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Abstract— Networks of environmental sensors are playing an
increasingly important role in scientific studies of the ocean,
rivers, and the atmosphere. Robotic sensors can improve the ef-
ficiency of data collection, adapt to changes in the environment,
and provide a robust response to individual failures. Complex
statistical techniques come into play in the analysis of environ-
mental processes. Consequently, the operation of robotic sensors
must be driven by statistically-aware algorithms that make
the most of the network capabilities for data collection and
fusion. At the same time, such algorithms need to be distributed
and scalable to make robotic networks capable of operating in
an autonomous and robust fashion. The combination of these
two objectives, complex statistical modeling and distributed
coordination, presents grand technical challenges: traditional
statistical modeling and inference assume full availability of all
measurements and central computation. While the availability
of data at a central location is certainly a desirable property, the
paradigm for distributed motion coordination builds on partial,
fragmented information. This work surveys recent progress at
bridging the gap between sophisticated statistical modeling and
distributed motion coordination.

I. I NTRODUCTION

Scientific studies of environmental phenomena often in-
volve a data collection stage. Samples are taken of a spatially
distributed process of interest, such as a temperature fieldor
chemical concentrations. Combining these samples with a
model, the scientist may make predictions about the process
at unmeasured locations, or inference about the quality and
accuracy of the model. This work reviews some results which
lay the groundwork for cooperative control of mobile sensing
devices based on statistically motivated objectives, whenthe
underlying process is modeled as a random field.

Physical process models may be roughly divided into
two categories: deterministic and stochastic. Deterministic
models are often coupled with a stochastic measurement
error term (see, e.g., [1], [2], [3], [4]), but require that
model parameters and initial conditions be known to a high
degree of accuracy [5]. When this can not be guaranteed, or
when the parameter space of the deterministic model has
high dimension, it may be desirable to treat the process
itself as in some degree unknown, using a stochastic process
model. A classic example is a fair coin toss. It is clear that
under extremely strict monitoring of the initial conditions
and model parameters, the interested physicist could exactly
model the entire trajectory of the coin, culminating in its final
resting position. The model which is usually used, however,
is to assign a simple probability to each outcome. In this
context, it is easy to allow for the possibility that the coin
is not “fair”. We toss the coin a few times, collect the data,
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and the results give us information about the model (or about
future coin tosses). For this reason, stochastic modeling is
sometimes calleddata driven, as opposed to themodel driven
deterministic modeling. We focus on data driven models, and
particularly their explicit representations of uncertainty.

Our treatment here deals with two important tasks faced
by a network of autonomous sensors: choosing the locations
to take samples and incorporating those data into the global
model. There is a rich literature on the use of model
uncertainty to drive the placement of sensing devices [6],
[7], [8], [9], [10], [11]. Most of this research has focused
on choosing from discrete sets of hypothetical sampling
locations, and until recently all of it has made use of
centralized computational techniques. Likewise, the workon
data fusion [12], [13], whether for field estimation or model
inference, mostly concentrates on centralized methods where
access to all of the data is allowed. In cooperative control,
various works consider mobile sensor networks performing
spatial estimation tasks. [14] introduces performance metrics
for oceanographic surveys by autonomous underwater vehi-
cles. [15] considers a robotic sensor network with centralized
control estimating a static field from samples with both
sensing and localization error. In [16], a deterministic model
is used, where the random elements come in the form
of unknown model parameters, and localization error is
included. The work [17] uses a Gaussian process model
where all information is globally available via all-to-all
communication. [18] considers optimal sampling trajectories
from a parameterized set of paths. [19] discusses the tracking
of level curves in a noisy scalar field.

Here we present recent work on spatial estimation tasks
that require complex statistical modeling combined with
distributed computation and control. Our aim is to motivate
further research at the intersection of these exciting areas.

II. N ETWORK ARCHITECTURE

In the context of environmental sampling, the term “sensor
network” may describe anything from a small number of
fixed position rainfall monitors in the forest to a complex
group of static flotation devices and mobile robots in the
ocean. The literature on stochastic spatial modeling has
traditionally dealt with sensors whose location is fixed in
space. However, the ability to move about the field and
take samples at desired locations has obvious benefits. A
network in this context is a group of agents connected by
wired or wireless communication paths. For our purposes, we
consider networks comprised of two types of agents: static
and mobile. The term “mobile agents” describes a class of
small robots with the ability to move, take samples of the
spatial process, and possibly sense their immediate physical
environment. Their storage and computational capabilities



are assumed to be minimal. By “static agents”, we refer
to fixed position computational devices which may or may
not take samples. Because they are static and do not require
energy to move around, they may carry more equipment and
thus perform more in the way of computation and storage
tasks. In some contexts, slower moving large vehicles may
be considered static as compared to the faster mobile agents.
Some limited range communication is also assumed for both
types of agents. Distributed solutions to global problems are
therefore defined on thecommunication graphof the system.

Sensing technology may also vary in different scenarios.
Agents may have the ability to take point measurements
or broader area measurements, with large or small error
margins. In the case of area sensors, the measurement error
may itself be a distribution as opposed to a number. In either
the point or area measurement case, one common practice is
to treat the sensors as identical, with an i.i.d. (independent
and identically distributed) error term.

In the examples below, we deal with networks of agents in
a convex polytopeD ⊂ R

d, d ∈ N. We will call the mobile
robots{R1, . . . , Rn}, n ∈ N, and denote their locations by
P = (p1, . . . , pn)T ∈ Dn. Where static nodes are mentioned,
we will call them {S1, . . . , Sm}, m ∈ N at locationsQ =
(q1, . . . , qm)T ∈ Dm.

III. A B AYESIAN APPROACH TO SPATIAL MODELS

Let Z denote a random spatial process taking values on
D. Let y = (y1, . . . , ym)T ∈ R

m bem ∈ N samples taken
fromZ at corresponding locationss = (s1, . . . , sm)T ∈ Dm,
with si = (si, ti), i ∈ {1, . . . ,m}. Given these data, various
models allow for prediction ofZ at any point inD, with
associated uncertainty. For problems which are driven by
prediction uncertainty, such as choosing the locations to take
samples, it should be modeled as accurately as possible.

In a Bayesian setting, the prediction takes the form of a
distribution, called the posterior predictive [20]. If thefield
is modeled as a Gaussian process, we may write,

Z(s0) = µ(s0) + ν(s0),

whereµ : D → R denotes the mean andν : D → R is
a zero mean random field. Depending on the level of prior
knowledge, different models may be used which result in
different predictive distributions, although there is notalways
a guaranteed analytical form. We next describe some models
from the literature based on different prior knowledge.

A. Kriging

If the covariance ofν is known, the mean of the posterior
predictive distribution corresponds to theBest Linear Un-
biased Predictor, and its variance to the mean-squared pre-
diction error. If the mean is known, the posterior predictive
distribution ofZ at locations0 given samplesy is normal
with mean and variance, respectively,

ẑSK(s0; s) = µ(s0) + cT
Σν

−1(y − µ), (1a)

σ2
SK(Z(s0); s) = Var[Z(s0)] − cT

Σν

−1c. (1b)

Hereµ is them-vector whoseith element isµ(si), c is the
vector whoseith element isCov[ν(s), yi], Σν = Σν(s) ∈
R

m×m is the covariance matrix of the vectory. If the mean

is not known, but can be treated as an unknown expansion
on a vector ofp ∈ N known basis functions, we write

µ(s) = f(s)Tβ, wheref(s) = (f1(s), . . . , fp(s))
T ,

and f(s) is known for alls ∈ D. The posterior predictive is
again normal with mean and variance, respectively,

ẑUK(s0; s) =
(

c + FE
−1ξ0

)T
Σν

−1y, (2a)

σ2
UK(Z(s0); s) = Var[Z(s0)] − cT

Σν

−1c+

+ ξT
0 E

−1ξ0. (2b)

Here F ∈ R
m×p is the matrix whoseith row is f(si),

E = F
T
Σν

−1
F ∈ R

p×p, andξ0 = f(s0)−FΣν

−1c. These
first two examples of predictive distributions are well known
in the literature under various names.Kriging [12], [5] is a
standard geostatistical technique in which the distribution (1)
corresponds tosimple krigingand the distribution (2) corre-
sponds touniversal kriging.

B. Uncertainty in the covariance

When the covariance is treated as known, it is common
practice to add a measurement error term to the diagonal
elements of the covariance matrix. This precisely corre-
sponds to the identical sensor error samples mentioned in our
description of the network architecture in Section II. If the
covariance of the field is not known, however, few analytical
results exist which take the full uncertainty into account.We
continue this discussion by presenting a model [21], [22]
which allows for uncertainty in the covariance process and
still produces an analytical posterior distribution. We assume
that the samples have them-variate normal distribution,

y ∼ Nm

(

F
Tβ, σ2

K
)

. (3)

Here β is unknown,σ2 ∈ R>0 is the unknown variance
parameter, andK is a correlation matrix whosei, jth element
is Kij = Cor[yi, yj ]. To ensure an analytical posterior, we
assume conjugate prior distributions for the parameters,

β|σ2
∼ Np(β0, σ

2
K0), (4a)

σ2
∼ Γ−1(υ/2, ψυ/2). (4b)

The notationβ|σ2 denotes the conditional distribution ofβ
given σ2. Hereβ0 ∈ R

p, K0 ∈ R
p×p, andψ, υ ∈ R>0 are

constants, known astuning parametersfor the model, and
Γ−1(a, b) denotes the inverse gamma distribution with shape
parametera and scale parameterb (see, e.g., [23]). Under
this model, the posterior predictive distribution at location
s0 ∈ D is a shifted Students t distribution (see, e.g., [23])
with γ = υ +m+ 1 degrees of freedom, with expectation,
E[Z|y, s] = ξT

0 β
† + k

T
K

−1y

β† = (E + K
−1
0 )−1

Eβ̂ + (I − (E + K
−1
0 )−1

E)β0,

where β̂ = E
−1

FK
−1y, and k = Cor[y, Z] ∈ R

m. The
posterior predictive variance is given by

Var[Z|y, s] =
ϕ(y, s)

γ
φ(s0; s)

φ(s0; s) = Cor[Z,Z] − k
T
K

−1
k + ξT

0

(

K
−1
0 + E

)−1
ξ0

ϕ(y, s) = ψυ +
1

2

(

y − F
T β̂

)T

K
−1

(

y − F
T β̂

)

+

+
1

2

(

β̂ − β0

)T
(

K0 + E
−1

)−1
(

β̂ − β0

)

.



The posterior predictive variance can be separated into
1
γ

, which decreases withm; ϕ(y, s), which results from
the uncertainty inσ2, and φ(s0; s), which is the posterior
predictive variance conditional onσ2.

A key component of spatial models is the covariance
function [24]. A particularly well studied class of covari-
ance functions exhibitsecond-order stationarity. A spatial
random processδ on D ⊂ R

d is second-order stationary
if it has constant mean, and its covariance is of the form
Cov(δ(s1), δ(s2)) = C(s1, s2), whereC : D×D → R≥0 is
a positive definite covariance function which only depends
on the differences1−s2. This assumption is valid for spatial
fields which do not exhibit abrupt changes in characteristics,
such as temperature fields over a relatively small region, and
is often used as an experimental first step. In the examples
in this review, we assume second-order stationarity.

In the discussion so far, we have left out the notion that the
field may evolve in time. One simple way to treat a dynamic
field is to use the standard spatial methods and treat time as
another dimension. This is particularly useful when the goal
is to predict the value of the field at unsampled locations
over a continuous time domain. If both the samples and the
predictions are to be made at discrete intervals, an alternative
approach may be more appropriate, as we discuss next.

IV. D ISTRIBUTED ESTIMATION

Here, we discuss the problem of incorporating newly
collected samples into the spatial field estimation done by
a network of mobile agents following [25]. Our objective
is to provide individual agents with local representations
of the spatial field that are statistically consistent with the
sampled data and take into account nontrivial correlation
effects among samples. At the same time, we are interested in
accomplishing this in an online and distributed fashion. Once
in possession of an accurate representation of the spatial
field, each agent can use this information for motion plan-
ning, depending on its overall objective. Here, we illustrate
this idea in a scenario where the network is interested in
finding the maxima of a physical process of interest.

When samples are available at a single time instant, the
posterior predictive distribution is given by (2). When sam-
ples are available at several time instants, one can extrapolate
these estimators using the so-called Kriged Kalman fil-
ter [26], [27]. Assume the random field is dynamic modeled
as a spatio-temporal process of the form

Z(s, k) = f(s)Tβ(k) + ν(s, k), (5a)

f(s)Tβ(k) = b(s)Tβ(k − 1) + η(s, k), (5b)

where (s, k) ∈ R
d × Z>0. Let us describe each one of

the elements in these equations. The form ofZ is the
same as the universal kriging model described above, except
that β and ν now evolve with time. The functionsb(s) =
(b1(s), . . . , bm(s))T ∈ R

m determining the evolution ofβ
are assumed to be known. Bothν andη are stationary spatial
fields that exhibit temporal variability but have no temporal
dynamics associated with them. Formally, both are zero-
mean Gaussian random fields with separable covariance

Cov(ν(s, k), ν(s′, k′)) = Cν(s− s′) δ(k − k′),

Cov(η(s, k), η(s′, k′)) = Cη(s− s′) δ(k − k′),

whereδ denotes the Dirac delta function. Note that bothν
andη are uncorrelated in time. We assume that the functions
Cν , Cη : R

d → R≥0 have finite ranger ∈ R>0.
After some manipulations, we can combine the equations

that we obtain from (5b) with samples available at the agent
positionsp1(k), . . . , pn(k) at timek as

β(k) = H(k)β(k − 1) + J(k)η(k), (6)

where, for convenience, we have introduced the notation
H(k) = J(k)B(k), J(k) = (F(k)T

F(k))−1
F(k)T , and

B(k) = [b(p1(k)), . . . , b(pn(k))]T ∈ R
n×m,

F(k) = [f(p1(k)), . . . , f(pn(k))]T ∈ R
n×m,

η(k) = (η(p1(k), k), . . . , η(pn(k), k))T ∈ R
n.

Notice that the matricesH and J driving the evolution of
the parameterβ change from one time instant to another
only if agent positions change. LetΣν(k) ∈ R

n×n denote
the covariance matrix of samples made at timek, and let
Ση(k) ∈ R

n×n denote the covariance matrix ofη(k).
The natural Bayesian solution for making predictions

about the spatial field at timek ∈ Z>0 is to use the
conditional distribution ofZ given the data up to timek
and the parameterβ, but marginalizing over the posterior
distribution ofβ given the data up to timek. This viewpoint
also allows us to integrate into the picture prior information
on the distribution ofβ. We describe this next.

A. Sequential parameter estimation via Kalman filtering

With the model (6), the parameterβ can be optimally
predicted via a Kalman filter. Here, instead of considering the
usual Kalman filter recursion equations, we use the equiva-
lent information filter formulation, see for instance [28].

Assumeβ is initially distributed according to a multivari-
ate normal distributionβ(0) ∼ Np(β0,Ξ). Givent, s ∈ R≥0,
let β̂(t|s) denote the estimator ofβ at time t with data
collected up to times, and letP (t|s) denote the associ-
ated mean-squared error. The usual Kalman filter equations
are written in the variables(β̂(k|k − 1), P (k|k − 1)) and
(β̂(k|k), P (k|k)). Instead, we define

â(t|s) = P (t|s)−1β̂(t|s),

and write the information filter equations in the variables
(â(k|k−1), P (k|k−1)−1) and(â(k|k), P (k|k)−1). Initially,
â(0|0) = Ξ−1β0 andP (0|0)−1 = Ξ−1.

The information filter equations have two steps.
Prediction: Using (6), the one-step-ahead prediction at

time k ∈ Z>0 with data collected up to timek − 1 is

â(k|k − 1) =

P (k|k − 1)−1H(k)P (k − 1|k − 1)â(k − 1|k − 1),

with information matrix

P (k|k − 1)−1 =

(H(k)P (k − 1|k − 1)H(k)T + J(k)Ση(k)J(k)T )−1.



Correction: Under our sensor error measurement model,
the optimal prediction at timek ∈ Z>0 with data collected
up to timek can be recursively expressed as

â(k|k) = â(k|k − 1) + F(k)T (Σν(k))−1y(k),

with information matrix

P (k|k)−1 = P (k|k − 1)−1 + F(k)T (Σν(k))−1
F(k),

wherey(k) ∈ R
n denotes the data collectedat timek.

B. Sequential simple Kriging

For k ∈ Z>0, let y(k) denote the samples taken at timek.
Let y(1:k) = (y(1), . . . , y(k)) denote all of the data available
up to timek. For s ∈ R

d, let

c(s, k)T = (Cν(s− p1(k)), . . . , Cν(s− pn(k))),

∇c(s, k)T = (gradCν(s− p1(k)), . . . , gradCν(s− pn(k))).

The covariance structure of the spatial field has some im-
portant consequences. On the one hand, theith components
of c(s, k) and ∇c(s, k) can only be non vanishing if
‖s − pi(k)‖ ≤ r. More importantly, the decorrelation in
time of the spatial field and the sensor errors imply that
only the observations collected at exactly timek play a role
in the construction of the conditional predictive distribution
of Z and ∇Z with observations collected up to timek.
Accordingly, conditionally on the data collected up to timek
and the parameterβ(k), the posterior predictive distribution
is given by (1), with mean

f(s)Tβ(k) + c(s, k)T
Σν(k)−1(y(k) − F(k)β(k)),

and varianceK(0) − c(s, k)T
Σν(k)−1c(s, k).

C. Distributed Kriged Kalman filter

The Bayesian universal Kriging predictor of the spatial
field, which corresponds to the posterior predictive distribu-
tion conditional on the data, can be obtained in an analogous
way as explained above for the simple kriging case, and
hence we do not reproduce it here.

Once the statistical basics are covered, the challenge liesin
developing distributed methods that allow individual agents
to compute the parameter estimates and posterior predictive
distributions in an online fashion. In these computations,
there are several matrix-vector multiplications that involve
quantities that are spatially distributed across the network. To
further complicate things, some of these expressions involve
the inverse of sparse correlation matrices, which are not
sparse any more. Here, we do not provide a comprehen-
sive account of the distributed methods used, but rather
focus on illustrating the main idea in the computation of
F(k)T (Σν(k))−1y(k), necessary to carry out the correction
step in the parameter estimation. Note that the quantity we
are interested in computing can be expressed as

F(k)T (Σν(k))−1y(k) =

n
∑

i=1

rowi(F(k))zi(k), (9)

wherez(k) = (Σν(k))−1y(k) solves the linear equation

Σν(k)z(k) = y(k). (10)

In this way, we have decomposed the computation of the
quantity F(k)T (Σν(k))−1y(k) into two parts: an aggrega-
tion of n quantities, one per agent, and the solution of a
linear equation determined by a sparse matrix.

Each agenti has access to rowi(Σν(k)), y(k)i and to
rowi(F(k)). Knowledge of the first two quantities is all
that is needed to execute a distributed Jacobi-overrelaxation
(JOR) algorithm [29] to solve (10) that provides agent
i with knowledge of the quantityzi. This can then be
combined with the knowledge of rowi(F(k)) to solve (9)
via a distributed averaging algorithm.

Similar ideas can be invoked to produce a fully distributed
implementation of the Kriged Kalman filter, see [25] for
details. Remarkably enough, this procedure also works for
computing the posterior predictive distributions of the gradi-
ent random field associated withZ. Mobile agents, equipped
with this information, can then perform a variety of motion
coordination tasks with direct relevance to the random field,
see Fig. 1 for an illustration.
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Fig. 1. Distributed gradient ascent cooperative strategyṗi(t) =
E(∇Z(pi(t), t) | y(1:t)), i ∈ {1, . . . , n}, implemented by a robotic sensor
network of n = 14 agents. Individual agents converge asymptotically to
the set of expected critical points of the spatial field. The field has mean
µ(s) = .3+1.2 e−‖s−(.25,.75)‖2

+1.1 e−‖s+(1.25,1.25)‖2

and covariance
structure determined byK(s) = e−5‖s‖2

for ‖s‖ ≤ r = 1.75. We depict
the contour plot of the posterior mean. Initially agents knowβ ∼ N3(0, I3).
The communication radius isR = 2.75, the control authority of each agent
is bounded byumax = .25, and the noise sensor error variance isσ = .15.
The black disks depict the (randomly generated) initial agent positions and
the gray disks depict the agent positions after38 seconds.

V. UNCERTAINTY-BASED SAMPLING STRATEGIES

Whether the goal of the experiment is field prediction or
model inference, a statistical model provides an estimate,
along with methods to quantify the uncertainty in the es-
timate. This uncertainty depends in part or in whole on
the locations at which the samples are taken. Imagine an
experiment in which all data come from the same location,
as opposed to one in which they are spread out over a region
of interest. If the goal is to interpolate the field over the
region, the former experiment would yield a large amount
of uncertainty. The process of choosing those locations to
take samples in order to minimize the resulting uncertainty
is known asoptimal design[10].



The concept of minimizing uncertainty can have various
meanings, depending on the goals of the experiment. For
example, if predictions are to be made at unsampled locations
about the region, the predictive variance provides a measure
of the uncertainty associated with prediction at a given
location. It might be desirable to minimize the average or the
maximum of the predictive variance over the region. If the
objective is inference, the entropy or the generalized variance
provides a measure of the information about the model.

A. Optimal static deployment under near independence

Here we follow [30] to consider the problem of where
to place the agents of a mobile network in the case that
a single sample is to be taken by each. We assume that the
mean of the process is known, and we study the limiting case
of near independence between distinct locations. In [31] an
assumption of near independence was suggested as a first
step in gathering data in a relatively large space. The results
of that work show that the solution considered here is both
elegant and technically challenging. We make no assertion
that a correlated spatial field is accurately modeled by near
independence. This asymptotic device merely provides an
analytical framework that justifies the intuitive notion of
space filling design, which is surprisingly difficult to prove
optimal in general. It should also be noted that without the
near independence assumption even the simplified task of
choosing from discrete locations is NP-hard.

In [31], the authors consider the problem of minimizing
the maximum uncertainty over a discrete space. Minimax
configurations, which minimize the maximum distance to the
nearest agent from any point in space, were shown asymp-
totically optimal in the limit of near independence. Here, we
make the connection to Voronoi partitions. The work [32]
defines circumcenter and incenter Voronoi configurations
and proposes distributed coordination algorithms which are
guaranteed to bring the network to these configurations.

Our first optimality criterion is the maximum posterior
predictive variance as a function of network configuration,

M(P ) = max
s∈D

σ2
SK(Z(s);P ) (11a)

This gives a measure of the worst case simple kriging
estimate over the region. We study its critical points asymp-
totically, in the limit of near independence. A second op-
timality criterion is the extended prediction varianceE(P )
of the estimator, as a novel form of D-optimality, where we
introduce a method for applying this criterion to a bounded
region. Letγ(pi) denote the reflection of locationpi over
the nearest boundary ofD, and we write,

E(P ) = − |Σν(p1, . . . , pn, γ(p1), . . . , γ(pn))| . (11b)

We study the critical points of this function within the same
asymptotic framework as the first. Our main results show
that circumcenter, respectively incenter, Voronoi configu-
rations are asymptotically optimal for the maximum error
variance over the environment, respectively the extended
prediction variance. In general, these objective functions
pose nonconvex and high-dimensional optimization prob-
lems. In addition, the first criterion is nonsmooth. For these

reasons, it is difficult to obtain exactly the configurations
that optimize them. Our results are relevant to the extent
that they guarantee that, for scenarios with small enough
correlation between distinct points, circumcenter and incenter
Voronoi configurations are optimal for appropriate measures
of uncertainty. The network can achieve these desirable
configurations by executing simple distributed dynamical
systems. Before presenting these results, we introduce the
notion of multicenter Voronoi configurations.

Here we present some relevant concepts on Voronoi
diagrams [33], [34]. TheVoronoi partition V(P ) =
(V1(P ), . . . , Vn(P )) of D generated byP is defined by

Vi(P ) = {s ∈ D | ‖s− pi‖ ≤ ‖s− pj‖, ∀j 6= i} .

EachVi(P ) is called aVoronoi cell. Two pointspi andpj are
Voronoi neighborsif their cells share a common boundary.
Given a polytope,S, let CC(S) denote thecircumcenterof
S, that is, the center of the smallest-radiusd-sphere enclos-
ing S. The incenter set ofS, denoted byIC(S), is the set
of the centers of maximum-radiusd-spheres contained inS.
We say thatP is amulti-circumcenter Voronoi configuration
if pi = CC(Vi(P )), for all i ∈ {1, . . . , n}, and thatP is
a multi-incenter Voronoi configurationif pi ∈ IC(Vi(P )),
for all i ∈ {1, . . . , n}. Fig. 2 shows examples of these
configurations. A multi-incenter Voronoi configuration is

(a) (b)

Fig. 2. Examples of (a) a multi-circumcenter and (b) a multi-incenter
Voronoi configuration.

isolated if it has a neighborhood inDn which does not
contain any other incenter Voronoi configuration. We define
the indexN(P ), of a configurationP , to be the cardinality
of the set of minimum pairwise inter-agent distances, i.e.,

N(P ) =
∣

∣

∣
argmin
pi 6=pj

{1

2
‖pi − pj‖,d(pi, ∂D)

}∣

∣

∣
.

For the main results of the paper, summarized below, we
considerM(k), respectivelyE(k), to denote the functionM,
respectivelyE , with the correlation raised to thekth power.
As k increases, the correlation between distinct locations in
D decreases in strength, but retains some aspects of the shape
of the correlation function (e.g., range and smoothness).

• LetPmcc ∈ Dn be a multi-circumcenter Voronoi config-
uration. Then, ask → ∞, Pmcc asymptotically globally
optimizes M(k), that is, M(k)(Pmcc) approaches a
global minimum.

• Let Pmic ∈ Dn be a multi-incenter Voronoi configura-
tion with lowest index. Then, ask → ∞, Pmic asymp-



totically globally optimizesE(k), that is, E(k)(Pmic)
approaches a global minimum.

The work [32] describes simple, distributed algorithms which
may be used to steer a mobile network towards these multi-
center Voronoi configurations. Fig. 3 shows the results of
some illustrative simulations. In each case, we plot the
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Fig. 3. Value of (a)M(k) for multi-circumcenter configuration,
and (b) E(k) for multi-incenter configuration. The multicenter
results are depicted with the (solid) line, and compared against
an approximated global minimum (dashed) arrived at by gradient
descent for each value ofk, and random (dotted) configurations of
5 agents for increasingk. The covariance function is exponential.

objective function as calculated with the given configuration
as a function of the covariance exponentk. We compare
the multicenter configurations against a randomly chosen
configuration, as well as against a dynamic approximate local
minimum. This approximate local minimum is arrived at
by running a gradient descent algorithm for each value of
k. Thus the dashed lines in the figure represent a different
configuration for each value ofk.

B. Adaptive design by projected gradient descent

When the goal of the experiment is to find the besttra-
jectoriesfor the mobile robots to follow in order to optimize
sampling of a spatio-temporal random field, the problem
becomes even more challenging. In the existing literature,
a standard technique for choosing sampling locations is
sequential optimal, or adaptive design. This amounts to a
one step ahead, greedy optimization method where sample
locations at the next step are chosen based on information
known so far. In the works [35], [36], [37], we present a
framework whereby a hybrid network of static nodes and
mobile agents can sequentially optimize sampling for an
approximation of the random field using a distributed version
of the projected gradient descent technique. In these works,
we assume that samples are to be taken overD and some
interval of time (0, T ). We call this region of space-time
De ⊂ R

d+1. Assume that the mobile robots take samples
synchronously at discrete timestepsk ∈ {1, . . . , T }, T ∈ N.
Let x(1:k) denote the vector of space-time locations at which
samples have been taken up to timestepk. Between timestep
k andk + 1, Ri moves according to the discrete dynamics

pi(k + 1) = pi(k) + ui(k),

where ‖ui‖ ≤ umax for some umax ∈ R>0. The robots
collaborate with the static nodes to determine the control
vector ui(k). We assume a limited communication radius,
R ∈ R>0, for the robotic agents, with the restriction,

R ≥ max
i∈{1,...,m}

{CR(Vi(Q))} + rs + umax, (12)

whereCR(·) denotes thecircumradiusof a polytope, andrs

is a maximum radius beyond which the covariance is zero.
This restriction ensures communication between each robot
and nodes whose Voronoi regions are correlated (e.g., Fig 4).

p1

q4

q2

q3

q5q1

Fig. 4. R1 is within correlation range (green circle) ofV1(Q) and
V5(Q), so it can communicate withS1 andS5.

We use two different uncertainty-based optimality criteria,
and examine them with all of the models described in Sec-
tion III. The treatment in all cases follows a similar pattern.
The optimality criteria involve minimizing or maximizing at
timestepk a function of the positions of thenext (k + 1st)
set of measurements. Specifically, we try to

• maximize theentropy of the joint posterior predictive
distribution at the new sample locations, or

• minimize theaverageover the predictive region of the
posterior predictive variance.

In each case, the finite covariance radius allows an approx-
imation of thecentralizedobjective function which may be
distributedover the hybrid network as follows.

1) Maximizing posterior predictive entropy:The posterior
predictive entropy is a measure of the information which will
be provided about the model by a set of new locations if
samples are taken at those locations. Note that the predictive
entropy at sample locationsx given no previous datais re-
lated to the generalized variance (Section V-A) of a predictor
given samples at those locations (i.e. after measurements
have been taken). We would like to choose sample locations
at stepk + 1 such that the posterior predictive entropy at
those locations given all previous data is at a maximum. The
centralized version of the entropy criterion does not depend
on the actual values of the samples to be taken at timestep
k + 1. We approximate the entropy criterion with,

H(k)(P ) = log det Υ −
1

2
tr
(

(K − I)
2 )

,where

Υ = K
−1
0 + FK

−1
F

T .

The value ofH(k) and of its gradient atP may be calculated
using a combination of the distributed average consensus and
distributed JOR algorithms.

2) Minimizing average predictive variance:The next cri-
terion involves minimizing the functionA(k) defined as
the average over the space-time prediction region of the
posterior predictive variance given all information up to and
including timestepk + 1. This objective function presents
two problems to computation. Since the kriging models are
contained within it, we will use the model from Section III-B
to illustrate. The first problem is the data which have not been
sampled yet. Note that the quantityϕ(y(1:k+1), s(1:k+1))



depends on all data taken up to and including timestep
k + 1. Since those measurements have not been taken yet,
this can not be evaluated. We avoid this problem by using
a least squares estimate of the offending data, given the
samples wehave taken. The resulting approximation is
ϕ̂(y(1:k), s(1:k+1)). The second problem with this optimality
criterion is that it can not be calculated in a distributed way.
The variance of a prediction at any location may depend in
a nontrivial way on measurements taken all over the region.
To work around this problem, we break up the average into
a sum of integrals over the Voronoi regionsVj(Q). The
function A(k)(P ) may then be approximated by a sum of
the form Ã(k)(P ) =

∑m
j=1 Ã

(k)
j (P ), where,

Ã
(k)
j (P ) =

ϕ̂(y, s)

γ

∫

T

∫

Vj(Q)

φ
(

(s, t),C(1:k+1)
S (j, P )

)

ds dt,

where C(1:k+1)
S (j, P ) denotes all of the sample locations up

to and including timestepk + 1 which are within spatial
correlation range (rs) of Vj(Q). Fig. 5 illustrates the elements
required for calculatingÃ(k)

j (P ).
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Fig. 5. Elements going into calculation of̃A(k)
1 (P ): (a) spatial

region of integration,V1(Q); and (b) robots whose locations are in
C(1:k+1)

S (1, P ) (in red). Green circles represent correlation range.

3) Distributed adaptive design algorithm:Between
timestepk andk+1, we restrictRi to a convex region,Ω(k)

i ,
which takes into account the maximum movement rate and
ensures that agents maintain a minimum separation distance
(e.g., Fig. 6). The total region of allowed movement for the
network of mobile robots is thenΩ(k) =

∏n

i=1 Ω
(k)
i . With

ω

2
Ω1

p1

p2

p3

Fig. 6. Example of allowed movement region forR1.

this compact region, the network may use the following steps
to perform a distributed version of projected gradient method
at timestepk to optimize the objective function. We use
gradientascentof H(k) for this example, but the steps for
gradientdescentof Ã(k) are similar. An informal description
of the steps taken by the network of static nodes to execute
the gradient ascent follows,

• calculateH(k)(P ) and the value of its gradient,∇H(k),
atP using distributed average consensus and distributed
JOR

• run a distributed version of an Armijo-type linesearch
to find a stepsize,α

• find the projection,P ′, on Ω(k) of P + α∇H(k)

• repeat above withP = P ′, until |H(k)(P ′) −
H(k)(P )| = 0.

Note that these steps are meant in a distributed way across
the network of static nodes. Thus all information is not
known to all nodes at once. For example,Sj will only know
the partial derivatives ofH(k) corresponding to the robots
within communication range ofVj(Q). Using this projected
gradient ascent algorithm, the network can be guaranteed that
the location chosen for the next set of measurements is at
a local minimum ofH(k) over Ω(k). The overall adaptive
design algorithm for the network then follows these steps:

• at timestepk ∈ {1, . . . , T}, Ri executes the following
– take sample
– send sample and location to nearby nodes
– receive next location
– move to next location before next timestep

• at timestepk ∈ {1, . . . , T}, Sj executes the following
– collect samples and locations from nearby robots
– using the method described above, run the dis-

tributed gradient ascent algorithm to find the next
sample locations

– send resulting next location to each robot inVj(Q)

In simulation, we compared our gradient method against
two a priori methods. The first was a static configuration
where the robots spread out around the field and remained
in position. The second was a naive lawnmower approach, in
which the robots began evenly spaced in the vertical direction
and marched back and forth horizontally across the region. In
all cases, some of the agents dropped communication during
the course of the simulation to illustrate the robustness to
failure of the gradient approach. Fig. 7 shows the resulting
objective function values as a function of timestep.
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Fig. 7. Objective values as a function of timestep (k) with the
static (triangle), lawnmower (diamond), and gradient descent (star)
approaches. (a) Objective functioñA(k), run with 5 static nodes and
10 robotic agents. (b) Objective functionH(k), run with 10 static
nodes and 20 robotic agents. The covariance function is exponential.

VI. T HE CHALLENGE OF DISTRIBUTED ESTIMATION AND

CONTROL

In mobile robotic networks, it is well known that speed
and robustness can be improved through cooperative control.
To extend these benefits to the paradigm of sensor networks
using random field models, guidelines must be established
for data collection and representation in such distributed
systems. Here, we have reviewed work that provides a basis



for this study, but there is much more yet to be explored.
We briefly outline some exciting research topics below.

Within the context of the Gaussian process model dis-
cussed here, asymptotic results similar to those in SectionV-
A may be useful in finding optimaltrajectories for sam-
pling dynamic random fields. Other distributed optimization
methods and criteria should be examined, as well as the
asynchronous sampling regime. In addition, the statistical
assumptions within the Gaussian process model should be
challenged. Other established spatial models in statistics
should also be examined with an eye towards distributed im-
plementation, such as for instance Gaussian Markov random
fields and graphical models.

A comprehensive solution to the distributed approach to
data collection in random fields should include development
of new statistical models which take the distributed natureof
the problem into account directly. Recent work in Bayesian
statistics [9], [38] has focused on the use of hierarchical
models to represent non-stationary or even discontinuous
random fields. We believe that similar techniques may be
used to combine accurate process models with the distributed
operational context required for cooperative control.

VII. C ONCLUSIONS

We have motivated the need for statistically aware dis-
tributed algorithms for the estimation and control of robotic
sensor networks. This exciting area of research draws from
cutting edge spatial statistics and the relatively new fieldof
distributed computation and control. We have outlined some
of the problems faced and given detailed examples of recent
work on distributed data fusion and distributed sequential
optimal design. We believe the coming years will see a fertile
activity on this area.
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