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Abstract— This work deals with a group of mobile sensors
sampling a spatiotemporal random field whose mean is un-
known and covariance is known up to a scaling parameter. The
Bayesian posterior predictive entropy provides a direct mapping
between the locations of a new set of point measurements
and the uncertainty of the resulting estimate of the model
parameters. Since the posterior predictive entropy and its
gradient are not amenable to distributed computation, we
propose an alternative objective function based on a Taylor
series approximation. We present a distributed strategy for
sequential design which ensures that measurements at each
timestep are taken at local minima of the objective function.
The technical approach builds on a novel reformulation of the
posterior predictive entropy.

I. I NTRODUCTION

Problem motivation: The growing availability and so-
phistication of robotic sensor technology is enabling a new
generation of statistical experimentation. We envision net-
works of mobile sensing platforms executing intelligent sam-
pling missions, taking advantage of the robust adaptability
of multi-agent systems. We are particularly interested in
strategies which use modern statistical techniques to give
a full accounting of predictive and inferential uncertainty.

This work proposes an entropy-based cooperative strategy
for optimal sampling of spatiotemporal processes. In statis-
tical optimal design, the optimality criteria for estimation
depend upon the goal of the experiment. Here we focus on
learning the parameters of the model and define optimality
in terms of entropy as a measure of information about
the model. Since entropy is inherently linked to the cross
correlation of measurements, the main challenge we face is
the synthesis of distributed adaptive sampling strategies.

Literature review: Complex statistical techniques exist
to model the evolution of physical phenomena. Of par-
ticular relevance to this work are [1], [2], [3], regarding
statistical models, and [4], [5], regarding optimal designof
experiments. The concept ofadaptive designis generally
approached with one of two goals in mind. Minimizing
uncertainty in field estimates [6], [7] over new measure-
ments results in A-optimal designs, while maximizing the
information gained about the model [8] results in D-optimal
designs. Comparisons of these two methods may be found
in [9], [10]. In this paper, we concentrate on the latter in the
form of entropy maximization.

In cooperative control, various works consider mobile
sensor networks performing spatial estimation tasks. [11]
introduces performance metrics for oceanographic surveys
by autonomous underwater vehicles. [12] considers a robotic
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sensor network with centralized control estimating a static
field from measurements with both sensing and localization
error. In [13], a deterministic model is used, where the
random elements come in the form of unknown model
parameters, and localization error is included. Here we
treat the field itself as random with a Gaussian process
model. [14] considers optimal sampling trajectories from
a parameterized set of paths. In [15], [16] the focus is on
estimating deterministic fields when the measurements taken
by individual robots are uncorrelated. [17] discusses the
tracking of level curves in a noisy scalar field. In previous
work we have considered optimal trajectories for minimizing
the average error variance of random field estimates using
models with known [18] and unknown [19] covariance.

Statement of contributions:We model the physical process
of interest as a spatiotemporal random field with mean
unknown and covariance known up to a scaling parameter
and estimate it from a Bayesian perspective. First, we extend
a known univariate representation of the posterior predic-
tive entropy to the multivariate case. From this result, we
develop an aggregate objective function that quantifies the
goodness of network configurations for the estimation of the
spatial field. We show that the proposed objective function
is a second-order approximation of the posterior predictive
entropy, characterize its smoothness properties, and describe
a distributed method to compute it. We employ average
consensus and distributed Jacobi overrelaxation algorithms
to compute the objective function and its gradient in a
distributed way across a network composed of robotic agents
and static nodes. Finally, we synthesize a distributed motion
coordination for adaptive sampling based on one-step-ahead
local optimization of data collection. We conclude illustrating
the performance of the algorithm in simulation.

II. PRELIMINARY NOTIONS

Let R, R>0, and R≥0 denote the set of reals, positive
reals and nonnegative reals, respectively. Forp ∈ R

d and
r ∈ R>0, let B(p, r) be the closed ball of radius r
centered atp. Given two vectorsu = (u1, . . . , ua)T , and
v = (v1, . . . , vb)

T , a, b ∈ Z>0, we denote by(u, v) the
concatenation(u, v) = (u1, . . . , ua, v1, . . . , vb)

T . We denote
by ∂S the boundary of a setS. The ǫ-contractionof a set
S, with ǫ > 0, is the setSǫ = {q ∈ S | d(q, ∂S) ≥ ǫ}. Let
projΩ : R

m → Ω denote the orthogonal projection onto
the setΩ, i.e., projΩ(x) = argminy∈Ω ‖x − y‖. A convex
polytopeis the convex hull of a finite point set. For a bounded
setS ⊂ R

d, we letCR(S) denote thecircumradiusof S. We
denote byF(S) the collection of finite subsets ofS. With a
slight abuse of notation, we use0, respectivelyI to represent
the zero matrix, respectively identity matrix, of appropriate
dimension when it is clear from the context. We consider



a compact and connected setD ⊂ R
d, d ∈ N. Since we

deal with a process which varies over time, letDe = D×R

denote the space of points overD and time. TheVoronoi
partition V(s) = (V1(s), . . . , Vn(s)) of D generated by the
pointss = (s1, . . . , sn) is defined by

Vi(s) = {q ∈ D | ‖q − si‖ ≤ ‖q − sj‖, ∀j 6= i} .

EachVi(s) is called aVoronoi cell. Two pointssi andsj are
Voronoi neighborsif their Voronoi cells share a boundary.

For a random variable,Y , let E[Y ] denote the expectation
of Y and Var[Y ] its variance. We use the normal, inverse
gamma, and Student statistical distributions [20]. We let
Nn (a, B) denote then-variate normal distribution with
mean vectora ∈ R

n and covariance matrixB ∈ R
n×n.

We letΓ−1(a, b) denote the inverse gamma distribution with
shape parametera and scale parameterb. Let tn (a, B, c)
denote ann-variate shifted Student t distribution with mean
a, covariance matrix c

c−2B, andc degrees of freedom.

A. Basic linear algebraic facts

Here we present some basic facts from linear algebra [21]
that will be useful throughout the paper. Let[A]ij denote
the i, jth element of a matrixA and det (A) denote its
determinant. For a matrixA ∈ R

n×m let ‖A‖F denote
the Frobenius matrix norm,‖A‖F =

√

tr (AT A), where
tr(A) denotes the trace ofA. Given a partitioned symmetric
matrix A =

[

B C
CT D

]

, the Schur complement ofB in A is
(B |A ) = D − CT B−1C.

B. Bayesian modeling of space-time processes

Let Z denote a random space-time process taking values
on De. We deal with bothsampled(known) andunsampled
(hypothetical) realizations ofZ. To distinguish, we attach the
subscriptss and u to associated vectors and matrices. Let
y

s
= (ys:1, . . . , ys:m)T ∈ R

m bem ∈ N samples taken from
Z at corresponding locationsxs = (xs:1, . . . , xs:m)T ∈ Dm

e ,
with xs:i = (ss:i, ti), i ∈ {1, . . . ,m}. Optimal design is the
process of choosing locations to take measurements in order
to reduce the uncertainty of the resulting statistical inference.
Since uncertainty drives the problem, it should be modeled
as accurately as possible.

In a Bayesian setting, the prediction takes the form of a
distribution, called the posterior predictive [22]. If thefield
is modeled as a Gaussian process with known covariance,
the posterior predictive mean corresponds to theBest Linear
Unbiased Predictor, and its variance corresponds to the
mean-squared prediction error. If the covariance of the field
is not known, however, few analytical results exist which
take the full uncertainty into account. The model we present
here, extending [1], [2], is one of the few which allows for
uncertainty in the covariance process and still produces an
analytical posterior predictive distribution.

We assume that the samples are distributed as

y
s

∼ Nm

(

F
T
s β, σ2

Ks

)

. (1)

Hereβ ∈ R
p is a vector of regression parameters, andσ2 ∈

R>0 is the variance parameter, both unknown.Ks ∈ R
m×m

is the known sample correlation matrix. We assume a finite

spatial correlation range,r ∈ R, i.e., ‖si − sj‖ ≥ r =⇒
[Ks]ij = [Ks]ji = 0. The matrixFs ∈ R

p×m is determined
by a set ofp ∈ N known functionsfi : De → R evaluated
at the locationsxs. In order to ensure an analytical form for
the predictive distribution, we assume conjugate priors on
the parameters,

β|σ2
∼ Np

(

β0, σ
2
K0

)

and σ2
∼ Γ−1

(ν

2
,
qν

2

)

. (2)

Here β0 ∈ R
p, K0 ∈ R

p×p, and q, ν ∈ R>0 are constants,
known astuning parametersfor the model.

Given this prior information, consider a hypothetical
vector of n ∈ N future measurements, which we call
unsampled. Let y

u
∈ R

n denote these future mea-
surements at corresponding space-time locationsxu =
((su:1, tu), . . . , (su:n, tu))T ∈ Dn

e , and letKu, Fu denote
the correlation and basis matrices analogous to the sampled
versions. Note that the prior distributions are the same for
both sets of measurements. Lety = (yT

s
, yT

u
)T and x =

(xT
s , xT

u )T denote the combined vectors of measurements
and locations, and letK and F denote the correlation and
basis matrices of the combined locations. LetKsu = K

T
us ∈

R
m×n denote the cross-covariance betweeny

s
andy

u
.

From the joint distribution ofy and the prior informa-
tion, we may compute the posterior predictive distribution,
p(y

u
|y

s
), of y

u
once the samplesy

s
have been measured.

Here, the notationp(a|b) denotes the conditional probability
of random variable or vectora given b. An explicit form for
p(y

u
|y

s
) will be described in Section IV.

III. PROBLEM STATEMENT

In Section III-A we introduce the robotic network model
and in Section III-B we detail the overall network objective.

A. Robotic sensor network model

Consider a group{S1, . . . , Sm} of m ∈ N static nodes
deployed in a convex polytopeD ⊂ R

d. Let Q =
(q1, . . . , qm) ∈ Dm denote the positions of the static nodes.
Assume that each node has a limited communication radius,
R ∈ R>0, and that they are positioned so that each one can
communicate with its Voronoi neighbors.

In addition to the static nodes, consider a group
{R1, . . . , Rn} of n robotic sensor agents. The position of
robot i ∈ {1, . . . , n} at time t ∈ R is denoted bypi(t) ∈ D.
The robots take point measurements of the spatial field at
discrete instants of time inZ≥0. Between measurement in-
stants, each robot moves according to the discrete dynamics,

pi(k + 1) = pi(k) + ui(k),

where‖ui‖ ≤ umax for someumax ∈ R>0. The communica-
tion radius of the robotic agents is alsoR. Each node needs
to be able to communicate with any robot which may be in
its Voronoi region at the next timestep. To that end, assume

R ≥ max
i∈{1,...,m}

{CR(Vi(Q))} + umax. (3)

The robots have some limited capability of sensing each
other, so that a robot knows the positions of other robots
within a distance of2umax. At discrete timesteps, each robot
sends the measurement and location to static nodes within



communication range, along with the current locations of
any other sensed robots. The nodes cooperatively compute
control vectors, then relay them back to the robots. The im-
plementation does not require direct communication between
robotic agents. We refer to this network model asN .

To avoid agent collision, we further restrict the motion of
the robotic agents as follows. Consider the locationsP (k) =
(p1(k), . . . , pn(k))T . Between timestepk and timestepk+1,
robot i moves within the region,Ω(k)

i ⊂ D defined by,

Ω
(k)
i = (Vi(P

(k)))ω/2 ∩B(pi(k), umax),

where (Vi(P
(k)))ω/2 denotes the ω/2-contraction of

Vi(P
(k)). This requirement combines the restriction imposed

by umax with a minimum distance requirement such that any
two robots are always at leastω away from each other [18].
Let Ω(k) =

∏n
i=1 Ω

(k)
i ⊂ Dn denote the region of allowed

movement of all the robotic agents at timestepk ∈ N.

B. Network objective

Between measurement instants, we would like to move
the robots to those locations which ensure a maximum gain
in information appropriate to the goal of the experiment.
When the goal is to make inference about model parame-
ters, we would like an objective function which maximizes
gain in information about the model. A generally accepted
practice [3], [8], [9] is to choose a set of measurement
locations which maximize the entropy of the joint posterior
predictive distribution. Intuitively, to maximize the gain in
information we choose to measure those locations about
which we currently know the least. The entropy of an ar-
bitrary continuous distribution with pdfp(Y ) can be written
asE = −E

[

log p(Y )
h(Y )

]

, whereh(Y ) is a reference measure
chosen to ensure invariance under affine transformations
of Y . When the data come from a multivariate Studentt
distribution,y ∼ tn (µ,Ψ, δ), then the entropy is [3],

E =
1

2
log det ((δ − n + 1)Ψ) . (4)

IV. A DISTRIBUTED CRITERION FOR ONE-STEP-AHEAD

DATA COLLECTION

In this section, we derive an expression for the entropy of
the joint posterior predictive distribution given the model (1).
As this function is not amenable to distributed computations,
we propose instead an alternative which is. We finish with
important smoothness properties of our proposed objective
function, including an expression for its gradient.

A. Entropy of the random field estimation

We begin by extending the univariate results of [2] to
provide a multivariate posterior predictive distributionwith
a particularly useful form for the variance.

Proposition IV.1 (Posterior predictive distribution) Un-
der the Bayesian model(1), the posterior predictive distri-
bution at a vector of unsampled locationsxu ∈ Dn

e from
samplesy

s
is a shifted Student t distribution withν + m

degrees of freedom and variance given by

Var[y
u
|y

s
] = ϕ(y

s
, xs)φ(x),

whereϕ(y
s
, xs) ∈ R depends on thenumberof unsampled

measurements, but not on their locations or values, and
φ(x) ∈ R

(n+m)2 admits the expression

log det (φ(x)) = log det (Υ) + log det (K)−

− log det (Υs) − log det (Ks) . (5)

Here Υ, respectivelyΥs, is the inverse of the posterior
covariance matrix for the parameter vectorβ, given the all
the data, respectively the sampled data. Explicitly,

Υ = K
−1
0 + FK

−1
F

T andΥs = K
−1
0 + FsK

−1
s F

T
s .

The first multiplicand in the posterior predictive variance,
ϕ(y

s
, xs) ∈ R, informs the posterior distribution ofσ2.

The second,φ(x) ∈ R
n×n, is the covariance matrix of the

posterior predictive distribution, conditional onσ2.
Consider now the situation at timestepk, in which n

samples have already been taken at each ofk − 1 previous
timesteps, and we wish to choose the best locations for the
next set of measurements. In the notation of Section II-B, the
number ofunsampledmeasurements isn, while the number
of sampledmeasurements ism = n(k − 1). Identifying
terms in (4), the posterior predictive entropy can be written,
E = 1

2 log det (φ(x)) + M(y
s
, xs), whereM(y

s
, xs) does

not depend on the locations or values of the new samples.
Given past measurements at locationsxs, it is desirable to
take the next measurements at locationsxu which maximize
log det (φ(x)). This function, which we call theconditional
entropy, is invariant under permutations ofxu, so we are free
to choose any ordering to facilitate computation.

Note from (5) thatlog det (φ(x)) does not depend on the
values of the measurements,only on their locations, and that
the last two terms do not depend on the new locations at all.
Thus we are interested in maximizing

Ẽ = log det (Υ) + log det (K) , (6)

over potential measurement sites. However, the full dis-
tributed computation of these terms or their gradients over
the robotic sensor network is not straightforward. We
show later that the termlog det (Υ) can be handled using
known distributed computation tools. To deal with the term
log det (K), we follow the route presented next.

B. Alternative criterion for adaptive design

In this section, we propose an alternative aggregate objec-
tive function to maximize the posterior predictive entropyat
each timestep. LetH(k) : Dn → R be defined by

H(k)(P ) = log det (Υ) −
1

2
tr
(

(K − I)
2 )

, (7)

where the matricesΥ = Υ(k)(P ) and K = K
(k)(P ) are

calculated using the spatial positionsP ∈ Dn at timek + 1
for unsampled locations. We avoid the explicit functional
notation for ease of exposition.

Proposition IV.2 (H(k)(P ) is a second order approxima-
tion of Ẽ) The functionH(k) is a second order approximation
of Ẽ over the regionT (k) = {P ∈ Dn | ‖K‖F < 2} in



the sense that− 1
2 tr

(

(K − I)
2 )

is the second order Taylor
approximation oflog det (K).

Throughout the sequel, we assumeP ∈ T (k). As informal
justification, we note that it can be shown that under the
(n∗(k−1))2

2 -dimensional gradient flow of the mapA 7→
log det (A) on correlation matrices, the level sets of the
Frobenius norm are positively invariant.

C. Smoothness properties ofH(k)

Here we study the smoothness properties ofH(k) and
provide an expression for its gradient. Letpi:l, l ∈ {1, . . . , d}
denote thelth coordinate ofpi. For notational simplicity, let
∇i:l denote the partial derivative operator with respect topi:l,
i.e.,∇i:l = ∂

∂pi:l
, and let∇i denote the gradient operator with

respect topi, i.e., ∇i = (∇i:1, . . . ,∇i:d)
T . The following

result establishes the smoothness ofH(k).

Proposition IV.3 Assume thatf1, . . . , fp and the covariance
of Z are C1 with respect to the spatial positions of their
arguments. ThenH(k) is C1 on Ω(k). Furthermore, the
gradient,∇H(k) at P may be written as thend-dimensional
vector,∇H(k)|P =

(

(∇1H(k)(P ))T , . . . , (∇nH(k)(P ))T
)T

,
where the partial derivatives take the form,

∇i:lH
(k)(P ) = tr

(

Υ−1∇i:lΥ
)

−

−
1

2
rowi (K − I) coli (∇i:lK) , where

∇i:lΥ = FK
−1∇i:lF

T +
(

FK
−1∇i:lF

T
)T

−

− FK
−1 (∇i:lK)K−1

F
T .

Here the matrix partials are taken component-wise.

Lemma IV.4 Under the assumptions of Proposition IV.3,
assume, in addition, that the partial derivatives off1, . . . , fp

and the covariance ofZ are C1 with respect to the spatial
positions of their arguments. Then the mapP → ∇H(k)|P
is globally Lipschitz onΩ(k).

V. A DAPTIVE SAMPLING VIA DISTRIBUTED ENTROPY

OPTIMIZATION

The functionH(k) depends on all of its arguments as well
as all of the past measurement locations (xs) in a nontrivial
and nonlinear way. In this section, we show how bothH(k)

and∇H(k) may be calculated in a distributed way overN .
This allows us to propose a distributed projected gradient
descent algorithm which ensures that measurements are taken
at local minima ofH(k) over Ω(k).

A. Distributed calculations

Here, we describe a distributed method for calculating
H(k) and its gradient. In general, the matrices involved in
the calculation depend on samples and locations known to
multiple nodes. Furthermore, multiple samples and locations
are known to each node. Distributed consensus algorithms
may be performed in a similar manner whether each node
knows one element or multiple elements, as long as the
network is connected and each element is known by exactly
one node. SinceV(Q) describes a partition of the physical

space, we may partition all measurement locations by region.
Thus for each(s, t) ∈ iF(xs), there is exactly onej ∈

{1, . . . ,m} such thats ∈ Vj(Q). Let R
(1:k)
in : N → F(N)

andR
(k+1)
in : N ×Dn → F(N) be defined as follows,

R
(1:k)
in (j)={i ∈ {1, . . . , nk} | xs:i = (s, t), s ∈ Vj(Q)}

R
(k+1)
in (j, P )={i + nk | i ∈ {1, . . . , n} andpi ∈ Vj(Q)} .

These index sets list columns of the matricesK andF which
correspond to past (R

(1:k)
in ) and hypothetical future (R(k+1)

in )
sample locations in thejth Voronoi cell. With a slight abuse
of notation, defineR(1:k+1)

in : N×Dn → F(N) as the union of
the two sets,R(1:k+1)

in (j, P ) = R
(1:k)
in (j)∪R

(k+1)
in (j, P ). The

following result shows how pieces ofH(k) can be calculated.

Lemma V.1 Let P ∈ Dn be a potential set of sites for the
next measurement. Assume thatSj for eachj ∈ {1, . . . ,m}
knows the following quantities,

• {xs:i = (s, t) ∈ iF(xs) | d(s, Vj(Q)) < r}
• {pi ∈ iF(P ) | d(pi, Vj(Q)) < r};
• K0 ∈ R

p×p.
Using consensus and distributed JOR [23] algorithms, the
network can calculate the matricesFK

−1 and Υ. After
running the algorithms,Sj has access to the quantities,Υ,
and coli

(

FK
−1

)

∈ R
p, i ∈ R

(1:k+1)
in (j, P ).

Next we present our main distributed computation result.

Proposition V.2 For any j1 6= j2 ∈ {1, . . . ,m}, and any
i1 ∈ R

(1:k+1)
in (j1, P ) and i2 ∈ R

(1:k+1)
in (j2, P ), assume that

if [K]i1i2 6= 0 then Sj1 can communicate withSj2 . Then,
under the assumptions of Lemma V.1,H(k) and its gradient
at P ∈ Dn can be calculated in a distributed manner byN .

B. Distributed gradient descent algorithm

Here we outline a distributed version of the projected
gradient descent algorithm (see, e.g. [24]), which is guar-
anteed to converge to a stationary point ofH(k) on Ω(k).
Let κ

(k)
j : Dn → R denote the partial sum,

κ
(k)
j (P ) =

∑

i∈R
(1:k+1)
in (j,P )

rowi(K
(k)(P ) − I)coli(K

(k)(P ) − I).

Then κ
(k)
j (P ) may be calculated by Sj , and

tr
(

(

K
(k)(P ) − I

)2
)

=
∑m

j=1 κ
(k)
j (P ). Table I describes a

distributed line search with a starting position ofP ∈ Ω.
The maximum stepsize,αmax, ensures that all robots with
nonzero partial derivatives can move the maximum distance.

We are ready to present our technique for a greedy
optimization algorithm. At timestepk, the nodes follow a
gradient descent algorithm to define a sequence of configu-
rations,{P †

l }, l ∈ N, such thatP †
1 is P (k) ∈ Dn, the vector

of current spatial locations of the robotic agents and

P †
l+1 = projΩ

(

P †
l − α∇H(k)|P †

l

)

, α ∈ R≥0,

where α is chosen viaDISTRIBUTED L INE SEARCH ALGO-
RITHM. When |H(k)(P †

l+1) − H(k)(P †
l )| = 0, the algorithm



Name: DISTRIBUTED L INE SEARCH ALGORITHM

Goal: Compute step size for gradient descent ofH(k)

Input: Configuration,P = (p1, . . . , pn) ∈ Dn

Assumes: (i) Connected network of static nodes
(ii) Sj knows H(k)(P ), as well as pi,
∇iH

(k)(P ), rowi(K−I) andΩ
(k)
i for each robot

within communication range
(iii) Shrinkage factorτ , toleranceθ ∈ (0, 1), and
prior β-correlation matrix,K0 known a priori

Uses: (i) p′
i(α, P ) = proj

Ω
(k)
i

(pi + α∇iH
(k)(P ))

(ii) Square distance of robots enteringVj(Q),

dj (α, P ) =
X

i∈{1,...,n} such that
p′

i(α,P )∈Vj(Q)

‖p′
i(α, P ) − pi‖

2

Output: Step size α ∈ R, next configuration
P ′(α, P ) = (p′

1(α, P ), . . . , p′
n(α, P ))T ,

andH(k)(P ′(α, P )).
Initialization

1: S1, . . . , Sm use consensus to calculate the quantity

αmax = max
˘

‖∇iH
(k)(P )‖−1

˛

˛∇iH
(k)(P ) 6= 0

¯

umax

For j ∈ {1, . . . , m}, nodeSj executes concurrently

1: α = αmax

2: repeat
3: calculatesdj (α, P )2

4: calculatesΥ according to Lemma V.1
5: calculatesκ(k)

j (P ′(α, P ))
6: executes consensus algorithm to calculate the following:

tr
`

(K − I)2
´

=

m
X

j=1

κ
(k)
j (P ′(α, P ))

‚

‚P − P
′(α, P )

‚

‚

2
=

m
X

j=1

dj (α, P )2

7: H(k) (P ′(α, P )) = log det (Υ) + tr
`

(K − I)2
´

8: ν = θ
α
‖P − P ′(α, P )‖

2
−H(k)(P ′(α, P )) + H(k)(P )

9: if ν > 0 then
10: α = ατ

11: until ν ≤ 0

TABLE I

DISTRIBUTED L INE SEARCH ALGORITHM.

terminates, and the nodes setP (k+1) = P †
l+1. By the end

of this calculation, each node knows the identity of robotic
agents in its Voronoi cell at timestepk+1. NodeSj transmits
pi(k + 1) to robot Ri, which then moves to that location
between timesteps. The overall algorithm is in Table II.

Proposition V.3 The DISTRIBUTED PROJECTED GRADIENT

DESCENT ALGORITHM is distributed over the networkN .
Moreover, under the assumptions of Lemma IV.4, any exe-
cution is such that the robots do not collide and, at each
timestep after the first, measurements are taken at stationary
configurations ofP 7→ H(k)(P ) over Ω(k).

Name: DISTRIBUTED PROJECTED GRADIENT
DESCENTALGORITHM

Goal: Find a local minimum ofH(k) within Ω(k).
Assumes: (i) Connected network of nodes and robots

(ii) Static nodes deployed overD such that
R ≥ max

i∈{1,...,m}
{CR(Vi(Q))} + umax, initial

configurationP (1) ∈ Dn

(iii) Line search shrinkage factorτ , tolerance
θ ∈ (0, 1), and prior β-correlation matrix,K0

known a priori by all nodes.

At time k ∈ Z≥0, robot Ri executes:
1: takes measurement atpi(k)
2: sends position toSj , wherepi(k) ∈ Vj(Q)
3: receives next locationpi(k + 1)
4: moves topi(k + 1).

At time k ∈ Z≥0, nodeSj executes:
1: collects location from eachRi with d(pi(k), Vj(Q)) < umax

as well as locations of nearby agents
2: updatesR(k+1)

in (j, P ) andR
(1:k+1)
in (j)

3: calculatesΥ (cf. Lemma V.1)
4: computesκ(k)

j

“

P (k)
”

, and thenH(k)
“

P (k)
”

via consensus

5: setsPnext = P (k)

6: repeat
7: storesPcur = Pnext andH(k)(Pcur) = H(k)(Pnext)

8: calculates−∇iH
(k)(Pcur) for eachi ∈ R

(k+1)
in (j, Pcur) (cf.

Prop. V.2)
9: runs DISTRIBUTED L INE SEARCH ALGORITHM at Pcur to

get α, Pnext, andH(k)(Pnext)
10: until |H(k)(Pnext) −H(k)(Pcur)| = 0
11: setsP (k+1) = Pnext

12: conveyspi(k + 1) to Ri for eachi ∈ R
(k+1)
in (j, Pcur)

TABLE II

DISTRIBUTED PROJECTEDGRADIENT DESCENTALGORITHM.

C. Simulations

We implemented theDISTRIBUTED PROJECTEDGRADIENT

DESCENT ALGORITHM in several simulations. The one pre-
sented here was run withd=2 spatial dimensions,m=
10 static nodes,n = 30 robotic agents, and the domain
D = {(0, .1), (2.5, .1), (3.45, 1.6), (3.5, 1.7), (3.45, 1.8),
(2.7, 2.2), (1, 2.4), (0.2, 1.3)}. We used the separable co-
variance function defined byCov[Z(s1, t1), Z(s2, t2)] =
Ctap(‖s1 − s2‖, 0.5)Ctap(|t1 − t2|, 6.5), where

Ctap(δ, r) =

{

e−
δ

10r

(

1 − 3δ
2r + δ3

2r3

)

if δ ≤ r,

0 otherwise.

This is a tapered exponential function belonging to the class
of covariance functions suggested in [25]. We usedω = 0.02,
and umax = 0.2. For the mean regression functionsfi, we
usedf((x, y), t) = (1, sin(2πx), sin(2πy))T .

Fig. 1 shows the trajectories taken by the robots. We
compare in Fig. 2 the performance of our algorithm against
two algorithms that pre-plan agent trajectories. The first is
a static approach in which the agents spread out around the
region and remain in place. The second is a lawnmower-
type algorithm in which the agents march back and forth
across the region in evenly space (horizontal) lines. In all
cases, two agents lost contact part way through. Note that
both dynamic algorithms perform much better than the static
one, but the gradient descent algorithm performs better than



(a) (b)

Fig. 1. (a) Trajectories of all robots, and (b) two representative trajectories,
both from the same run of the distributed projected gradient descent
algorithm. The filled squares represent the (static) positions of the nodes,
and the filled triangles show the starting positions of the robots. Two agents
were lost in progress, their final position designated by X’sin plot (a).
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Fig. 2. Plot (a) shows the progression ofH(k) as k increases, resulting
from the static (triangle), lawnmower (diamond), and gradient descent (star)
approaches. For the gradient descent algorithm only, plot (b) compares the
value of Ẽ (stars) against the approximation,H(k) (diamonds).

the lawnmower. This is due to the facts that the gradient
algorithm reacts to the basis functions of the model and that
the lawnmower does not compensate for the dropped agents.

VI. CONCLUSIONS AND FUTURE WORK

We have designed a distributed algorithm for adaptive
sampling of spatiotemporal processes with unknown mean
and covariance known up to a scaling parameter. At each
time step, an heterogeneous network composed of static
nodes and mobile agents optimizes an aggregate objective
function to maximize the information provided by future
data. We have shown that the objective function is a second-
order approximation of the conditional entropy, defined as
the posterior predictive entropy conditional on the covariance
scaling parameter. We have characterized the correctness
of the proposed coordination algorithm and provided sev-
eral simulations of its performance. Immediate future work
will investigate the invariance of the regionT (k) under
the gradient ofH(k), comparison against a smarter, self-
adjusting lawnmower algorithm, and quantification of the
communication and computational complexity of the algo-
rithms. From the preliminary experiments reported here, we
found that the JOR algorithm seems to account for the
vast majority of the communication complexity. Ongoing
work will explore the possibility of reducing the overhead
of this special case of the JOR algorithm. In the longer
term, we plan to continue exploring methods to cooperatively
estimate stochastic processes considering statistical models
with increasing generality.
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