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Abstract— Networks of environmental sensors are playing an
increasingly important role in scientific studies of the ocean,
rivers, and the atmosphere. Robotic sensors can improve the-ef
ficiency of data collection, adapt to changes in the environment,
and provide a robust response to individual failures. Complex
statistical techniques come into play in the analysis of environ-
mental processes. Consequently, the operation of robotic sears
must be driven by statistically-aware algorithms that make
the most of the network capabilities for data collection and
fusion. At the same time, such algorithms need to be distributed
and scalable to make robotic networks capable of operating in
an autonomous and robust fashion. The combination of these
two objectives, complex statistical modeling and distributed
coordination, presents grand technical challenges: traditional
statistical modeling and inference assume full availability of all
measurements and central computation. While the availability
of data at a central location is certainly a desirable property, the
paradigm for distributed motion coordination builds on partial,
fragmented information. This work surveys recent progress at
bridging the gap between sophisticated statistical modeling and
distributed motion coordination.

I. INTRODUCTION

Jorge Cas

and the results give us information about the model (or about
future coin tosses). For this reason, stochastic modefing i
sometimes calledata driven as opposed to theodel driven
deterministic modeling. We focus on data driven models, and
particularly their explicit representations of uncertgin

Our treatment here deals with two important tasks faced
by a network of autonomous sensors: choosing the locations
to take samples and incorporating those data into the global
model. There is a rich literature on the use of model
uncertainty to drive the placement of sensing devices [6],
[71, [8], [9], [10], [11]. Most of this research has focused
on choosing from discrete sets of hypothetical sampling
locations, and until recently all of it has made use of
centralized computational techniques. Likewise, the wark
data fusion [12], [13], whether for field estimation or model
inference, mostly concentrates on centralized methodsevhe
access to all of the data is allowed. In cooperative control,
various works consider mobile sensor networks performing
spatial estimation tasks. [14] introduces performanceioget
for oceanographic surveys by autonomous underwater vehi-

Scientific studies of environmental phenomena often ireles. [15] considers a robotic sensor network with cerxteali

volve a data collection stage. Samples are taken of a dyatiatontrol estimating a static field from samples with both
distributed process of interest, such as a temperaturedieldsensing and localization error. In [16], a deterministicdeio
chemical concentrations. Combining these samples withis used, where the random elements come in the form
model, the scientist may make predictions about the process unknown model parameters, and localization error is
at unmeasured locations, or inference about the quality amtluded. The work [17] uses a Gaussian process model
accuracy of the model. This work reviews some results whicwhere all information is globally available via all-to-all
lay the groundwork for cooperative control of mobile segsin communication. [18] considers optimal sampling trajee®r
devices based on statistically motivated objectives, wthen from a parameterized set of paths. [19] discusses the trgcki
underlying process is modeled as a random field. of level curves in a noisy scalar field.

Physical process models may be roughly divided into Here we present recent work on spatial estimation tasks
two categories: deterministic and stochastic. Deterrtiinis that require complex statistical modeling combined with
models are often coupled with a stochastic measuremetistributed computation and control. Our aim is to motivate
error term (see, e.g., [1], [2], [3], [4]), but require thatfurther research at the intersection of these excitingsarea
model parameters and initial conditions be known to a high
degree of accuracy [5]. When this can not be guaranteed, or Il. NETWORK ARCHITECTURE
when the parameter space of the deterministic model hasin the context of environmental sampling, the term “sensor
high dimension, it may be desirable to treat the proceswtwork” may describe anything from a small number of
itself as in some degree unknown, using a stochastic procdsed position rainfall monitors in the forest to a complex
model. A classic example is a fair coin toss. It is clear thagroup of static flotation devices and mobile robots in the
under extremely strict monitoring of the initial conditon ocean. The literature on stochastic spatial modeling has
and model parameters, the interested physicist could lgxactraditionally dealt with sensors whose location is fixed in
model the entire trajectory of the coin, culminating initsefi  space. However, the ability to move about the field and
resting position. The model which is usually used, howevetake samples at desired locations has obvious benefits. A
is to assign a simple probability to each outcome. In thigetwork in this context is a group of agents connected by
context, it is easy to allow for the possibility that the coinwired or wireless communication paths. For our purposes, we
is not “fair”. We toss the coin a few times, collect the dataconsider networks comprised of two types of agents: static

and mobile. The term “mobile agents” describes a class of
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are assumed to be minimal. By “static agents”, we refas not known, but can be treated as an unknown expansion
to fixed position computational devices which may or mayn a vector ofp € N known basis functions, we write
not take samples. Because they are static and do not require u(s) = f(s)” 3, wheref(s) = (fi(s),..., f»(s))%,

energy to move arognd, they may carry more equipment a'?;\%d f(s) is known for alls € D. The posterior predictive is

thus perform more in the way of computation and storagg ain normal with mean and variance, respectively

tasks. In some contexts, slower moving large vehicles ma ok ) ( CFE-'t )T,Z) P ,(2a)
2uKk(so;s) = (€ 0 v Y,

be considered static as compared to the faster mobile agents
Some limited range communication is also assumed for both o3k (Z(s0);8) = Var[Z(so)] — T2, et
types of agents. Distributed solutions to global problemes a Tp-1 2b
: e + & E7 &. (2b)

therefore defined on theommunication graplf the system. xp . ) .

Sensing technology may also vary in different scenariog!ere FT < _}% P s Xthe matrix whoseith row 1S £(s:),
Agents may have the ability to take point measurement& = F' 3,7 F € R?*?, and¢o = f(so) —F%,"c. These
or broader area measurements, with large or small err§fSt two examples of predictive distributions are well kmow
margins. In the case of area sensors, the measurement effofh€ literature under various namesriging [12], [5] is a
may itself be a distribution as opposed to a number. In eithfandard geostatistical technique in which the distrdl)
the point or area measurement case, one common practic€responds teimple krigingand the distribution (2) corre-
to treat the sensors as identical, with an i.i.d. (independeSPOnds tauniversal kriging
and identically distributed) error terr_n. B. Uncertainty in the covariance

In the examples below, we deal with networks of agents in \ypen the covariance is treated as known, it is common

p . .
a convex polytope> R, d € N. We will call the mobile 5 tice to add a measurement error term to the diagonal
robots{ R, ..., Ry}, n € N, and denote their locations by gjements of the covariance matrix. This precisely corre-

P= (.pl’ .-, pa)" € D". Where static nodes are mem'onedsponds to the identical sensor error samples mentioned'in ou

we will callj'Ehem {51,...,9m}, m € N atlocationsQ = gescription of the network architecture in Section 1. I&th

(q15---5qm)" € D™ covariance of the field is not known, however, few analytical
1. A BAYESIAN APPROACH TO SPATIAL MODELS results exist which take the full uncertainty into accoie

Let Z denote a random spatial process taking values Ochontinue this discussion by presenting a model [21], [22]
D. Lety = (y ym)L € R™ bem € N samples taken which allows for uncertainty in the covariance process and
. = 1s---5sYm

from Z at corresponding locations— ( )T e pm still produces an analytical posterior distribution. Wewane
with s; — (s, ¢ )pi c {1g m}i(;végr?thleé;%lata vari(;us that the samples have the-variate normal distribution,
i = iy b1 )y PR . y

; T 2
models allow for prediction ofZ at any point inD, with y~ N (F B,o K) ®)

associated uncertainty. For problems which are driven biyere 3 is unknown,c? € R, is the unknown variance

prediction uncertainty, such as choosing the locationake t parameter, ankK is a correlation matrix whosg jth element

samples, it should be modeled as accurately as possible. is K;; = Corly;, y;]. To ensure an analytical posterior, we
In a Bayesian setting, the prediction takes the form of assume conjugate prior distributions for the parameters,

distribution, called the posterior predictive [20]. If tiield Blo? ~ N, (8o, 7 Ko), (4a)

is modeled as a Gaussian process, we may write, 02 ~ T (0)2,9v/2). (4b)

Z(s0) = ulso) + v(s0), The notation3|o? denotes the conditional distribution of
wherep : D — R denotes the mean and: D — R is giveno?. Here3y € RP, Ky € RP*P, andy,v € Ry, are
a zero mean random field. Depending on the level of priatonstants, known agining parameterdor the model, and
knowledge, different models may be used which result ilr—!(q,b) denotes the inverse gamma distribution with shape
different predictive distributions, although there is abways parameters and scale parametér (see, e.g., [23]). Under
a guaranteed analytical form. We next describe some modetds model, the posterior predictive distribution at Idoat
from the literature based on different prior knowledge. sg € D is a shifted Students t distribution (see, e.g., [23])
with v = v+ m + 1 degrees of freedom, with expectation,

A. Krigin ,
e | ElZly s =B KKy
If the covariance of’ is known, the mean of the posterior : 1A 1
predictive distribution corresponds to tiiest Linear Un- fl=E+K; ) Ef+{I - (E+K;) E)b,

biased Predictorand its variance to the mean-squared Prayhere 4 = E-'FK- !y, andk = Corly, Z] € R™. The
diction error. If the mean is known, the posterior predetiv posterior predictive variance is given by
distribution of Z at locations, given sampleg; is normal o(y, s)
with mean and variance, respectively, Var[Zly, s] = 5 o(s0; 5)
P . _ T -1
2 oot m ) e B 7 Wm0 s) = conz, 7] - KTK Tk + ¢ (K +F) g
o5k(Z(s0);8) = Var[Z(sg)] —¢" X, e (1b)

1 NT -
. : : ,8) = ~(y—-F"3) K'(y—F"
Here pu is them-vector whoseith element isu(s;), ¢ is the Ply,8) = Yu+ 2 (y ﬁ) (y ﬁ) +

vector whoseith element isCov[v(s), y:], o, = Z.,(s) € 1 ( _ )T Ko+ E-1)"" ( B )
R™*™ s the covariance matrix of the vectgr If the mean t5 (P (Ko+E7) (5 ~ho)-




The posterior predictive variance can be separated into  Cov(v(s,k),v(s', k")) = C,(s — s") §(k — k'),

%, which decreases witn; ¢(y,s), which results from Cov(n(s,k),n(s', k') = Cy(s — ') 6(k — k'),
the uncertainty ino2, and ¢(so;s), which is the posterior
predictive variance conditional os?. where§ denotes the Dirac delta function. Note that both

A key component of spatial models is the covarianc@nd7 are uncorrelated in time. We assume that the functions

function [24]. A particularly well studied class of covari- Cv, Cy : R — Rxq have finite range € Rx.o. _
ance functions exhibisecond-order stationarityA spatial ~/After some manipulations, we can combine the equations
random proces$ on D C R¢ is second-order stationary that we obtain from (5b) with samples available at the agent
if it has constant mean, and its covariance is of the forrRositionspi(k),...,p,(k) at timek as
Cov(8(s1),8(s2)) = C(s1, 52), whereC': D x D — Ry is Bk) = Hk)B(k — 1) + J(k)n(k), 6)
a positive definite covariance function which only depends ] i i
on the difference; — s,. This assumption is valid for spatial Where, for convenience, we haveTlntrodli?ed trgpe notation
fields which do not exhibit abrupt changes in charactessticH (k) = J(k)B(k), J(k) = (F(k)"F(k))"'F(k)", and
§uc?t as temgerature fields. overtaI rfgla:ivsly S|mat|r|1 regiod, aln B(k) = [b(p1(k)),..., b(pn(k))]T € R™
is often used as an experimental first step. In the examples _ T _ mnxm
in this review, we assume second-order stationarity. F(k) = [E(pr(k)). .. £(pa(R))]" € RT ’n

In the discussion so far, we have left out the notion thatthe (k) = (1(p1(K), k), ..., n(pn(K), k)" € R™.

field may evolve in time. One simple way to treat a dynamiqstice that the matrice#f andJ driving the evolution of
field is to use the standard spatial methods and treat time @S, parameterd change from one time instant to another
another dimension. This is particularly useful when thelgoq)my if agent positions change. L&, (k) € R"*" denote

is to predict the value of the field at unsampled Iocationﬁ1e covariance matrix of samples made at tityeand let
over a continuous time domain. If both the samples and trgn(k) € R™*" denote the covariance matrix fk).

predictions are to be made af dis_crete interva|§, an afteena The natural Bayesian solution for making predictions
approach may be more appropriate, as we discuss next. about the spatial field at timé € Z-, is to use the

conditional distribution ofZ given the data up to timeé
and the parametef, but marginalizing over the posterior

Here, we discuss the problem of incorporating newlylistribution of 5 given the data up to timg. This viewpoint
collected samples into the spatial field estimation done K§#S0 allows us to integrate into the picture prior inforroati
a network of mobile agents following [25]. Our objectiveOn the distribution of3. We describe this next.
is to provide individual agents with local representation
of the spatial field that are statistically consistent witie t
sampled data and take into account nontrivial correlation With the model (6), the parametet can be optimally
effects among samples. At the same time, we are interesteddfedicted via a Kalman filter. Here, instead of considerireg t
accomplishing this in an online and distributed fashionc®n usual Kalman filter recursion equations, we use the equiva-
in possession of an accurate representation of the spati@nt information filter formulation, see for instance [28].
field, each agent can use this information for motion plan- Assumeg is initially distributed according to a multivari-
ning, depending on its overall objective. Here, we illura ate normal distributior(0) ~ N, (6o, E). Givent, s € Rx,
this idea in a scenario where the network is interested iet 5(¢|s) denote the estimator of at time ¢ with data
finding the maxima of a physical process of interest. collected up to times, and let P(¢|s) denote the associ-

When samples are available at a single time instant, tieéed mean-squared error. The usual Kalman filter equations
posterior predictive distribution is given by (2). When samare written in the variable¢3(k|k — 1), P(k[k — 1)) and
ples are available at several time instants, one can exatapo (5(k|k), P(k|k)). Instead, we define
these estimators using the so-called Kriged Kalman fil- a(t|s) = P(t|s) "' B(t]s),
ter [26], [27]. Assume the random field is dynamic modeled
as a spatio-temporal process of the form and write the information filter equations in the variables

A -1 P -1 it
R S e L
£(s)"B(k) = b(s)" Bk — 1) +n(s, k), (5b) The information filter equations have two steps.

Prediction: Using (6), the one-step-ahead prediction at
time k € Z~( with data collected up to timé — 1 is

IV. DISTRIBUTED ESTIMATION

i\. Sequential parameter estimation via Kalman filtering

where (s,k) € RY x Z~q. Let us describe each one of
the elements in these equations. The form Dfis the
same as the universal kriging model described above, excepti(k|k — 1) =

that 5 and v now evolve with time. The functiona(s) = Plklk — 1) "H(k)P(k — 1|k — Da(k — 1)k — 1),
(b1(8), ..., bm(s))T € R™ determining the evolution off

are assumed to be known. Bathandy are stationary spatial With information matrix

fields that exhibit temporal variability but have no tempora Plklk — 1)
dynamics associated with them. Formally, both are zero- T S
mean Gaussian random fields with separable covariance (H(F)P(k— 1|k = 1)H (k)" + J(k)Zq(k)J (k)") "



Correction: Under our sensor error measurement modeln this way, we have decomposed the computation of the
the optimal prediction at timé € Z-, with data collected quantity F(k)T (X, (k))"'y(k) into two parts: an aggrega-

up to timek can be recursively expressed as tion of n quantities, one per agent, and the solution of a
a(klk) = a(klk — 1) + F()T (S, (k) Ly(k), linear equation determined by a sparse matrix.
= Each agenti has access to roW, (k)), y(k); and to
with information matrix row;(F(k)). Knowledge of the first two quantities is all
P(klk)™" = P(klk — 1)~ + F(k)T (2, (k)" 'F(k), that is needed to execute a distributed Jacobi-overretaxat
(JOR) algorithm [29] to solve (10) that provides agent
wherey (k) € R™ denotes the data collected time k. i with knowledge of the quantityz;. This can then be

combined with the knowledge of rq¢F (%)) to solve (9)
via a distributed averaging algorithm.
For k € Zo, let y*) denote the samples taken at tire Similar ideas can be invoked to produce a fully distributed

B. Sequential simple Kriging

Let y(1k) = (y(l)’ o ,y(k)) denote all of the data available implementation of the Kriged Kalman filter, see [25] for
up to timek. For s € R?, let details. Remarkably enough, this procedure also works for
(s, k)T = (C (s — pr(k)) Cy (s — p(k))) computing the posterior predictive distributions of thadjr

- ent random field associated with Mobile agents, equipped
Ve(s, k)" = (grad Cy(s — p1(k)), ..., grad Cy(s — pn(k)))- with this information, can then perform a variety of motion
psoordination tasks with direct relevance to the random field

The covariance structure of the spatial field has some i . . .
see Fig. 1 for an illustration.

portant consequences. On the one hand;tih@omponents
of ¢(s,k) and Ve(s,k) can only be non vanishing if
|s — pi(k)| < r. More importantly, the decorrelation in
time of the spatial field and the sensor errors imply that
only the observations collected at exactly tiln@lay a role

in the construction of the conditional predictive disttiba

of Z and VZ with observations collected up to time
Accordingly, conditionally on the data collected up to time
and the paramete?(k), the posterior predictive distribution
is given by (1), with mean

£(s)7B(k) + c(s, k)0 (k)7 (y(k) — F(k)B(K)),
and variancek (0) — c(s, k)X, (k) e(s, k).

C. Distributed Kriged Kalman filter

The Bayesian universal Kriging predictor of the spatial
field, which corresponds to the posterior predictive disiri o _ _ _
tion conditional on the data, can be obtained in an analogo§. 1.  Distibuted gradient ascent cooperative stratggyt) =

. . .. VZ(p;i(t),t) | y*+¥),i € {1,...,n}, implemented by a robotic sensor
way as explained above for the simple kriging case, anghiwork ofn — 14 agents. Individual agents converge asymptotically to
hence we do not reproduce it here. the set of expected critical points of the spatial field. Tleddfihas mean

Once the statistical basics are covered, the challengilies:(s) = -3:;1-2 ef”:(t')25*'75)”2 +15.”15tHe; “:“1-257125)\\2 and cove:jriar_]ce

developing distributed methOd.S that allow deVK.jual age.n fr:reuggur:;ufrtﬁc;{nc;??he r?gs(fe)rioremean. Iniggllifggsenqs kr}éjﬁ.]xgﬁo,igl)?t

to compute the parameter estimates and posterior preslictivhe communication radius i& = 2.75, the control authority of each agent

distributions in an online fashion. In these computationss bounded byumax = .25, and the noise sensor error varianceis= .15.

there are several matrix-vector multiplications that imeo " b'ac‘é.d'lfksdde.p'“h‘he (randomly ge”erﬁaéed) '“”&a' agasitions and

guantities that are spatially distributed across the ntwio e gray disks depict e agent pesiuons axsfseconcs.

further complicate things, some of these expressions\mavol

the inverse of sparse correlation matrices, which are not V- UNCERTAINTY-BASED SAMPLING STRATEGIES

sparse any more. Here, we do not provide a comprehen-Whether the goal of the experiment is field prediction or

sive account of the distributed methods used, but ratherodel inference, a statistical model provides an estimate,

focus on illustrating the main idea in the computation ofilong with methods to quantify the uncertainty in the es-

F(k)T(2,(k))"'y(k), necessary to carry out the correctiontimate. This uncertainty depends in part or in whole on

step in the parameter estimation. Note that the quantity wbe locations at which the samples are taken. Imagine an

are interested in computing can be expressed as experiment in which all data come from the same location,
n as opposed to one in which they are spread out over a region

F(k)" (2, (k) y(k) = ZFOWi(F(k))Zi(/f), (9) of interest. If the goal is to interpolate the field over the

i=1 region, the former experiment would yield a large amount

of uncertainty. The process of choosing those locations to

take samples in order to minimize the resulting uncertainty

is known asoptimal design10].

wherez(k) = (2, (k))~'y(k) solves the linear equation
X, (k)z(k) = y(k). (10)



The concept of minimizing uncertainty can have variouseasons, it is difficult to obtain exactly the configurations
meanings, depending on the goals of the experiment. Ftrat optimize them. Our results are relevant to the extent
example, if predictions are to be made at unsampled locatiothat they guarantee that, for scenarios with small enough
about the region, the predictive variance provides a measurorrelation between distinct points, circumcenter anéiiter
of the uncertainty associated with prediction at a giveMoronoi configurations are optimal for appropriate measure
location. It might be desirable to minimize the average er thof uncertainty. The network can achieve these desirable
maximum of the predictive variance over the region. If theonfigurations by executing simple distributed dynamical
objective is inference, the entropy or the generalizecavae systems. Before presenting these results, we introduce the
provides a measure of the information about the model. notion of multicenter Voronoi configurations.

_ . . Here we present some relevant concepts on Voronoi
A. Optimal static deployment under near independence diagrams [33], [34]. TheVoronoi partition V(P) =

Here we follow [30] to consider the problem of where(Vi(P),...,V,(P)) of D generated byP is defined by
to place the agents of a mobile network in the case that o
a single sample is to be taken by each. We assume that the VilP) ={s € D[ lls = pil < lls —psll, ¥j # i}

mean of the process is known, and we study the limiting Cageachv;(P) is called avoronoi cell Two pointsp; andp; are
of near independence between distinct locations. In [31] afyronoi neighborsif their cells share a common boundary.
assumption of near independence was suggested as a fisjen a polytope S, let CC(S) denote thecircumcenterof
step in gathering data in a relatively large space. Thet®sulg that is, the center of the smallest-raditssphere enclos-
of that work show that the solution considered here is botﬁ]g S. The incenter set of, denoted byIC(S), is the set
elegant and technically challenging. We make no assertigf# the centers of maximum-radiusspheres contained ifi.
that a correlated spatial field is accurately modeled by negye say thatP is amulti-circumcenter Voronoi configuration
independence. This asymptotic device merely provides agn,, — CC(V;(P)), for all i € {1,...,n}, and thatP is
analytical framework that justifies the intuitive notion of5 multi-incenter Voronoi configuratioif p; € IC(V;(P)),
space filling design, which is surprisingly difficult to pev tor g1 i < {1,...,n}. Fig. 2 shows examples of these

optimal in general. It should also be noted that without thggnfigurations. A multi-incenter Voronoi configuration is
near independence assumption even the simplified task of

choosing from discrete locations is NP-hard.

In [31], the authors consider the problem of minimizing
the maximum uncertainty over a discrete space. Minimax
configurations, which minimize the maximum distance to the
nearest agent from any point in space, were shown asymp
totically optimal in the limit of near independence. Heres w
make the connection to Voronoi partitions. The work [32]
defines circumcenter and incenter Voronoi configurations
and proposes distributed coordination algorithms whiah ar
guaranteed to bring the network to these configurations. (@) (b)

Our first optimality criterion is the maximum posterior
predictive variance as a function of network configuration, Fi9- 2. Examples of (a) a multi-circumcenter and (b) a multi-inee

Voronoi configuration.
M(P) = max o§c(Z(s); P) (11a)
sE

This ai f th imole kriai isolated if it has a neighborhood irD™ which does not
IS gives a measure of the worst case simple krging,,iqin any other incenter Voronoi configuration. We define

estimate over the region. We study its critical points a$ympy,q ingex N (P), of a configurationP, to be the cardinality
totically, in the limit of near independence. A second 0Pyt the set of minimum pairwise inter-agent distances, i.e.,
timality criterion is the extended prediction varian€épP)

. 1
of the estimator, as a novel form of D-optimality, where we N(P) = | argmin {5\\2% = pjll, d(pi, 373)}’-
introduce a method for applying this criterion to a bounded PiFP;
region. Lety(p;) denote the reflection of locatiop; over For the main results of the paper, summarized below, we
the nearest boundary @, and we write, considerM®) | respectively€(¥), to denote the function,
_ respectively&, with the correlation raised to thiegth power.
EP) == [Zu(P1s -, pn,Y(P1) -2 (a))l - (11D) gk increases, the correlation between distinct locations in

We study the critical points of this function within the sameP decreases in strength, but retains some aspects of the shape
asymptotic framework as the first. Our main results sho®f the correlation function (e.g., range and smoothness).

that circumcenter, respectively incenter, Voronoi configu « LetP,.. € D" be a multi-circumcenter Voronoi config-
rations are asymptotically optimal for the maximum error  uration. Then, ag — oo, P asymptotically globally
variance over the environment, respectively the extended optimizes M*), that is, M®*)(P,..) approaches a
prediction variance. In general, these objective fundtion global minimum.

pose nonconvex and high-dimensional optimization prob- « Let P,;. € D™ be a multi-incenter Voronoi configura-
lems. In addition, the first criterion is nonsmooth. For thes tion with lowest index. Then, ak — oo, Pyjc asymp-



totically globally optimizes€™®), that is, £# (Py;.) whereCR(-) denotes theircumradiusof a polytope, and-s

approaches a global minimum. is @ maximum radius beyond which the covariance is zero.
The work [32] describes simple, distributed algorithmsathi  This restriction ensures communication between each robot
may be used to steer a mobile network towards these mul@nd nodes whose Voronoi regions are correlated (e.qg., Fig 4)
center Voronoi configurations. Fig. 3 shows the results of
some illustrative simulations. In each case, we plot the

det er ni nant

5 10 15 ZkD 25 30 35 40

(b)

Fig. 4. R: is within correlation range (green circle) & (Q) and

. - . . Vs , SO it can communicate with; and Ss.
Fig. 3. Value of (a) M for multi-circumcenter configuration, @) 51 S

and (b) £® for multi-incenter configuration. The multicenter We use two different uncertainty-based optimality créeri
results are depicted with the (solid) line, and compared againghd examine them with all of the models described in Sec-

an approximated global minimum (dashed) arrived at by gradient : .
descent for each value &f and random (dotted) configurations of[Elcm lll. The treatment in all cases follows a similar patter

5 agents for increasing. The covariance function is exponential. The optimality criteria involve minimizing or maximizing a
objective function as calculated with the given configunati timestepk a function of the positions of thaext (k + 1st)

as a function of the covariance exponéntWe compare set of mga;urements. SpeC|f|caII_y,.we try to. .

the multicenter configurations against a randomly chosen* Maximize theentropy of the joint posterior predictive
configuration, as well as against a dynamic approximatd loca  distribution at the new sample locations, or

minimum. This approximate local minimum is arrived at ¢ Minimize theaverageover the predictive region of the
by running a gradient descent algorithm for each value of ~ POSterior predictive variance.

k. Thus the dashed lines in the figure represent a differeht each case, the finite covariance radius allows an approx-

configuration for each value df. imation of thecentralizedobjective function which may be
) _ ) ) distributed over the hybrid network as follows.
B. Adaptive design by projected gradient descent 1) Maximizing posterior predictive entropythe posterior

When the goal of the experiment is to find the bieat  predictive entropy is a measure of the information whicH wil
jectoriesfor the mobile robots to follow in order to optimize be provided about the model by a set of new locations if
sampling of a spatio-temporal random field, the problersamples are taken at those locations. Note that the preslicti
becomes even more challenging. In the existing literaturentropy at sample locations given no previous daté re-

a standard technique for choosing sampling locations lated to the generalized variance (Section V-A) of a predict
sequential optimal, or adaptive design. This amounts to given samples at those locations (i.e. after measurements
one step ahead, greedy optimization method where samjiave been taken). We would like to choose sample locations
locations at the next step are chosen based on informatiah stepk + 1 such that the posterior predictive entropy at
known so far. In the works [35], [36], [37], we present athose locations given all previous data is at a maximum. The
framework whereby a hybrid network of static nodes andentralized version of the entropy criterion does not ddpen
mobile agents can sequentially optimize sampling for ann the actual values of the samples to be taken at timestep
approximation of the random field using a distributed varsiok + 1. We approximate the entropy criterion with,

of the projected gradient descent technique. In these works k 1 2

we assume that samples are to be taken @veand some H )(P) = logdet T — §tr( (K—1T) ),where

interval of time (0,7). We call this region of space-time T=K,'+FK'FT.
D. C R4 Assume that the mobile robots take samples ) )
synchronously at discrete timesteps {1,...,7}, 7 ¢ N. The value ofH(*) and of its gradient aP may be calculated

Let z(1:*) denote the vector of space-time locations at whicHSing a combination of the distributed average consendiis an

samples have been taken up to timesteBetween timestep distributed JOR algorithms.
k andk + 1, R; moves according to the discrete dynamics 2) Minimizing average predictive variancéhe next cri-
_ o _ terion involves minimizing the functionA*) defined as
pi(k +1) = pi(k) + ui(k), i+ _ o ;

e average over the space-time prediction region of the
where ||u;|| < umax for someumax € Rso. The robots posterior predictive variance given all information up tada
collaborate with the static nodes to determine the contrahcluding timestepk + 1. This objective function presents
vector u;(k). We assume a limited communication radiustwo problems to computation. Since the kriging models are
R € R+, for the robotic agents, with the restriction, contained within it, we will use the model from Section I1I-B

R> max {CR(Vi(Q))} + s+ tmax (12) toillustrate. The first problem is the data which have nonbee
i€{1,...,m} sampled yet. Note that the quantity(y(!#+1) s(1k+1))

..... m



depends on all data taken up to and including timestep « run a distributed version of an Armijo-type linesearch
k + 1. Since those measurements have not been taken yet, to find a stepsizey

this can not be evaluated. We avoid this problem by using « find the projection,P’, on Q*) of P + aVH*)

a least squares estimate of the offending data, given thee repeat above withP = P’, until |[H®*)(P") —
samples wehave taken. The resulting approximation is HF)(P)| = 0.

@y k), s+, The second problem with this optimality Note that these steps are meant in a distributed way across
criterion is that it can not be calculated in a distributed/wa the network of static nodes. Thus all information is not
The variance of a prediction at any location may depend iknown to all nodes at once. For exampfg, will only know

a nontrivial way on measurements taken all over the regiothe partial derivatives of£(*) corresponding to the robots
To work around this problem, we break up the average ini@ithin communication range of;(Q). Using this projected

a sum of integrals over the Voronoi region§(@). The gradient ascent algorithm, the network can be guarantesd th
function A%)(P) may then be approximated by a sum ofihe location chosen for the next set of measurements is at

the form A®(P) =3 A‘gk)(P), where, a local minimum of H*) over Q(*). The overall adaptive
~(k) B @y, 5) (1:h41) - design algorithm for the network then follows these steps:
v Jrtvio) . at timestepk € {1,...,T}, R; executes the following
Lkt 1) ) — take sample

where Cé ' (4, P) denotes all of the sample locations up — send sample and location to nearby nodes

to and including timestegk 4 1 which are within spatial — receive next location

correlation rangerg) of Vg((kC)Q) Fig. 5 illustrates the elements — move to next location before next timestep

required for calculatingd;™ (P). . at timestepk € {1,...,7}, S; executes the following

— collect samples and locations from nearby robots

— using the method described above, run the dis-
tributed gradient ascent algorithm to find the next
sample locations

— send resulting next location to each robotViy(Q)

In simulation, we compared our gradient method against
two a priori methods. The first was a static configuration
where the robots spread out around the field and remained
_ o ) (k) ~in position. The second was a naive lawnmower approach, in
Fig. 5. fE_Iements going into galé:ulattl)on Qﬁﬁ (PI)Z (a) spatial \hich the robots began evenly spaced in the vertical doacti
region of integration}1(Q); and (b) robots whose locations are in o4 marched back and forth horizontally across the region. |
Cs .(1’ ?D) (in red). Gre,en C'rdesf represent .correlatuon "ang€.a1l cases, some of the agents dropped communication during

3) Distributed adaptive design algorithm:Between e ¢qyrse of the simulation to illustrate the robustness to

. . . k
timestepk andk+ 1, we restrictl; to a convex regiork;”™”,  fajlure of the gradient approach. Fig. 7 shows the resulting
which takes into account the maximum movement rate anghiective function values as a function of timestep.

ensures that agents maintain a minimum separation distance
(e.g., Fig. 6). The total region of allowed movement for the |:...
network of mobile robots is theR® = [T, 0¥, with LT -
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Fig. 7. Objective values as a function of timestep (k) with the
static (triangle), lawnmower (diamond), and gradient descent (star)
) approaches. (a) Objective functiott*), run with 5 static nodes and
Fig. 6. Example of allowed movement region fét; . 10 robotic agents. (b) Objective functidd®), run with 10 static
this compact region, the network may use the following step®des and 20 robotic agents. The covariance function is exponential.
to perform a distributed version of projected gradient rodth
at timestepk to optimize the objective function. We use VI. THE CHALLENGE OF DISTRIBUTED ESTIMATION AND
gradientascentof H*) for this example, but the steps for CONTROL
gradientdescenpf .A*) are similar. An informal description  |n mobile robotic networks, it is well known that speed
of the steps taken by the network of static nodes to execus@d robustness can be improved through cooperative control
the gradient ascent follows, To extend these benefits to the paradigm of sensor networks
« calculate{®) (P) and the value of its gradienf#(*),  using random field models, guidelines must be established
at P using distributed average consensus and distributédr data collection and representation in such distributed
JOR systems. Here, we have reviewed work that provides a basis




for this study, but there is much more yet to be exploredi3s]
We briefly outline some exciting research topics below.
Within the context of the Gaussian process model dié}‘”
cussed here, asymptotic results similar to those in Settion
A may be useful in finding optimatrajectories for sam- [15]
pling dynamic random fields. Other distributed optimizatio
methods and criteria should be examined, as well as the
asynchronous sampling regime. In addition, the statistic
assumptions within the Gaussian process model should
challenged. Other established spatial models in statistic
should also be examined with an eye towards distributed inf-’]
plementation, such as for instance Gaussian Markov random
fields and graphical models. [18]
A comprehensive solution to the distributed approach to
data collection in random fields should include developmentg,
of new statistical models which take the distributed natire
the problem into account directly. Recent work in Bayesia
statistics [9], [38] has focused on the use of hierarchic
models to represent non-stationary or even discontinuous
random fields. We believe that similar techniques may b1l
used to combine accurate process models with the distdbute
operational context required for cooperative control. [22]

16
&l

0]

VIl. CONCLUSIONS -

We have motivated the need for statistically aware dis[—
tributed algorithms for the estimation and control of rabot [24]
sensor networks. This exciting area of research draws from
cutting edge spatial statistics and the relatively new fadld
distributed computation and control. We have outlined somgs]
of the problems faced and given detailed examples of recent
work on distributed data fusion and distributed sequentigke]
optimal design. We believe the coming years will see a tertil

activity on this area. (27]
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