3 combines these results

to propose an approximate average prediction variance thatcan be optimized via gradient descent.

4.1. Approximate sigma mean

In this section, we describe our approach to deal with the term ϕ
(

y(1:k+1), x(1:k+1)(P )
)

in (7). We

would like an approximation which may be calculated before the samples are taken and that scales with

increasingk. This involves two steps. First, we develop a running estimate ofϕ which uses scheduled
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COOPERATIVE ADAPTIVE SAMPLING OF RANDOM FIELDS WITH PARTIALLY KNOWN COVARIANCE 13

updates based on a subset of the overall samples. Second, we address the issue of unrealized sample

values by using a generalized least squares estimate.

4.1.1. Incorporating new data.From Lemma I.6 in Appendix I, it can be seen that minimizingϕ

results in minimal values of both the posterior mean and variance ofσ2. As the number of samples

increases, the posterior mean ofσ2 should approach some finite constant. Under the assumption of

a Gaussian Process prior, any finite vector of realizations has a consistent joint distribution. This

implies that if we evaluate the posterior mean with any subset of the samples, the result should

asymptotically approach the same constant, regardless of which samples are used for inference. Using

samples from all timesteps results in quick convergence, but requires a large computational burden later

on, with little information gain. Instead, we consider a regular, scheduled update, using select blocks

of measurements to perform the estimation, as described next.

Let tskip ∈ N be a fixed number of timesteps to skip between updates, and lettblk ∈ N denote a fixed

number of steps to include in our estimation block. Since data sampled at different time lags provide

different information aboutσ2, a natural choice is blocks of samples coveringtblk = ⌈rt⌉ timesteps.

To simplify notation, we will denote the time to complete an update cycle astcycle = tblk + tskip. We

will use the firsttblk timesteps out of everytcycle to update our estimate. For reasons which will become

apparent later, we will break up the sample blocks intopreviousones which have been completed and

the current one in progress (if there is one in progress). Lemma 4.1 formally defines the vectors of

previous and current samples used in the update at timestepk.

Lemma 4.1. Assume thattskip ≥ ⌊rt⌋. Letk ∈ {1, . . . , kmax} and letB(k)
p = 1 +

⌊

k−tblk
tcycle

⌋

denote the

number of previously completed sample blocks. IfB
(k)
p = 0, let y(k)

p
= x

(k)
p = ∅. Otherwise, let the

previous blocks be defined by

y(k)
p

=
(

yT
1
, . . . , yT

B
(k)
p

)T
wherey

i
= y((i−1)tcycle+1:i tcycle−tskip),

x(k)
p =

(

xT
1 , . . . , xT

B
(k)
p

)T
wherexi = x((i−1)tcycle+1:i tcycle−tskip).

Let n(k)
c = max{0, k − B

(k)
p tcycle} denote the number of samples taken so far in the current block. If

n
(k)
c = 0, let y(k)

c
= x

(k)
c = ∅, otherwise let the current block be defined by,

y(k)
c

= y(B(k)
p tcycle+1:k), x(k)

c = x(B(k)
p tcycle+1:k).

Then the previous sample blocksy
i

are uncorrelated to each other, and uncorrelated to the current

blocky(k)
c

.
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14 R. GRAHAM AND J. CORT́ES

Proof. By construction, there aretskip timesteps between each of the successive previous blocks and

between the last of them and the current block. This means that the time lag between blocks istskip+1,

and by the assumption thattskip ≥ ⌊rt⌋, the blocks are uncorrelated.

Table II shows an example of the vectors used to calculate theestimated sigma mean at a given

timestep.

Value ofk 1 2 3 4 5 6

Value ofy(k)
c

y(1) ∅ ∅ y(4) ∅ ∅
Value ofy(k)

p
∅ y

1
y
1

y
1

(yT
1
, yT

2
)T (yT

1
, yT

2
)T

Block Number 1 1 skip 2 2 skip

Table II. Example of update schedule for estimating sigma mean withrt = 1.5, tskip = 1, andtblk = 2 (thus

tcycle = 3). Herey
c

denotes the vector of samples in thecurrent block, andy
p

denotes the vector of samples in

previousblocks, both give the valuesafter thekth samples have been incorporated. The completed block vectors

are given byy
1

= y(1:2) andy
2

= y(4:5).

Let Ki, Fi, andEi, respectivelyK(k)
c , F(k)

c , andE(k)
c denote the values of the matricesK, F, andE

as calculated from the locationsxi, respectivelyx(k)
c . Fork such thatn(k)

c = 0, let K(k)
c = F

(k)
c = ∅,

and letE(k)
c = 0p×p. The following lemma illustrates how a running estimate of the sigma mean may

be calculated fromy(k)
c

andx
(k)
c .

Lemma 4.2 (Sequential formulation of the sigma mean) Let ϕ(k) denote the posterior predictive

mean ofσ2 under the sample vectory(k)
ϕ

=
(

(y(k)
p

)T , (y(k)
c

)T
)T

. Under the assumptions of Lemma 4.1,

we may write,

ϕ(k) =
1

ν + ntblkB
(k)
p + n

(k)
c − 2

[

qν + βT
0 K

−1
0 β0 +

B(k)
p
∑

i=1

Υi + Υ(k)
c −

−
(

K
−1
0 β0 +

B(k)
p
∑

i=1

Γi + Γ(k)
c

)T (
K

−1
0 +

B(k)
p
∑

i=1

Ei + E
(k)
c

)−1(
K

−1
0 β0 +

B(k)
p
∑

i=1

Γi + Γ(k)
c

)

]

, where

Υi = yT
i
K

−1
i y

i
Υ(k)

c = (y(k)
c

)T (K(k)
c )−1y(k)

c

Γi = FiK
−1
i y

i
Γ(k)

c = F
(k)
c

(

K
(k)
c

)−1
y(k)

c
.

Here,Υ(k)
c , andΓ

(k)
c are taken to be0 if n

(k)
c = 0.
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COOPERATIVE ADAPTIVE SAMPLING OF RANDOM FIELDS WITH PARTIALLY KNOWN COVARIANCE 15

Proof. Under the assumption thattskip ≥ ⌊rt⌋, the sample blocksy
i

are uncorrelated to each other,

and uncorrelated toy(k)
c

. Using Lemma I.4 in Appendix I, the posterior mean ofσ2 from datay(k)
ϕ

may be restated as in Equation (11). Successive applications of Equation (10) from Lemma I.3 (also in

Appendix I) yield the result.

Lemma 4.2 demonstrates how an estimate of the sigma mean at stepk can be built from previous

calculations. If the values ofΥi, Γi, andEi have been calculated for all previous update blocks and

their sums stored, the network need only calculateΥ
(k)
c , Γ

(k)
c , andE

(k)
c from recent information and

assemble the parts ofϕ(k).

4.1.2. Approximating unrealized sample values.While seeking optimal locations to take the(k+1)st

set of measurements, we would like to incorporate the effectof their locationson the posterior variance,

but the actual values have not yet been sampled. Our approachis to use a generalized least squares

approximation ofy(k+1) given only the samples used inϕ(k). We describe this in detail in the following

result.

Proposition 4.3 (Generalized least squares estimate of sigma mean) Under the assumptions of

Lemma 4.2, let̂y(k)

LS
: Ω(k) → R

n map a vector of locations,P ∈ Ω(k) to the generalized least

squares estimate, based on the sample vectory(k)
ϕ

, of a vector of samples to be taken at locations

(P, k + 1). Then we may write,

ŷ(k)

LS
(P ) =











K
(k)
nc (P )(K

(k)
c )−1y(k)

c
if n

(k)
c > 0

0 otherwise,
(8)

whereK
(k)
nc (P ) is the correlation matrix between the new set of locations and x

(k)
c . Now, letϕ̂(k) :

Ω(k) → R be defined as,

ϕ̂(k)(P ) = ϕ(k) if (n(k+1)
c = 0), otherwise,

ϕ̂(k)(P ) =
1

ν + ntblkB
(k+1)
p + n

(k+1)
c − 2

[

qν + βT
0 K

−1
0 β0 +

B(k)
p
∑

i=1

Υi + Υ(k)
c −

−
(

K
−1
0 β0 +

B(k)
p
∑

i=1

Γi + Γ(k)
c

)T (
K

−1
0 +

B(k)
p
∑

i=1

Ei + E
(k+1)
c (P )

)−1(
K

−1
0 β0 +

B(k)
p
∑

i=1

Γi + Γ(k)
c

)

]

,

whereE
(k+1)
c (P ) denotes the matrixE as calculated with space-time location vectorx

(k+1)
c (P ) =

(

(x
(k)
c )T , (P, k + 1)T

)T
. After the new samples,y(k+1) have been taken at locations(P, k + 1), let
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16 R. GRAHAM AND J. CORT́ES

y
(k)
LS : Ω(k) → R

n denote the estimation error, i.e.,y
(k)
LS (P ) = y(k+1) − ŷ(k)

LS
(P ). Then we may write,

ϕ(k+1) = ϕ̂(k)(P ) + G(y(k+1)
ϕ

, x(k+1)
ϕ )y

(k)
LS (P ),

for some functionG : R
ntblkB

(k+1)
c × DntblkB

(k+1)
c

e → R. In other words,ϕ(k+1) may be estimated by

ϕ̂(k)(P ), and the estimation is exact ifyLS = 0.

Proof. Under the assumption thaty(k)
p

is not correlated toy(k)
c

, Equation (8) can be derived using

Lemma I.2 in Appendix I. The estimation result takes two forms. If n
(k+1)
c = 0, thenϕ̂(k)(P ) = ϕ(k).

By Lemma 4.2, we also haveϕ(k+1) = ϕ(k), soG(·) = 0 satisfies the result. Forn(k+1)
c > 0, the

result can be obtained by applying Equation (9) in Lemma I.3 to the quantitiesΥ(k+1)
c , Γ

(k+1)
c , and

E
(k+1)
c (P ).

In the next section, we examine the other part ofA(k), the conditional variance, and develop an

efficient approximation which may be calculated locally by each node.

4.2. Upper bound on conditional variance

Next, we seek an efficient approximation of the conditional variance termφ
(

(s0, t0);x
(1:k+1)(P )

)

in (7). As noted in Remark 2.2,φ represents the direct effect of the sample locations on the predictive

uncertainty (i.e., conditional onσ2). The following proposition gives an approximation of the integrated

conditional variance which may be calculated by the networkof nodes.

Proposition 4.4 (Approximate integrated conditional variance) Let x
(k+1−⌊rt⌋:k+1)
j (P ) denote an

ordering of the set of past or current locations correlated in space toVj(Q) and in time tok + 1, such

that,

iF

(

x
(k+1−⌊rt⌋:k+1)
j (P )

)

=
{

(s, t) ∈ iF

(

x(1:k+1)(P )
)

| d(s, Vj(Q)) < rs andk + 1 − t < rt

}

.

Let φ
(k)
j : De × Ω(k) → R map a prediction location,x0 ∈ De and a vector of sample locations,

P ∈ Ω(k), to the conditional variance of a prediction made atx0 using only the samples at space-time

locationsx(k+1−⌊rt⌋:k+1)
j (P ). Then the following holds,
∫

D

∫

T

φ((s0, t0);x
(1:k+1)(P )) dt0 ds0 ≤

m
∑

j=1

∫

Vj(Q)

∫

T

φ
(k)
j ((s0, t0);P ) dt0 ds0.

Proof. Note that althoughx(k+1−⌊rt⌋:k+1)
j (P ) is not unique, the invariance of the conditional variance

to permutations of the sample locations ensures uniquenessof φj

(

x0;P
)

. The result follows from

Proposition I.5 in Appendix I.
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COOPERATIVE ADAPTIVE SAMPLING OF RANDOM FIELDS WITH PARTIALLY KNOWN COVARIANCE 17

4.3. The aggregate average prediction variance and its smoothness properties

Building on the results from Sections 4.1 and 4.2, we define here theaggregate average prediction

varianceÃ(k). Unlike A(k), the functionÃ(k) may be computed efficiently in a distributed manner

overN . The proof of the following result is a direct consequence ofthe results above.

Proposition 4.5. (Spatiotemporal approximation for distributed implementation) Let Ã(k)
j :

Ω(k) → R be defined by

Ã(k)
j (P ) = ϕ̂(k)(P )

∫

Vj(Q)

∫

T

φ
(k)
j ((s, t), P ) dt ds.

ThenÃ(k)(P ) =

m
∑

j=1

Ã(k)
j (P ) satisfies the inequality,lim

k→∞
Ã(k)(P ) ≥ lim

k→∞
A(k)(P ).

Remark 4.6. Note that the comparison betweeñA(k)(P ) andA(k)(P ) is somewhat stronger than the

limiting result shown in Proposition 4.5. The quantitỹA(k)(P ) is comprised of the product of two

terms. The approximate sigma mean is equal to the sigma mean in the limit, while the approximate

conditional variance is an upper bound to the actual conditional variance for allk. •

Next, we characterize the smoothness properties ofÃ(k). Let ∇il denote the partial derivative

with respect topil, the lth spatial component of the location ofRi. We denote by∇i the partial

derivative with respect topi, i.e.,∇i = (∇i1, . . . ,∇id)
T . Thus the gradient of̃A(k) at locationP

may be represented as then ∗ d-dimensional vector
(

∇T
1 Ã(k)(P ), . . . ,∇T

n Ã(k)(P )
)T

. Given matrix,

A, we denote by∇ilA the component-wise partial derivative ofA. The proofs of the following results

amount to a careful bookkeeping of the smoothness properties of the various ingredients involved in

the expressions.

Lemma 4.7 (Gradient of conditional variance) Assume thatf1, . . . , fp and the covariance ofZ are

C1 with respect to the spatial position of their arguments. Then the mapP 7→ φ
(k)
j (x0, P ) is C1 on

Ω(k) and admits the partial derivative,

∇ilφ
(k)
j (x0, P ) = −2kT

K
−1∇ilk + k

T
K

−1∇ilKK
−1

k−

− ξT
0

(

K
−1
0 + E

)−1 ∇ilE
(

K
−1
0 + E

)−1
ξ0 + 2ξT

0

(

K
−1
0 + E

)−1 ∇ilξ0, with

∇ilξ0 = −∇ilFK
−1

k − FK
−1∇ilk + FK

−1∇ilKK
−1

k,

∇ilE = ∇ilFK
−1

F
T + FK

−1∇ilF
T − FK

−1∇ilKK
−1

F,
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18 R. GRAHAM AND J. CORT́ES

where the matricesK, E, andF and the vectorsk, andξ0 are calculated from the location subvector,

x
(k+1−⌊rt⌋:k+1)
j (P ).

It is worth noting that the matrix∇ilF is nonzero only in columni. The matrix∇ilK is nonzero

only in row and columni. Additionally, due to the finite correlation range in space and time, only

those elements corresponding to correlation with other measurement locationsx = (s, t) which satisfy

‖pi − s‖ ≤ rs andt > k + 1 − rt are nonzero.

Lemma 4.8 (Gradient of conditional variance is Lipschitz) Under the assumptions of Lemma 4.7,

assume, in addition, that the partial derivatives off1, . . . , fp and the covariance ofZ are C1 with

respect to the spatial position of their arguments. Then themap P 7→ ∇iφ
(k)
j (x0, P ) is globally

Lipschitz onΩ(k).

Note that the value of̂ϕ(k)(P ) depends onP only through the matrixE(k+1)
c , whose partial

derivative is analogous to that ofE in Lemma 4.7. This leads us to the following continuity results.

Lemma 4.9 (Gradient of sigma mean) Under the assumptions of Lemma 4.7,ϕ̂(k) is C1 onΩ(k) and

admits the partial derivative,

∇ilϕ̂
(k)(P ) =











0 if n
(k+1)
c = 0

−Ψ(P )T ∇ilE
(k+1)
c (P ) Ψ(P )

ν+ntblkB
(k+1)
p +n

(k+1)
c −2

otherwise, where,

Ψ(P ) =
(

K
−1
0 +

B(k)
p
∑

i=1

Ei + E
(k+1)
c (P )

)−1(
K

−1
0 β0 +

B(k)
p
∑

i=1

Γi + Γ(k)
c

)

.

Additionally, under the assumptions of Lemma 4.8, the gradient∇ϕ̂(k) is globally Lipschitz onΩ(k).

Proof. This result stems from the fact thatϕ̂(k)(P ) depends onP only throughE(k+1)
c (P ).

We are now ready to state the smoothness properties ofÃ(k) and provide an explicit expression for

its gradient. This is a direct result of the Lemmas above.

Proposition 4.10 (Gradient of sigma mean is Lipschitz) Under the assumptions of Lemma 4.7,Ã(k)

is C1 onΩ(k) and admits the partial derivative,

∇iÃ(k)(P ) = ϕ̂(k)(P )

∫

Vj(Q)

∫

T

∇iφ
(k)
j ((s, t), P ) dt ds

+ ∇iϕ̂
(k)(P )

∫

Vj(Q)

∫

T

φ
(k)
j ((s, t), P ) dt ds.

Additionally, under the assumptions of Lemma 4.8, the gradient∇Ã(k) is globally Lipschitz onΩ(k).
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4.4. Distributed computation of aggregate average prediction variance and its gradient

Here, we substantiate our assertion that the aggregate average prediction variance and its gradient

introduced in Section 4.3 are distributed over the networkN . SinceV(Q) is a partition of the physical

space, we may partition all sample locations by region. Thusfor each(s, t) ∈ iF(x), there is exactly

onej ∈ {1, . . . ,m} such thats ∈ Vj(Q). In order for the network to calculatẽA(k) and its gradient

at P , it is sufficient forSj to computeÃ(k)
j and∇iÃ(k)

j for each robot inVj(Q). ThenÃ(k) may be

calculated via discrete-time average consensus (cf. Section 2.3), while∇iÃ(k) may be calculated from

information local toRi. From Propositions 4.5 and 4.10, it can be seen that calculation of Ã(k)
j and

∇iÃ(k)
j requires only local information in addition to the (global)values ofϕ̂(k)(P ) and∇iϕ̂

(k)(P ).

Let us explain how these two quantities can be calculated.

In this section we are concerned with elements of the vectorsand matrices associated with the

currentupdate block of̂ϕ(k)(P ). Let x(k)
c:i , respectivelyy(k)

c:i denote theith element of the vectorx(k)
c ,

respectivelyy(k)
c

for i ∈ {1, . . . , n}(k)
c . Let I(k)

Local : N → F(N) map the index of the node to the set of

indices of samples in the current update block whose spatialposition lies inside its Voronoi cell, and

whose time element is correlated to timek + 1,

I(k)
Local(j) =











∅ if n
(k)
c = 0,

{

i ∈ {1, . . . , n
(k)
c } | x

(k)
c:i = (s, t) ands ∈ Vj(Q)

}

otherwise.

With a slight abuse of notation, define I(k+1)
Local (j, P ) to be the equivalent set of indices into the full vector

of measurement locations,x
(k+1)
c (P ), with the caveat that I(k+1)

Local (j, P ) = ∅ if n
(k+1)
c = 0.

Our first result illustrates the parts ofϕ̂(k)(P ) which do not include the locationsP .

Proposition 4.11 (Distributed calculations without P ) Assume thatSj , for j ∈ {1, . . . ,m}, knows

x
(k)
c:i , y

(k)
c:i for eachi ∈ I(k)

Local(j). Afterp+1 executions of the JOR algorithm and2 subsequent consensus

algorithms,Sj has access to,

#1: elementi of (K(k)
c )−1y(k)

c
∈ R, i ∈ I(k)

Local(j) via JOR;

#2: coli
(

F
(k)
c (K

(k)
c )−1

)

∈ R
p, i ∈ I(k)

Local(j) via JOR;

#3: Γ
(k)
c ∈ R

p via consensus;

#4: Υ ∈ R
p via consensus.
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20 R. GRAHAM AND J. CORT́ES

Proof. Under the assumptions onN , the matrixK(k)
c , satisfies the requirements of the distributed JOR

algorithm. The results here build on this fact and the connectedness of the network of nodes (which

allows for consensus).

Next, we describe calculations that the network can executewhen robotic agents are at locationsP .

Proposition 4.12 (Distributed calculations with P ) Given P ∈ Ω(k), assume thatSj , for j ∈
{1, . . . ,m}, knowsx(k)

c:i for eachi ∈ I(k+1)
Local (j, P ) and the results of Proposition 4.11. LetF

(k+1)
c (P )

denote the matrix of basis functions evaluated at locationsx
(k+1)
c . After p executions of JOR andp2

executions of consensus algorithms,Sj has access to,

#5: coli
(

F
(k+1)
c (P )(K

(k+1)
c (P ))−1

)

∈ R
p, i ∈ I(k+1)

Local (j, P ) via JOR;

#6: E
(k+1)
c (P ) ∈ R

p×p via consensus.

After these computations,Sj can calculate∇ilE
(k+1)
c for l ∈ {1, . . . , d}. Under the assumption that

Sj knows the quantities
∑B(k)

c
i=1 Ei,

∑B(k)
c

i=1 Υi, and
∑B(k)

c
i=1 Γi, then Sj can calculateϕ̂(k)(P ) and

∇iϕ̂
(k)(P ) for each robot in{i ∈ {1, . . . , n} | pi ∈ Vj(Q)}.

Proof. The matrixK
(k+1)
c (P ) satisfies the requirements of the distributed JOR algorithmby the

assumptions onN . The itemized results follow. The calculation ofϕ̂(k)(P ) and its partial derivatives

follow from Lemmas 4.2 and 4.9.

5. Distributed optimization of the aggregate average predictive variance

Here we present a distributed projected gradient descent algorithm which is guaranteed to converge to

a stationary point ofÃ(k) onΩ(k). Table III outlines the DISTRIBUTED L INE SEARCH ALGORITHM,

which is a distributed version of the LINE SEARCH ALGORITHM from Table I. The maximum stepsize,

αmax ∈ R>0, is designed to ensure that all robots with nonzero partial derivatives can move the

maximum distance.

The DISTRIBUTED PROJECTEDGRADIENT DESCENTALGORITHM in Table IV allows the network

of static nodes and mobile agents to find local minima ofÃ(k) onΩ(k). At timestepk, the nodes follow

a gradient descent algorithm, defining a sequence of configurations,{P †
l }, l ∈ N, such thatP †

1 is

P (k) ∈ Ω(k), the vector of current spatial locations of the robotic agents and

P
†
l+1 = projΩ

(

P
†
l − α∇Ã|P †

l

)

, α ∈ R≥0,
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Name: DISTRIBUTED L INE SEARCH ALGORITHM

Goal: Compute step size for projected gradient descent ofÃ(k)

Input: Configuration,P = (p1, . . . , pn) ∈ Ω(k)

Assumes: (i) Connected network of static nodes

(ii) Sj knowspi, Ã
(k)
j (P ), ∇iÃ

(k)(P ) andΩi for each robot within communication range

(iii) ‖∇iÃ
(k)(P )‖ 6= 0 for at least onei ∈ {1, . . . , n}

(iv) Sj knows items#3 and#4 from Proposition 4.11

(v) Shrinkage factorτ and toleranceθ ∈ (0, 1) known a priori by all static nodes

Uses: (i) Projection of next set of locations onΩi,

P
′
j(α, P ) =

n

projΩi
(pi + α∇iÃ(P )), for eachi such thatd (pi, Vj(Q)) ≤ rs + umax + ω

o

.

(ii) Total distance traveled by robots enteringVj(Q),

dj (α, P ) =
X

i∈{1,...,n} such that

projΩi
(pi+α∇iÃ(P ))∈Vj(Q)

‖ projΩi

“

pi + α∇iÃ(P )
”

− pi‖
2
.

Output: Step sizeτ ∈ R

Initialization

1: S1, . . . , Sm calculateαmax =
umax

min{‖∇iÃ(P )‖ | ‖∇iÃ(P )‖ 6= 0}
via a consensus algorithm

For j ∈ {1, . . . , m}, nodeSj executes concurrently

1: α = αmax

2: repeat

3: calculatesdj (α, P )2

4: calculateŝϕ(k)
`

P ′
j(α, P )

´

according to Proposition 4.12

5: calculatesÃ(k)
j

`

P ′
j(α, P )

´

6: execute consensus algorithm to calculate the following:

Ã(k) `

P
′(α, P )

´

=

m
X

j=1

Ã
(k)
j

`

P
′
j(α, P )

´

‚

‚P − P
′(α, P )

‚

‚

2
=

m
X

j=1

dj (α, P )2

7: ν = θ
α
‖P − P ′(α, P )‖

2
+ Ã(k)(P ′(α, P )) − Ã(k)(P )

8: if ν > 0 then

9: α = ατ

10: until ν ≤ 0

Table III. DISTRIBUTED L INE SEARCH ALGORITHM.
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whereα is chosen via DISTRIBUTED L INE SEARCH ALGORITHM. When|Ã(k)(P †
l+1)−Ã(k)(P †

l )| =

0, the algorithm terminates, and the nodes setP (k+1) = P
†
l+1. By the end of this calculation, each node

knows the identity of robotic agents in its Voronoi cell at timestepk + 1. NodeSj transmitspi(k + 1)

to robotRi, which then moves to the location between timesteps.

The following proposition describes some nice properties of the DISTRIBUTED PROJECTED

GRADIENT DESCENT ALGORITHM. Its proof is a direct result of the construction of the algorithm

and the fact that it is equivalent to a centralized projectedgradient descent.

Proposition 5.1. (Properties of the DISTRIBUTED PROJECTED GRADIENT DESCENT ALGO-

RITHM) TheDISTRIBUTED PROJECTEDGRADIENT DESCENTALGORITHM is distributed over the

networkN . Moreover, under the assumptions of Lemma 4.8, any execution is such that the robots do

not collide and, at each timestep after the first, measurements are taken at stationary configurations of

P 7→ Ã(k)(P ) overΩ(k).

The proposed algorithm is robust to agent failures. If an agent stops sending position updates, it

ceases to receive new control vectors. The rest of the network continues operating with the available

resources and will eventually sample the areas previously covered by the failing agents.

Remark 5.2 (Extension to relative positioning) It is interesting to observe that, due to the fact that

the actual positions of samples are only required in a local context, our algorithm can also be

implemented in a robotic network with relative positioning. The only requirements are: that each node

can calculate the mean basis function for all local samples;that each node can calculate the correlations

between pairs of local samples; and that neighboring nodes can agree on the ordering of those samples

within the global matrix. These modifications would not impact the convergence properties of the

algorithm. •

5.1. Complexity analysis

Here we examine the complexity of the DISTRIBUTED PROJECTED GRADIENT DESCENT

ALGORITHM in detail. We are interested in characterizing the complexity of the algorithm

implementation in terms of the number of robotic agents and the number of static nodes. For reference,

we compare our proposed algorithm against a centralized algorithm that uses all-to-all broadcast and

global information, and does not take advantage of the distributed nature of the problem.

Given that the DISTRIBUTED PROJECTEDGRADIENT DESCENT ALGORITHM is sequential, and
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Name: DISTRIBUTED PROJECTEDGRADIENT DESCENTALGORITHM

Goal: Find a local minimum ofÃ(k) within Ω(k).

Assumes: (i) Connected network of static computing nodes and mobile robotic sensingagents

(ii) Static nodes deployed overD such thatR ≥ maxi∈{1,...,m} {CR(Vi(Q))} + rs + umax,

robotic agents in initial configurationP (1) ∈ Ω(k)

(iii) Line search shrinkage factorτ and tolerance valueθ ∈ (0, 1) known a priori by all nodes

(iv) A termination marker known to all nodes and robots which may be sent to mark the end of a

gradient descent loop.
Uses: (i) Each node uses the temporary vectorsPcur, respectivelyPnext to hold the configuration at the

current, respectively next step of the gradient projection algorithm. For ease of exposition, we use

global notation althoughSj only calculates and uses the parts of these vectors which correspond

to agents currently within communication range.

At time k ∈ Z≥0, nodeSj executes:

1: setsRcov(j) = {Ri | d(pi(k), Vj(Q)) ≤ rs}

2: collects initial samples and locations fromRi for each

i ∈ Rcov(j).

3: computes firstÃ(k)
j

`

P (k)
´

and thenÃ(k)
`

P (k)
´

via

consensus

4: setsPnext = P (k)

5: repeat

6: setsPcur = Pnext(j) and calculates−∇Ã
(k)
j |Pcur

7: transmits vector∇iÃ
(k)
j (Pcur) to all robots in

Rcov(j)

8: collects sum ∇iÃ
(k)(Pcur) from all robots in

Rcov(j)

9: runs DISTRIBUTED L INE SEARCH ALGORITHM at

Pcur to getα

10: setsPnext = Pcur + α∇Ã(k)|Pcur

11: calculates|Ã(k)(Pnext) − Ã(k)(Pcur)| from known

quantities

12: until |Ã(k)(Pnext) − Ã(k)(Pcur)| = 0

13: setsP (k+1) = Pnext and sends next position to robots

in Vj(Q)

Meanwhile, robotRi executes:

1: takes measurement atpi(k)

2: sets Scov(i) =

{Sj | d(pi(k), Vj(Q)) ≤ rs}

3: sends measurement and position to all nodes

in Scov(i)

4: repeat

5: receives ∇iÃ
(k)
j (P (k)) from nodes

in Scov(i)

6: calculates sum∇iÃ
(k)(P (k))

7: sends ∇iÃ
(k)(P (k)) to all nodes in

Scov(i)

8: until receives termination marker from any

node

9: receives next locationpi(k + 1)

10: moves topi(k + 1).

Table IV. DISTRIBUTED PROJECTEDGRADIENT DESCENTALGORITHM.
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designed to run for a fixed number of timesteps, we are concerned here with complexities involved in

performing a single step. Below, where we refer to complexity notions over multiple iterations of an

algorithm, we are considering the nested algorithms such asJOR, or consensus, which run during a

single step of the DISTRIBUTED PROJECTEDGRADIENT DESCENTALGORITHM.

We examine the algorithm performance against the followingnotions of complexity, see [29, 30, 28]

Communication complexity: the total number of bits transmitted over all (directed) communication

channels between nodes in the network over the course of the algorithm;

Time complexity: the number of iterations of the algorithm times the maximum number of bits sent

over any channel during one iteration;

Space complexity: the total number of bits for which space may be requiredby a single node at any

given time.

We are now ready to characterize the complexities of our algorithms, beginning with the inner

iterations.

Proposition 5.3. (Average consensus complexity) Assume that the group of static nodes is regular

in the sense that its diameter, diamQ ∈ Z>0 satisfies diamQ ∈ O( d
√

m). Further assume that

the maximum number of neighbors of a given node is bounded by aconstant degQ ∈ Z>0. Let

b = (b1, . . . , bm)T ∈ R
m denote a vector distributed across the network of nodes in the sense that

Sj knowsbj for eachj ∈ {1, . . . ,m}. The discrete time consensus algorithm may be run on the

network of nodes to calculate an arithmetic mean of the formbT b
n with communication complexity in

O
(

m2 d
√

m
)

, time complexity inO (m d
√

m), and space complexity inO(1).

Proof. Each node sends a single message to each neighbor at each step, so the time complexity

is bounded by the number of iterations to completion. The number of iterations may be bounded

by the number required to reach a desired tolerance level. The error at iterationt may be written

eave(t) = ‖wave(t) − w‖, wherew is the m-vector whose elements are allbT b, and wave(t) is

the vector of current approximate values. This may be bounded in terms of the initial error as

eave(t) ≤
(

1 − 4
mdiamQ

)t

eave(0), where we have used [31, Equation (6.10)] to lower bound the

algebraic connectivity of the network of nodes. Thus the number of steps required to guarantee a

particular error is bounded by,t∗ave∈ O
(

− log−1
(

1 − 4
mdiamQ

))

. Applying the bound on the growth
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of the network diameter yieldst∗ave ∈ O
(

− log−1
(

1 − 4
m d

√
m

))

. For largem, we can replace

the logarithm with the series representation. The higher order terms drop off and we are left with

t∗ave ∈ O (m d
√

m). At each step of the algorithm, each node stores a single value for each neighbor,

and a constant number of other values. Thus the space requirement is bounded simply by the number

of neighbors, which is inO(1) by assumption. Communication complexity is bounded by a single

message over each channel of the network at each iteration. The total number of such messages from

each node is bounded by a constant, which gives us the final result.

Remark 5.4. In two and three dimensions, the maximum diameter requirement has been shown to be

consistent with a hexagonal grid network [32, 33], which is also consistent (in terms of number of

neighbors) with the average case for large Voronoi networks[34]. The requirement of bounded degree

(maximum number of neighbors) would also be satisfied by a hexagonal grid. •

SinceÃ(k) uses only measurements correlated in time, the size of the matrices and vectors is limited

to a constant multiple ofn. Recall the definitions from Section 4.1 ofK
(k)
c , respectivelyn(k)

c , the

correlation matrix, respectively number, of samples in thecurrentupdate block.

Proposition 5.5. (Leader election complexity) Under the assumptions of Proposition 5.3, the

leader election algorithm may be run on the network of nodes to calculate the quantity

max
i∈{1,...,n

(k)
c }

n(k)
c
∑

j=1

[K(k)
c ]ij , with communication complexity inO (m d

√
m), time complexity inO ( d

√
m),

and space complexity inO(1).

Proof. First, note that for eachj ∈ {1, . . . ,m}, Sj can calculate the row sums which correspond

to samples withinVj(Q) and subsequently their maximum, so calculating the maximumrow sum is

simply a matter of finding the largest value in the network. Ateach step of the algorithm, each node

sends a single message to each neighbor. The algorithm is complete after a number of iterations equal to

the diameter of the network. This proves the time and communication complexities. At each iteration,

all nodes store a single value, the current max, which takes care of the space complexity.

For the following algorithms, the distribution of samples in the region defines two different regimes

for complexity. We will consider both the worst case and the average based on a uniform distribution.

Proposition 5.6. (JOR complexity) Under the assumptions of Proposition 5.5, assume that thereis

some constantǫλ ∈ (0, 1), known a priori, such thatλmin(K
(k)
c ) > ǫλ. Regarding the sparsity ofK(k)

c ,
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assume that any one sample is correlated to at mostNcor ∈ N others, and that, for anyj ∈ {1, . . . ,m},

the number of samples inD \ Vj(Q) which are correlated to samples inVj(Q) is upper bounded by a

constant,Nmsg ∈ N. Let b = (b1, . . . , bn
(k)
c

)T ∈ R
n(k)

c be distributed on the network of nodes in the

sense that ifSj knows coli(K
(k)
c ), thenSj knowsbi. Then the distributed JOR algorithm may be run to

calculate(K
(k)
c )−1b with communication complexity inO (m d

√
m), time complexity inO ( d

√
m), and

space complexity inO(n) worst case,O( n
m ) average case.

Proof. The first step of the JOR algorithm is to calculate the relaxation parameter. For correlation

matrices, Appendix II describes a near optimal relaxation parameter in the sense of minimizing

the completion time. Using two leader election algorithms,the network can calculate the maximum

off-diagonal element,β = maxi6=j∈{1,...,n}[K
(k)
c ]ij and the maximum off-diagonal row sumα =

maxi∈{1,...,n}
∑n

j 6=1[K
(k)
c ]ij . The relaxation parameter is then given by,h∗ = 2

2+α−β . The time

complexity of the JOR algorithm can be broken down into the maximum number of messages any

node sends over any channel times the number of iterations. The number of messagesSj will send

is equal to the number of nonzero off-diagonal entries[K
(k)
c ]ii′ , i 6= i′, wheresi ∈ Vj(Q) and

si′ ∈ Vj′(Q), with j 6= j′. By assumption, this number is bounded byNcor. The error at iterationt of

the JOR algorithm may be writteneJOR(t) = ‖wJOR(t) − (K
(k)
c )−1b‖, wherewJOR(t) is the vector of

current approximate values. An upper bound on the error at stept may be obtained by [26]eJOR(t) ≤
(

sprad
(

I − hK
(k)
c

))t

eJOR(0), whereI is then
(k)
c × n

(k)
c identity matrix. By Proposition II.4, we

have the bounds,0 ≤ sprad(I − hK) < 1 − h∗ǫλ. The assumption of sparsity, and the fact thatK
(k)
c

is a correlation matrix give us0 ≤ α < Nmsg, and0 ≤ β < 1, which results in1−h∗ǫλ < 1− 2ǫλ

2+Nmsg
.

Since bothǫλ andNmsg are positive, we have1− 2ǫλ

2+Nmsg
< 1. The minimum number of steps required

to reach an error ofe∗ is then upper bounded byt∗ = (e(0) − e∗)
(

− log−1
(

1 − 2ǫλ

2+Nmsg

))

. Thus

the number of iterations required to reach a given error tolerance is inO(1). The time complexity is

then dominated by the time complexity of the leader electionalgorithm outlined in Proposition 5.5.

For space complexity, we note that the maximum number of samples in a given cell is bounded by

n
(k)
c , while the average number isn

(k)
c
m . The space complexity is dominated by the requirement to store

vectors of length given by the number of samples in the cell, and the same number of rows ofK
(k)
c .

This yields the given result. For communication complexity, the overall algorithm requires a maximum

of one message to be sent per nonzero off-diagonal entry inK
(k)
c , each iteration, plus the number of

messages required for the leader election.
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Remark 5.7. The assumptions on the sparsity ofK
(k)
c in Proposition 5.6 have the following

interpretation: samples do not cluster in space as measuredwith respect to the distribution of the

Voronoi cells and their size relative to the correlation range. •

Proposition 5.8. (Complexity of the DISTRIBUTED PROJECTED GRADIENT DESCENT ALGO-

RITHM) Under the assumptions of Proposition 5.5 and Table IV, theDISTRIBUTED PROJECTEDGRA-

DIENT DESCENT ALGORITHM may be completed with communication complexity inO
(

m2 d
√

m
)

,

time complexity inO (m d
√

m), and space complexity inO(n2) worst case,O
(

n2

m2

)

average case.

Proof. First it should be noted that the number of iterations to completion of both the DISTRIBUTED

L INE SEARCH ALGORITHM and the DISTRIBUTED PROJECTEDGRADIENT DESCENTALGORITHM

are independent ofn andm. Thus the complexities of each are given by the requirementsof a single

step. The space complexity is dominated by the need to store the inverse covariance matrix of known

samples required for̃A(k)
j . The worst case corresponds to alln

(k)
c samples correlated to one Voronoi

region, and the average to samples distributed uniformly. The time and communication complexities

are dominated by the requirement of the consensus algorithm.

5.1.1. Broadcast method for comparisonOne way to judge the efficiency of our method would be

to compare it against a simple algorithm which floods the network with new information at each

sample time. This algorithm would work as follows. At each timestep, all samples and locations are

disseminated throughout the network, such that each node obtains the entire vectorsx andy. Each

node then runs a projected gradient descent given global information. Since all nodes have the same

information, they should converge to the same final locations. Since this method is only given for

comparison, we will assume that this is the case. Once a node has calculated the next location for all

of the agents which will be in that Voronoi cell, the control vectors may be transmitted to those agents.

The information dissemination in this algorithm corresponds to an all-to-all broadcast in which each

node begins with a distinct message of length|I(k+1)
Local (j, P )| units.

Proposition 5.9. (Complexity of the broadcast method) Under the assumptions of Proposition 5.8,

local minima ofÃ(k) may be found by all to all broadcast of agent positions and subsequent local

projected gradient descent with,

• communication complexity inO
(

m2n
)

worst case,O (mn) average case

• time complexity inO (n d
√

m) worst case,O
(

n
m

d
√

m
)

average case
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• space complexity inO(n2)

Proof. The time and communication complexity of this method are dominated by the requirement of

an all to all broadcast. Given a network ofm nodes, each of which has a distinct message ofM bits, an

absolute lower bound on the number of bits that must be transmitted can be found by noting that each

node must end up with all(m − 1)M bits from the other nodes. Thus the number of message units

to be transmitted must be at leastm(m − 1)M . The worst and average cases correspond toM ∝ n

(for all agents in a single region) andM ∝ n
m (for agents spread among regions). The longest path

any message must take in a standard all to all broadcast is thediameter of the network. The time

complexity is then given by the number of bits in a message times the diameter, and by assumption,

diamQ ∈ O( d
√

m). The space complexity of the algorithm is dominated by the requirement to store the

entire inverse covariance matrix at each node. Even though the covariance matrix is sparse, the inverse

is in general not, requiring the wholen(k)
c × n

(k)
c storage space.

Remark 5.10 (Broadcast method requires global positioning) It should be noted here that while the

DISTRIBUTED PROJECTEDGRADIENT DESCENT ALGORITHM might be extended to systems with

relative positioning (see Remark 5.2), the broadcast method requires global coordinates.

Table V lists the complexities side by side for comparison. It can be seen that the distributed method

scales better overall with the number of mobile agents. The results with respect to increasing the

number of static nodes are less favorable, but it should be noted that the results presented here for

the broadcast method are known lower bounds on the communication complexity, not representative of

any achievable algorithm. In particular, we did not accountfor redundant transmissions, multi-hop path

requirements, or stalled communication channels. Any implementable all-to-all broadcast algorithm

must balance communication complexity against time complexity to account for these issues.

5.2. Simulations

We show here an implementation of the DISTRIBUTED PROJECTED GRADIENT DESCENT

ALGORITHM with the following parameters:m = 5 static nodes,n = 20 robotic agents, and

the convex polygonD with vertices{(0, .1), (2.5, .1), (3.45, 1.6), (3.5, 1.7), (3.45, 1.8), (2.7, 2.2),

(1, 2.4), (0.2, 1.3)}. We used the separable covariance function defined byCov[Z(s1, t1), Z(s2, t2)] =

Ctrunc(‖s1 − s2‖, 0.3)Ctrunc(|t1 − t2|, 3.5), where
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Complexity Type Broadcast Distributed PGD

Worst Average Worst Average

Communication O(m2n) O(mn) O
(

m2 d
√

m
)

O
(

m2 d
√

m
)

Time O(n d
√

m) O( n
m

d
√

m) O (m d
√

m) O (m d
√

m)

Space O(n2) O(n2) O
(

n2
)

O
(

(

n
m

)2
)

Table V. Algorithm complexities. The worst and average cases are overdistributions of samples, with the average

corresponding to a uniform distribution inD. The time and communication complexities for the broadcast method

are lower bounds, not simultaneously achievable by any known algorithm.

Ctrunc(δ, rs) =











e−15( δ
rs)

2

if δ ≤ rs,

0 otherwise.

While the covariance function is notC1 everywhere, the difference lies within the error margin of the

simulation. We useω = 0.02 andumax = 0.3. The values of our hyperparameters wereν = 0.1,

q = 2, β0 = 0, andK0 = I. We simulated the sampled data by drawing random variables from

the distributionN(β0, σ
2
0Ku), whereσ2

0 = qν
ν−2 , the prior mean ofσ2, andKu is the correlation

matrix of y
u
. For the mean regression functionsfi, we usedf(((x, y), t)) = (1, x, y)T . To illustrate

the robustness to failure,R2 ceased communications after timestep2, andR5 after timestep4. Figure 2

shows the trajectories taken by the robots. Note that the curve of the objective function begins

with a steep decline, then begins to level off after a few iterations. This may be seen as a natural

progression from an exploration phase, when much information is being gained about the covariance,

to exploitation phase, where new samples are chosen mostly to optimize the conditional variance.

This example is representative of cases for which the data samples lie within a reasonable range of

the predictive model. In the cases where the samples do not match the model, the surface of̃A(k)

is relatively flat, signifying that the amount of information to be gained is not significantly different

whether the agents move or not. As information is a model-dependent quantity, this is not surprising.

6. Conclusions and future work

We have considered a network of static computing nodes and mobile robotic sensing platforms taking

measurements of a time-varying random process with covariance known up to a scaling parameter.
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Figure 2. (a) Trajectories of all robots, (b) two representative robottrajectories and (c) evolution of the objective

function. The filled squares represent the (static) positions of the nodes, and the filled triangles show the starting

positions of the robots. The X’s represent the positions of the two robots who dropped communication.

We have used a Bayesian approach, treating the field as a spatiotemporal Gaussian random process,

and developed a novel approximation of the variance of the posterior predictive distribution which

may be calculated in a sequential and distributed fashion. Using this formulation, we have developed

a projected gradient descent algorithm which is distributed over the network of nodes and robots. We

have examined the complexity of this approach, and comparedit against the lower bound complexity

of a more centralized “broadcast” method, showing that the distributed approach scales better with

the number of mobile agents. Future work will focus on theoretical guarantees on the accuracy of

the approximationÃ(k) and on the robustness to failure of the proposed coordination algorithm. As

mentioned in our discussion, special care must be taken whengenerating local approximations for the

universal kriging model. A topic of future work will be to provide rigorous methods for handling this

case.
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APPENDIX

I. Predictions with a subset of measurements

We present here a series of results concerning the relationship between subsets of sample locations and

hypothetical predictions made from partial information. Lety ∈ R
n denote a full set of measurements

at locationsx ∈ Dn
e . Let n1, n2 ∈ N such thatn1 + n2 = n. Consider a partition of the measurements

y = (yT
1
, yT

2
)T such thaty

1
∈ R

n1 andy
2
∈ R

n2 and a similar partition ofx. We will useK1,

respectivelyK2, to denote the correlation matrix of locationsx1, respectivelyx2, and analogous

notation for the matricesF1,F2,E1,E2. Let K12 = K
T
21 ∈ R

n1×n2 denote the matrix of cross-

correlation between the two location vectors.

We begin with a multivariate version of the posterior predictive variance from Proposition 2.1, which

can be considered the hypothetical distribution of the measurements at locationsx2 given the samples

y
1
. As in the univariate case, this result can be obtained by applying Bayes Theorem to the prior model.
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Lemma I.1 (Multivariate posterior predictive distribution) Under the Bayesian model(2), the

multivariate posterior predictive distribution at locationsx2 ∈ Dn2
e from datay

1
is then2-variate

shifted Students t distribution withν + n1 degrees of freedom, which takes the form,

y
2
|y

1
, x ∝ Var[y

2
|y

1
, x]−

1
2






1 +

(

y
2
− E[y

2
|y

1
, x]
)T

Var[y
2
|y

1
, x]−1

(

y
2
− E[y

2
|y

1
, x]
)

ν + n1 − 2







− ν+n1+n2
2

.

Here, the expectation is given by

E[y
2
|y

1
, x] = ξT

2|1(E1 + K
−1
0 )−1

(

β̂1 + K
−1
0 β0

)

+ K21K
−1
1 y

1
,

whereβ̂1 = E
−1
1 F1K

−1
1 y

1
, andξ2|1 = F2 − F1K

−1
1 K12. The covariance matrix is given by

Var[Z|y, x] = ϕ(y
1
, x1)φ(x2;x1),

where, with a slight abuse of notation, we have usedφ(x2;x1) to denote the following multivariate

extensions ofφ andϕ,

φ(x2;x1) = K2 − K21K
−1
1 K12 + ξT

2|1
(

K
−1
0 + E1

)−1
ξ2|1,

ϕ(y
1
, x1) =

1

ν + n1 − 2

(

qν +
(

y
1
− F

T
1 β0

)T
(

K1 + F
T
K0F

)−1
(

y
1
− F

T
1 β0

)

)

.

If we treat all parameters as known then a generalized least squares (GLS) technique may be used to

estimate one vector of samples from the values of another. The following lemma is useful for isolating

a correlated block of samples in a GLS estimate.

Lemma I.2 (Generalized least squares by block) Assume thaty
1

is partitioned according toy
1

=

(yT
11

, yT
12

)T , and assume thatCor[y
11

, y
12

] = 0 andCor[y
11

, y
2
] = 0. Let ŷ

LS
= K21K

−1
1 y

1
be the

generalized least squares estimate ofy
2

based on samplesy
1

(conditional on all parameters). Then we

may write,

ŷ
LS

= Cor[y
2
, y

12
]Cor[y

12
, y

12
]−1y

12
,

i.e., the generalized least squares estimate may be calculated from only those samples in the block

correlated toy
2
.

Proof. Since the two parts ofy
1

are uncorrelated, we have,

K
−1
1 =





Cor[y
11

, y
11

] 0

0 Cor[y
12

, y
12

]





−1

=





Cor[y
11

, y
11

]−1
0

0 Cor[y
12

, y
12

]−1



 .
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Multiplying by the matrixK12 = (0, Cor[y
2
, y

12
]) yields the result.

The GLS approximation arises naturally from partitioning the elements of the termK−1y. The

following lemma allows us to write this in terms of the GLS error.

Lemma I.3 (Generalized least squares approximations) Let ŷ
LS

= K21K
−1
1 y

1
be the generalized

least squares estimate ofy
2

based on samplesy
1

(conditional on all parameters) and letyLS = y
2
−ŷ

LS
.

Then we can write,

K
−1y =





K
−1
1 y

1

0



+





−K
−1
1 K12 (K1 |K )

−1
yLS

(K1 |K )
−1

yLS



 . (9)

Furthermore, ify
1

andy
2

are uncorrelated (i.e.,K12 = 0), then this equation takes the form,

K
−1y =





K
−1
1 y

1

K
−1
2 y

2



 . (10)

Proof. Equation (9) is a direct result of the Schur complement form for the inverse of a partitioned

matrix (see, e.g. [35, Proposition 2.8.7]). Equation (10) follows by evaluating atK12 = 0.

In the sequel, we will find useful the matrixM ∈ R
(n+p)×(n+p) and vectorU ∈ R

n+p defined as,

M =





K F
T

F −K
−1
0



 , U =





y

−K
−1
0 β0



 .

The following lemma gives a useful a restatement of the sigmamean.

Lemma I.4 (Restated sigma mean) The termϕ(y, x) may be written as,

ϕ(y, x) = qν + βT
0 K

−1
0 β0 + yT

K
−1y−

−
(

K
−1
0 β0 + FK

−1y
)T (

K
−1
0 + E

)−1 (
K

−1
0 β0 + FK

−1y
)

. (11)

Proof. SinceK andK0 are positive definite, the matrixK+F
T
K0F is also positive definite. Therefore

the matrixM defined above is nonsingular. We can write,

ϕ(y, x) = qν + βT
0 K

−1
0 β0 + UTM−1U . (12)

Using [35, Proposition 2.8.7] for the inverse of a partitioned matrix, we arrive at the result.
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Proposition I.5 (Approximate conditional variance) The termφ(x0;x) may be written in terms of

locationsx2 as,

φ(x0;x) = φ(x0;x2) − (k1 − µ1)
T

φ(x1;x2)
−1 (k1 − µ1) , where

µ1 =





K21

F1





T

M−1
2





k2

f(x0)



 , M2 =





K2 F
T
2

F2 −K
−1
0





k1 = Cor[Z(x0), y1
], k2 = Cor[Z(x0), y2

].

Thereforeφ(x0;x) ≤ φ(x0;x2) with equality if and only ifk1 = µ1.

Proof. First, we note that the conditional variance can be written usingM as,

φ(x0;x) = Cor[Z,Z] −





k

f(x0)





T

M−1





k

f(x0)



 .

Next, we point out that with the proper partitioning ofM, the matrix φ(x1;x2) is the Schur

Complement,(M2 |M ). Using this, and a similar partition of the vectork, one arrives at the result.

The following lemma, while not directly related to partitions of measurements, is instrumental in

approximating the sigma mean from a subset of samples. The proof is a result of applying Bayes

Theorem to the prior model.

Lemma I.6 (Posterior distribution of σ2) Under the Bayesian model(2), the posterior distribution

of σ2 after incorporating samplesy is an inverse Gamma distribution with meanϕ
(

y, x
)

and variance
4ϕ(y,x)

2

(ν+n−4) .

II. Near optimal relaxation parameter for JOR

Here we present some results regarding a relaxation parameter for the JOR algorithm which is nearly

optimal with respect to the rate of convergence of the algorithm for a certain class of matrices.

Specifically we are interested in the class of symmetric, positive definite matricesC with ones on

the diagonal. Lety(t) = (y1(t), . . . , yn(t))T ∈ R
n be the vector updated during the JOR iteration

in (4). Lete(t) = ‖C−1y − y(t)‖ denote the error at iterationt. We may write,

e(t) ≤ (sprad(I − hC))
t
e(0),
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giving a bound on the error at stept based on the initial error. The value of sprad(I − hC) therefore

controls the rate of convergence, and choosing the relaxation parameter,h, is of vital importance.

Throughout this section we will use the shorthandλmax = λmax(C) andλmin = λmin(C). The work [36]

provides results concerning the convergence of the JOR algorithm, including an optimal relaxation

parameter, which in our case is equivalent tohopt = 2
λmax+λmin

. In this section we will introduce an

approximation to this optimal value which may be calculatedin a distributed manner.

Proposition II.1. Assume thatC ∈ R
n×n is a symmetric positive definite matrix with all diagonal

entries equal to1. Let β, α ∈ R≥0 denote the maximum off-diagonal entry ofC, respectively the

maximum off-diagonal row sum ofC, i.e.,

β = max
i6=j∈{1,...,n}

{cij} , α = max
i∈{1,...,n}

{

n
∑

j=1
j 6=i

cij

}

.

Leth∗ = 2
2+α−β . Then usingh∗ as the relaxation parameter in the JOR algorithm to solvey = C−1b

results in guaranteed convergence.

Proof. Convergence is guaranteed as long ash∗ ∈
(

0, 2
λmax

)

. SinceC is symmetric positive definite

with 1’s on the diagonal, all off-diagonal entries must have magnitude strictly less than1. Thus

1 − β > 0. The Gershgorin circle theorem tells us thatλmax ≤ 1 + α. Together these two results

yield the inequality,2 + α − β > λmax which implies that 2
2+α−β < 2

λmax
. The result follows.

Lemma II.2. Under the assumptions of Proposition II.1,h∗ ≤ 1
λmin

, with equality if and only ifC is

then × n identity matrix.

Proof. First, note the following implication chain,

λmin ≤ 1 =⇒ 2λmin ≤ 2 + α − β =⇒ h∗ ≤ 1

λmin
.

Now, assume thath∗ = 1
λmin

. This implies thatλmin = 1 + α − β, but λmin ≤ 1, andα ≥ β. So we

must haveλmin = 1. Since the diagonal entries ofC are all1, the smallest eigenvalue can only be1 if

all off-diagonal entries are zero, i.e., ifC = In.

Lemma II.3. Under the assumptions of Proposition II.1,|1 − h∗λmin| ≥ |1 − h∗λmax|.

Proof. Using Lemma II.2, we have|1 − h∗λmin| = 1 − h∗λmin. The result may then be shown by

two separate cases. First, note that ifh∗ ≤ 1
λmax

then we have,

|1 − h∗λmax| = 1 − h∗λmax ≤ |1 − h∗λmin|,
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so the result holds in this case. For the second case, assume that h∗ > 1
λmax

. Then |1 − h∗λmax| =

h∗λmax − 1. The inclusion principle and the fact thatC is positive definite give us the bounds

0 < λmin ≤ 1 − α. Combined with the previously mentioned Gershgorin bound,λmax ≤ 1 + α,

this allows us to write,

λmax + λmin

2 + α − β
≤ 1

2
λmax + λmin

2 + α − β
≤ 2

h∗ (λmax + λmin) ≤ 2

h∗λmax− 1 ≤ 1 − h∗λmin.

Thus in all cases,|1 − h∗λmax| ≤ |1 − h∗λmin|.

Proposition II.4. Under the assumptions of Proposition II.1, further assume that λmin ≥ ǫλ for some

ǫλ ∈ (0, 1). Then0 ≤ sprad(I − h∗C) < 1 − 2ǫλ

2+α−β

Proof. First note that the spectral radius is given bymax {|1 − h∗λmin|, |1 − h∗λmax|}, and is clearly

nonnegative. From Lemma II.3, we have sprad(I − h∗C) = |1 − h∗λmin|. From Lemma II.2, we can

infer sprad(I−h∗C) = 1−h∗λmin. The upper bound follows by comparing1−h∗λmin and comparing

against1 − h∗ǫλ.
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