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Abstract— This paper deals with multi-agent networks per- Literature review: Kriging [2], [3] is a standard geostatis-
forming estimation tasks. Consider a network of mobile agents tical technique that produces estimates of spatial presess
with sensors that can take measurements of a spatial stochasticbased on data collected at a finite number of locations. An
process. Using a statistical technique known as kriging, a field o Lo .
estimate may be calculated over the environment, with an asso- .advanta.ge of krlglng over other spatial mterpo!atlon mdth
ciated error variance at each point. We study a single-snapshot iS that it provides a measure of the uncertainty associated
scenario, in which the spatial process mean is known and eachto the estimator. The optimal design literature [4], [5] ldea
agent can only take one measurement. We consider two optimiza- with the problem of designing experiments to optimize the
tion problems with respect to the measurement locations, using as resulting statistical estimation. Of particular interese the

objective functions the maximum error variance and the extendd i f G-optimalit inimizina th . .
prediction variance. We show that, as the correlation between notions of G-optimality, minimizing theé maximum error vari

distinct locations vanishes, circumcenter and incenter Voronoi ance, and D-optimality, minimizing the generalized vacin
configurations become network configurations that optimize the of the estimator. The work [6] introduces performance met-
maximum error variance and the extended prediction variance, rics for optimal estimation in oceanographic research. The
respectively. We also present distributed coordination algorithms 4o [7], [8] propose distributed optimal estimation sgies
that steer the network towards these configurations. The tech for deterministic fields, when the sensor measurementstake
nical approach draws on tools from geostatistics, computational e '
geometry, linear algebra, and dynamical systems. by individual agents are uncorrelated. The only source of
uncertainty is the stochastic measurement errors. In [, t
emphasis is on finding optimal agent trajectories over argive
. INTRODUCTION interval of time among a parameterized set of trajectories.
Mobile sensor networks are envisioned to perform digdere, instead, we focus on optimal network configuratioms fo
tributed sensing and data fusion tasks in a wide range tbk estimation of the random field at a single snapshot. In
scenarios, including environmental monitoring, oceaapbic  our technical approach, we have been inspired by [1], which
research, and distributed surveillance. This paper cermsidconsiders the problem of minimizing the maximum uncertaint
sensor networks taking measurements of physical processesr a discrete space and shows that minimax configurations
modeled as spatial random fields. Standard interpolaticim- teare asymptotically optimal as the correlation between any
niques produce estimates of the field at each point of thgo distinct points vanishes. Minimax configurations miizen
environment of interest, along with a measure of the acgurage maximum distance to the nearest agent from any point
of the estimate. In this paper, we consider the problem f space. We make the connection to Voronoi partitions of
where to place the agents when a single measurement isédtinuous spaces, which are a classical notion in compu-
be taken by each. Addressing this problem is an initial stegional geometry [10]. The work [11] defines circumcenter
towards the more ambitious goal of characterizing optimahd incenter Voronoi configurations and proposes coorigimat
coordinated agent trajectories when multiple measuresra®et algorithms which steer the network to these configurations.
possible. We assume that the mean of the process is knowrGtatement of contributionsin this paper, we consider two
and we study the limiting case of near independence betwgsrformance metrics for optimal placement of sensor nédsvor
distinct locations. The assumption of near independenee Hmsed on kriging. Kriging produces a Linear Unbiased Mini-
been suggested as a first step in gathering data in a rejativélum Variance Estimator (LUMVE) of the random field at any
large space [1]. Our results show that the solution of thecation. We first characterize the continuity propertiéshe
single-snapshot scenario is both elegant and technichfiy ¢ error variance of the estimator as a function of the network
lenging. We make no assertion that a correlated spatial figJdnfiguration. In the case of zero measurement error, this is
is accurately modeled by near-independence. This asyimpteiot trivial. Previous results in the optimal design literat
assumption merely provides an analytical framework thatve avoided this problem by optimizing over a discrete set
justifies the intuitive notion of space filling design, whigh of possible configurations, while we consider the contirsuou
surprisingly difficult to prove optimal in general. space of all agent locations within the region. Next, we a@efin
. . our first optimality criterion, the maximum error variancé o
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estimator as a novel form of D-optimality. This criteriorLet || - || denote the Euclidean distance function®h Define
gives a measure of the overall information provided by thtae distanced : R? x (D) — R from a point inR? to a
estimator. We introduce a method for applying this criterioset of points inD by d(s,P) = inf,ep{|ls — p||}, and let

to a bounded region. We study the critical points of thisids : R? x (D) — (D) be the minimum distance set
function within the same asymptotic framework as the firsmap, mds(s,P) = {p € P | ||s — p|| = d(s, P)}.

Our main results show that circumcenter, respectivelyritere

Voro_noi configurati(_)ns are asymptotic_ally optimal for _thEA. Voronoi partitions and multicenter problems

maximum error variance over the environment, respectively o
the extended prediction variance. In general, these diject Here we present some relevant concepts on Voronoi dia-
functions pose nonconvex and high-dimensional optimozati 9r@ms [10], [13]. Apartition of D is a collection of: polygons
problems. In addition, the first criterion is nonsmooth. Fa = {W1,..., Wy} with disjoint interiors whose union is
these reasons, it is difficult to obtain exactly the configares D- The Voronoi partition V(P) = (Vi(P), ..., V,(P)) of D

that optimize them. Our results are relevant to the exteBgnerated by> = (pi,...,p,) is defined by

that they guarantee that, for scenarios with small enough Vi(P)={q €D ||q—pill < |lg—p;ll, Vj #i}.
correlation between distinct points, circumcenter anaier

Voronoi configurations are optimal for appropriate meazssurgve say thatP is a circumcenter Voronoi configuratioit

of uncertainty. The network can achieve these configuratioﬁ' N tCC(VVi(P)).’ for ?" ! f {.%’ o ,n},lgr;(/j ;r)]atPf IS aIT
by executing simple distributed dynamical systems. |'ncen1er OI’OHZI con |g:1ra\|/on pi € p ( 1{{ ) olr tad
Organization: Section Il introduces basic computational, € {1,-..,n}. An incenter Voronoi configuration isolate

geometric notions and presents an overview of kriging. Séf:—'t h"f‘s a ne|ghborh90d n‘_D W.h'Ch o_loes not contain any
tion Il states the problem of interest. We present our ma her incenter Voronoi configuration. Figure 1 shows exaspl

results in Section IV on the optimality of circumcenter anf thesg conflgu_ratlons. . . .
incenter Voronoi configurations. Section V presents simul? Co_n5|der thed|sk-cover|ngandsphere-packlng muliicenter
tions to illustrate our results. Finally, Section VI gatheur unctions defined by

conclusions and ideas for future work. Some proofs have been  Hoc(F’) = max {d(s,ir(P))} ,

omitted for brevity, and can be found in [12].

. 1
Hsp(P) = o {§||pz‘ - p;ll,d(pi, 0D)}.
[I. PRELIMINARIES #IE{L,n}

We start with some notation for standard geometric objecid/e aré interested in the configurations that optimize these
Let R, R, andR>, denote the set of reals, positive reals angiulticenter functions. The minimization 6fpc corresponds
nonnegative reals, respectively. We are concerned with-opl® Minimizing the largest possible distance of any poinDin
ations on a compact and connected Betf Euclidean space [© One of the agents’ locations given py, .. ., p,,. We refer to

R<, d € N. We denote byD" the Cartesian product af copies it as the as thenulti-circumcenter problemrhe maximization
0”’)_ Forp, ¢ € R, we let]p, g[= {\p + (1 — \)g | A €]0, 1[} of Hsp corresponds to the situation where we are interested

in maximizing the coverage of the ar@ain such a way that
the radius of the generators do not overlap (in order not to
interfere with each other) or leave the environment. Werrefe
to it as themulti-incenter problemlt is useful to define the
index functionN : D" — N as

denote theopen segmentvith extreme pointsp and g. For
p € R4 andr € R.g, we let B(p,r) denote theclosed
ball of radiusr centered atp. We denote by|S| and 95
the cardinality and the boundary of a s&t respectively. A
convex polytopés the convex hull of a finite point set. For a
bounded setS ¢ R4, we let CC(S) and CR(S) denote the
circumcenterand circumradiusof S, respectively, that is, the
center and radius of the smallest-radilisphere enclosing.
The incenter set of, denotedlC(S), is the set of the centers
of maximum-radiusi-spheres contained ifi. The inradius of
S, denoted byiR(S), is the common radius of these spheres. This section reviews the geostatistical kriging procedure
We consider tuples or ordered sets of possibly coincidei@f the estimation of spatial processes, see e.g., [2].. [A4]
points, P = (p1,...,pn) € (RY)™. We refer to such an random processZ is second-order stationarynd isotropic
element as aconfiguration Let §3(S) (respectivelyF(S)) if it has constant meaniZ(Z(s)) = u, and its covariance is
denote the collection of subsets (respectively, finite stsyof Of the form Cov(Z(p1), Z(p2)) = g(llp1 — p2l|), for some
S. We denote an element @(R%) by P = {pi,...,p,} c decreasing function : R>o — R>o. The covariance matrix
R<, where p1,...,p, are distinct points inR?. Let i : Of the set of pointys,...,p, € Dis X =X(P) = [g(|lp1 -
(RY)™ — F(R?) be the natural immersion, i.e5(P) contains p2[)]7;—1 € R™*". When it is clear from the context, we
only the distinct points inP = (py, ..., pn). Let Seinc be the Use bold face to denote explicit dependenceloriNVe define
set of all tuples in(R%)"™ which contain at least one coincidentc : D x D" — R" to be the vector of covariances between
pair of points, a points € D and the locations inP, i.e.,c = ¢(s,P) =
g R4 (g(IIs = p1l),---,9(lls — pal]))T. The associated correlation
coinc = {(pl, Ce ,pn) € ( ) | ’ . ' function o Re x R —, [0’ 1] is p(p1,p2) _ ‘J(le(g)pzu)
pi = p; for somei, j € {1,....n},i # j}. Throughout the paper, we make the following assamptions on

N(P) = | argmin {%Hpi ~ sl d(pi, 0D) )|

DiF#Dj

B. Spatial prediction via simple kriging



the model for the spatial random procegsof interest. We and (py,...,p,) € D". Indeed, the dependence @t on the
assume thaf is of the form network configuration is continuous, and hengd, is also
Z(s) = p(s) +6(s), seD, (1) well-defined. However, when no measurement noise is present
o ) i.e., 72 = 0, then the matri®, = X in (4) is not invertible for
and that the mean functiop is known. Also,J is a zero- configurations that belong tteine, and therefore, it is not clear
mean second-order stationary random process with a knoyRat the value o2 is. Proposition V.2 below states that, in
decreasing isotropic covariance function, We further as- the no measurement noise cas®,is a continuous function

sume thaty is everywhere differentiable. Some examples Qff the configuration under suitable technical conditiongten
such functions are the exponential, cubic, spherical, fieatli ¢oyariance structure of the spatial field.

Bessel, and rational quadratic covariance functions. Our second objective function requires some background.
Assume measurement daga= (Y(p1),...,Y(p.))" are The generalized variance [15] of the LUMVE is defined as
corrupted with error such that |X-1|, where| - | denotes the determinant. Minimizin® !
Y(pi) = Z(pi) + €, e; % Normal (0,72),  (2) is equivalent to minimizing-|%,|. For discrete state spaces,

it can be shown [1] that configurations which maximize the
¥ninimum distance between agents asymptotically minimize
—|3] in the limit of near independence. This tends to place
agents on the boundary &f. Since we are only interested in
predictions ove, we would like a notion of optimality which
penalizes agents too close to the boundary as it does agents t
close to each other. To this end, tet D — R? map a point

_Jglllpi = psl) + 72, ifi =4, in D to its mirror image reflected across the nearest boundary
Cov(Y(p:), Y (pj)) = N P

g(llpi — p5l), if i # j. of D. Formally,(s) € s+2(argr}9111)n{||s — 5|} —s). Note
s*€e

where2 > 0, and “iid” denotes independent and identicall
distributed. The assumption that the erreysi € {1,...,n}
are independent and identically distributed correspondbe
fact that the robotic network is equipped with distinct itieal
sensors. In the error case, the covariance betwé&gn) and
Y (p,) is given by

Note that the covariance matrix &f with respect to the noisy thaty(s) is in general not unique, and is not a smooth function
processY may be writtenX, = ¥, (P) = £ + 721,,, where 0f s. However,||s —y(s)|| is smooth, and is the same for all

I, denotes the: x n identity matrix. values ofv(s). Now consider minimizing the determinant of
The simple kriging predictor at s € D mini- the estimator which would result if we had data from all agent
mizes the error variance?(s;pi,...,p,) = Var(Z(s) — @S well as their reflections. Thextended prediction variance

p(s;Y (p1),...,Y(p,))) among all unbiased predictors of thds then

formp(s; Y (p1),...,Y(pn)) = ZZL:l LY (p;)+k. The simple  E(p1,...,pn) = —|2-(p1, -, 0n,Y(P1),-- -, 7(pn))| . (Bb)

kriging predictor ats € D corresponds then to the LUMVE, _ . _ ) .
Since £ does not require inversion of the covariance matrix,

psk(s:Y (p1), ... Y (pn)) = u(s) + "= (y — ),  (3) itis always well-posed.

Our goal is to find the network configurations
(p1,-..,pn) € D" that minimize the objective functions
M:D" - Rand€f : D" — R.

wherep = (u(p1), ..., pu(p,))T. The error variance ofsk at
seDis

o?(s;p1,- .- pn) = 9(0) — "B e, (@)

Note thato? is invariant under permutations f, . .. . V. OPTIMAL CONFIGURATIONS FOR SPATIAL PREDICTION
In this section, we provide several results that charameri
I1l. OBJECTIVE FUNCTIONS the optimal network configurations for the objective fuont

Consider a network of: agents in a convex polvto e/\/l andé&. In Section IV-A, we show that minima o$1 cannot
9 polytop be in Sgine. This fact is useful in Section IV-B where we

D c R?. Assume each agent has a sensor and can take, a . : . : )
. g : Show that circumcenter and incenter Voronoi configurations
noisy measuremer¥ (p;) as in (2) of the spatial procegs at

its positionp;. A natural objective is to select locations to takéfj1 re asymptotically optimal fat and¢, respectively.
measurements in such a way as to minimize the uncertainty

in the estimate of the spatial process. Here, we consider tfo Coincident configurations are not minima of the maximum
objective functions inspired by the notions of G- and Derror variance

optimality from optimal design [2], [4]. In this section, we examine the effect of the location of a
The maximum error variances subset of agents on the error variance terms. In particudar w
M(p1,...,pn) = max o2(8;p1y- -+, Pn) are interested in comparing’(s; P) againsto?(s;ip(P)) for
S

configurationsP € Scoine. The following lemma provides a

. s Tl
=9(0) - {ggg{c e (58)  yseful decomposition of2.

Note thatM corresponds to a “worst-case scenario,” where we ) ) ) )
consider locations in the domain at which the error variasfce L€Mma V.1 The estimation error variance function may be
the LUMVE is maximal. Let us make an important observatioff"itten in the form (s BN

about the well-posedness @ff. Under noisy measurements, 02(s;P) = 0(s; P) — M,
i.e., 72 > 0, the functiono? is well-defined for anys € D o?(p1; P) + 72

(6)



with N (s,p1; P) = g(||s — p1||) — ¢T (s, P)2,(P)"te(p1, P)  Proposition V.4 (Cardinality of minimum distance set)
and P = (pa,...,pn) € D" L. Let the covariance function C'  be  contin-

) . i uous. For P € D™ \  Scoin One has
_ This fact may be proved using [_16, Pro_posmon 8_.2.4] forthe;, {Cunas (5, P) Imds(s, P)|} = min {Cinas(s, P)}.
inverse of a partitioned symmetric matrix. Equation (6) maycD s€D
be applied repeatedly to isolate the effects of any subset\@g are now ready to prove one of the main results of the
locations inP. In the following proposition we consider thepaper. The proof follows a similar line of reasoning to [1].
behavior of M as agents move arouridl. It can be proved by
showing that, under the given assumptions, foe D \ Scoinc  Theorem IV.5 (Minima of M under near independence)
and P’ € D( Scoin, limp_. pr 0*(s; P) = o*(s;ip(P’)). Let P,.. € D" be a global minimizer of the multi-

circumcenter problem. Then, &s— oo, Py asymptotically

Proposition V.2 (Continuity of estimation error variance) globally optimizesm®)| that is, M*)(P,...) approaches a
Let Z be second-order stationary with isotropic covariancgohal minimum.

function, Cov([Z(p1), Z(p2)] = g(llpr — p2|)), with g : R>¢ —

R, differentiable. Assumeg’(0) # 0 and 72 = 0. Then, for Proof: Note that minimizing M® s

s € D, the error variance(ps, . .., p,) — o2(s;p1,...,p,) is €quivalent to finding the tuplesP which maximize

continuous. Moreoveg?(s; P) = o%(s; ig(P)) for P € Segine.  the  functon L*) . Dt — R defined as
L3 (P) = min { (M) (s, P))T (S (P) (P (s, P)) |

Under the assumptions of Proposition V.2, we can extend o
the mean-squared error function by continuity to includ et A“]l;“kan%g;‘g’t‘e' Dresx (IaR{ct'HeIIR{ b?hzucr?q.:]hgf‘ﬁ“(g ﬁ]é)’the
configurations inSeeine. With a slight abuse of notation, in max (P, k) ’ (%) IVely, inimu il
the case of no measurement error, we u$6s; P) to denote Maximum eigenvalue ot (P). We can see thal™ (P) is
o2 (s;ix(P)) for P € Seaine. bounded above byax (P, k) >« p g(l|s —pl[)** and below

by Amin (P, k g(||s — p||)?*. For a givens, in terms of
peP
Proposition IV.3 (Minima of M are not in Sein) Let Pt ¢ the minimum distance set we can write
D" be a strict local minimum of the maB — M(P). Under 3" g(|ls—p[)* = S g(lls—pl)*+ > g(lls—pl)*

the assumptions of Proposition IV.2] ¢ Scoinc. peP pEmds(s,P) peP\mds(s,P)
Proof: We proceed by contradiction. Assume! e = |mds(s, P)| Cimas(s, P)** + > g(|ls = pl)**
Scoine: Consider a configuratio® € D™ \ Scoinc in @ neigh- pE€P\mds(s,P)

borhood of Pt such tgatiF(PT) C ip(P). Let 3273T €D As k — oo the elements in the minimum distance set
such thatM(P) = o?%(s; P) and M(PY) = o%(s'; PT).  gominate, so we are left with
Using Lemma IV.1 and Proposition V.2, one can deduce that

2k __ 2k
o2(s; PY) > 02(s; P). By the definition of M, o2(s; Pt) > Z 9(lls = pI)™ = [mds(s, P)| Cinas(s, P)™+
o%(s; P1). Therefore M(Pt) = o2(st; Pt) > o2(s; PT) > peP + o(Conas (5, P)24)
o2(s; P) = M(P), which is a contradiction. n st '
From Proposition 1V.4,
?. hfulticenter Voronoi configurations are asymptotically-o min {|mds(s, P)| Cinas(s, P)} = min {Crmas (s, P)},
ima s s

Let us consider the objective functiond and¢ introduced SO We can write
in Section 1Il but with covariance functio6”, k € N. This is . 2k . 2k
. A R min s — = min { Cqas(s, P 1+0(1));.
equivalent to considering the correlatigif,. As k grows, the seD { ;,g(” Pl } s€D { as(s, P) ™ ( ( ))}
correlation between distinct points 1 vanishes. Note that* ) . . . )
retains much of the shape of the original correlation fuorcti Consider, then, comparing an arbitrary configuratiétf

(e.g. smoothness, range, etc), so this analysis is helpfulddainst a global minimizer ot{pc, say P In the zero
determining the properties of the original problem as welflféasurement error case, by Proposition 1V.3, we can assume

To ease the exposition, we denote &), respectivelys(¥), Without loss of generality thal” ¢ Scoic. Therefore, no
the vectore, respectively the matri¥,, with each element matte(rk\)/vhellt the value ofis, we can safely use the eigenvalues
raised to thekth power. Similarly, letM®), () . pr —, g ©f (3:7)" to provide bounds. Specifically,
be defined as L®(Pr) < @
M®B (pr,......pn) = 6(0) = min{(e®)T(BH) 1M}, L (Pnee)

<P Amae(P*, k)min { Cas(s, P*)** (1 + o(1)) }

- - 2k :
Amin (Pce B)mi { Cinas (5, Prnce)** (14 0(1)) }

5(k)(p177p71) = - Zg-k) (p177pn7ry(p1)77ry(pn)) .

First we establish a result on the cardinality of the minimum

distance set. Lef',qs : RYx D" — R such thatCy,4s(s, P) = Next we take a closer look at the eigenvalues. Note that if
g(|ls — pl), for anyp € mds(s, P). Note thatCugs is well- we divide =" (P) by the common factor ofg(0)+72)*, the
defined. resulting correlation matrix becomes diagonal for lakg&his

gives uslimg_,, 1/(g(0) + 72)’“2(71“)(P) = I,, and it can be



seen that\,i, (P, k)/(9(0) + 72)* and A\yax (P, k)/(g(0) + If P* is not a global solution of the multi-incenter problem,

72)* both tend tol for any configurationP. Finally, since we haveHsp(Puic) > Hsp(P*), and sincey(-) is decreasing

Py minimizes the maximum distance to any pointe this gives us
! o o . J®) (Pric)

D, it maximizes the minimum covariance, so for afy € im mic) _

D™, mingep Crmas(s, P) < mingep Cinds (S, Pmec). Thus the k—oo J(K)(P¥)

ratio (7) is bounded byl + o(1). Therefore, in the limit as If, on the other handP* is a global solution of the multi-

k — oo, minimizing M) is equivalent to solving the multi- incenter problem, then, using the fact tiat;. has the lowest

circumcenter problem. B index among all of them, we dedue’éfiff%“j) <1l4o(1). m

The proof of the theorem can be reproduced for local the proof of the theorem can be reproduced for isolated
minimizers of the multi-circumcenter problem to arrive B& t 5c41 maximizers of the multi-incenter problem to arrive at

following result. the following result.

Corollary IV.6 Let Py.. € D" be a local minimizer of the corollary IV.8 Let P,;. € D" be an isolated local maxi-
multi-circumcenter problem. Then, &s— oo, Pncc @8SyMP- mizer of the multi-incenter problem. Then, As— 00, Puic
totically optimizesM %) | that is, M) (P,,..) approaches a asymptotically optimize&§®, that is, £*) (Py.ic) approaches
minimum. a minimum.

According to [11], under certain technical conditions, so- According to [11], under certain technical conditions, so-

lutions to the multi-circumcenter problem are circumcentgutions to the multi-incenter problem are incenter Voronoi
Voronoi configurations. Next, let us present a similar asymponfigurations.

totic result for the extended prediction variance.

- . C. Distributed coordination algorithms

Theorem IV.7 (Minima of £ under near independence) i _ o

Let P € D" be a global maximizer of the multi-incenter Civen the results in Theorems IV.5 and IV.7, it is of

problem with lowest index. Then, &s— 0o, P asymptot- mterest. to design coordmatlpn algorithms tha’_[ steer aowkt .

ically globally optimizest®), that is,g(k)(Pmic) approaches of m_ob|le .agents toward; cwcumcenter and |.n.cenf[er \oronoi

a global minimum. configurations. We do this following the exposition in [1I1.
light of the results in Section 1V-B, this enables the netwiaor

Proof: Expanding the objective function for asymptotiperform a spatial prediction which is asymptotically ogiras

cally dominant terms, we may write k — oo. Note that these algorithms are not intended to provide

optimal trajectories for multiple sequential measurement

EW(P) = —(g(0)* +7%)?" + (g(0)* + 72)2”_2 J®#)(P)+ That problem is left for future work.
ko, _2\2n—2 (k) Let us assume each agent can move according to a first-
to ((g(o) T ) J (P)) ’ order dynamical modeb; = u;, i € {1,...,n}. Consider the
where following coordination algorithms
. pi = CC(Vi(P)) ~ pi, (82)
TJEP) =" gllpi —pi )" + D gllpi = () )* + pi € IC(Vi(P)) — pi, (8b)
i b=t for eachi € {1,...,n}. Note that (8b) is a differential inclu-
+ Y g(llv(p:) = v(@y)I)*.  sion. We understand its solutions in the Filippov sense.[17]
i#j Both coordination algorithms are Voronoi distributed, mieg

. ok . that each agent only requires information from its Voronoi
Asymptotically all but the largest terms U*)(P) will drop neighbors ingorder toyexe?:ute its control law. The equilibri

out, and minimizing€*)(P) becomes equivalent to mini- . : : .
mizing those terms. The largest terms.Jf)(P) correspond points of the flow (8a) are the circumcenter Voronoi configu-
: rations, whereas the equilibrium points of the flow (8b) are

to the shortest distance between the locations of either the

. . ._InCenter Voronoi configurations. Furthermore, the evoluti
agents or their reflected images. For any two agent Iocatlord? Hpe along (8a) is monotonically decreasing, while the
pi,p; € D, and any of their reflections/(p;),v(p;) the be 9 y 9,

minimum distance between any two of the four points can tgz(\a/olutlon ofHsp along (8b) is monotonlc_ally_mcreasm_g. The
. convergence properties of these coordination algorithass,
reduced tanin {|[p; — p;l[, [lpi — (i)l [P —¥(p;)II} (note

o . . _well as alternative flows with similar distributed propesti
that this is not in general true for non-convex domains). .
. . . that can also be used to steer the network to center Voronoi
Thus the shortest distance between agents?irand their

reflections may be expressed 2K sp(P), though the index configurations, are studied in [11].
of P might be larger thari. Therefore we have/(*)(P) =

N(P) (9(2Hsp(P))?*) (1 + o(1)). Consider comparing an ar- V. SIMULATIONS
bitrary configuration,P* € D™ againstP,,;.. We have With the aim of illustrating the results presented
*) N(P.. 9 P2k (1 ! in  Section 1V, we performed simulations for both
T (Pic) _ N (Panic) (9(2Hsp(Pmic))™") (1 + o(1)) objective functions M and & with n = 5 agents.

JE(P*) — N(P*)(g(2Hsp(P*))?*) (14 0(1)) In our simulations, we used as domairD the



convex polygon with vertices {(0,0.1),(2.5,0.1), minimum configuration with the smallest value 6f' to
(3.45,1.6), (3.5,1.7), (3.45,1.8), (2.7, 2.2), be our approximation of a global minimum. From this con-
(1.0,2.4),(0.2,1.3)} and as isotropic covariance thefiguration P, we generated the multi-incenter configuration
one defined vigy : R — R, g(||s1 — s2||) = e~ slsi=s2l Note using (8b), depicted in Figure 1(b). For increasing valués o
that the mean functiory, does not play a role in determiningk, we ran a gradient descent 6f*) to find the best local
the optimal network configurations. Figure 1 shows theonfiguration neaf,. We plottedS(®) as calculated with this
multicenter configurations obtained with the flows (8). new configuration against(*) as calculated with the multi-
incenter configuration. For comparison, we also plotted the
performance of a random (static) configuration which was
not a local minimum. Figure 3 illustrates the result stated i
Theorem IV.7.

0

0.2
c
T.0.4
E
(a) (b) 506
[
Fig. 1. Multicenter configurations found from different dom starting ©
positions using (a) the flow (8a) and (b) the flow (8b). -0.8
A. Analysis of simulations faM (%)
Using M) we ran over1000 random trials, each time 5 10 15 20 25 30 35 40

. . . k
running a gradient descent algorithm, and chose the local

minimum configuration with the smallest value ##(") to Fig. 3.  Value of &) for multi-incenter (solid), approximated global
be our approximation of a global minimum. From this configminimum (dashed) arrived at by gradient descent for each vafue and

; A ; : ~tandom (dotted) configurations of 5 agents for increaginghe covariance
uration P, we generated a multi-circumcenter Conflguratloﬁnction is exponential. The performance of the global andtinmdenter

using (8a), depicted in Figure 1(a). For increasing valuggnfigurations looks identical even though configurations different at
of k, we ran a gradient descent d¥(*) to find the best eachk.

local configuration neaP,. We plotted M(¥) as calculated

with this new configuration against1(*) as calculated with ~ Remarkably, the performance of the incenter Voronoi con-
the multi-circumcenter configuration. For comparison, @@ a figuration and the minimizer af®) are almost identical, even
plotted the performance of a random (static) configuratidar low values ofk. The numerical simulations suggest that
which was not a local minimum. Figure 2 illustrates thenulti-incenter Voronoi configurations are near-optimal tiee
result in Theorem IV.5. We halt the experiment at arounektended prediction criterion.

VI. CONCLUSIONS

0.8 We have used the maximum error variance and the extended
_ variance of the LUMVE as metrics for optimal placement
20.6 of mobile sensor networks estimating random fields. We
G have shown that under the assumption of near independence,
g0.4 circumcenter configurations minimize the maximum erroi-var

ance and incenter configurations minimize the extended vari
ance of the estimator. Under limited time or energy res@jrce
or as a starting point for further exploration, a group ofatid

2 a 6 8 10 12 14 sensors can begin by moving toward these configurations to

k start the estimation procedure.

Fig. 2. Value of M(¥) for multi-circumcenter (solid), approximated global FUIu,re work will ,eXp_Iore: (i) regarding the asymptotic
minimum (dashed) arrived at by gradient descent for each wallue and analysis, the determination of lower and upper bounds on the
random (dotted) configurations of 5 agents for increadinghe covariance parameterk that guarantee that multicenter Voronoi config-

function is exponential. _ urations achieve a given a desired level of performance. In
k = 15 because the performance of the circumcenter Vorongi ticular, we would like to determine the near-optimality

configuration becomes impossible to distinguish from the ogeneral of incenter Voronoi configurations for the extended

of the minimizer ofM(*) at this resolution. variance criterion; (i) the extension of the results to ifm
) _ ) *) error metrics for the universal kriging predictor, where th
B. Analysis of simulations fof mean function is unknown; and (iii) the characterizatiorhef

Using £ we ran over1000 random trials, each time trajectories (rather than configurations) that provideiroat
running a gradient descent algorithm, and chose the loedtimates of the random field as agents reconfigure and take



successive measurements over time. Consideration wdl als
be given to fields which change over time, and to distributed
methods for estimation and data fusion.
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