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Abstract— This work deals with a group of mobile sensors sensor network with centralized control estimating a stati
sampling a spatiotemporal random field whose mean is un- field from measurements with both sensing and localization

known and covariance is known up to a scaling parameter. The g |y [13], a deterministic model is used, where the
Bayesian posterior predictive entropy provides a direct mapping d | t in the f f K del
between the locations of a new set of point measurements random e€lements Com_e ',n e Orm 9 unknown mode
and the uncertainty of the resulting estimate of the model Parameters, and localization error is included. Here we

parameters. Since the posterior predictive entropy and its treat the field itself as random with a Gaussian process
gradient are not amenable to distributed computation, we model. [14] considers optimal sampling trajectories from
propose an alternative objective function based on a Taylor 5 harameterized set of paths. In [15], [16] the focus is on
series approximation. We present a distributed strategy for - . S
sequential design which ensures that measurements at each eSt'ma_t'r_]g deterministic fields when the measur,ememmtake
timestep are taken at local minima of the objective function. DY individual robots are uncorrelated. [17] discusses the
The technical approach builds on a novel reformulation of the tracking of level curves in a noisy scalar field. In previous
posterior predictive entropy. work we have considered optimal trajectories for minimigin
the average error variance of random field estimates using
models with known [18] and unknown [19] covariance.
Problem motivation: The growing availability and so-  Statement of contributiond/Ve model the physical process
phistication of robotic sensor technology is enabling a newf interest as a spatiotemporal random field with mean
generation of statistical experimentation. We envisiofr neunknown and covariance known up to a scaling parameter
works of mobile sensing platforms executing intelligenhsa and estimate it from a Bayesian perspective. First, we exten
pling missions, taking advantage of the robust adaptgbilita known univariate representation of the posterior predic-
of multi-agent systems. We are particularly interested itive entropy to the multivariate case. From this result, we
strategies which use modern statistical techniques to gidevelop an aggregate objective function that quantifies the
a full accounting of predictive and inferential uncertgint goodness of network configurations for the estimation of the
This work proposes an entropy-based cooperative strateggatial field. We show that the proposed objective function
for optimal sampling of spatiotemporal processes. Instatiis a second-order approximation of the posterior predictiv
tical optimal design, the optimality criteria for estim@ii entropy, characterize its smoothness properties, andidesc
depend upon the goal of the experiment. Here we focus @n distributed method to compute it. We employ average
learning the parameters of the model and define optimaligonsensus and distributed Jacobi overrelaxation algosith
in terms of entropy as a measure of information aboub compute the objective function and its gradient in a
the model Since entropy is inherently linked to the crosddistributed way across a network composed of robotic agents
correlation of measurements, the main challenge we faceasd static nodes. Finally, we synthesize a distributed anoti
the synthesis of distributed adaptive sampling strategies coordination for adaptive sampling based on one-stepehhea
Literature review: Complex statistical techniques existlocal optimization of data collection. We conclude illating
to model the evolution of physical phenomena. Of parthe performance of the algorithm in simulation.
ticular relevance to this work are [1], [2], [3], regarding
statistical models, and [4], [5], regarding optimal desigfn Il. PRELIMINARY NOTIONS
experiments. The concept @daptive desigris generally Let R, R.p, and R>( denote the set of reals, positive
approached with one of two goals in mind. Minimizingreals and nonnegative reals, respectively. fFor R? and
uncertainty in field estimates [6], [7] over new measurer € R, let B(p,r) be the closed ball of radius r
ments results in A-optimal designs, while maximizing thecentered ap. Given two vectorsu = (u1,...,u,)", and
information gained about the model [8] results in D-optimab = (vy,...,v)7, a,b € Z-(, we denote by(u,v) the
designs. Comparisons of these two methods may be fousdncatenatiorfu, v) = (uy,. .., uq,v1,- .., ). We denote
in [9], [10]. In this paper, we concentrate on the latter ia thby 0S5 the boundary of a se$. The e-contractionof a set
form of entropy maximization. S, with € > 0, is the setS. = {g € S| d(g,05) > €}. Let
In cooperative control, various works consider mobileroj, : R™ — 2 denote the orthogonal projection onto
sensor networks performing spatial estimation tasks. [11fe set(), i.e., proj,(z) = argmin,cq ||z — y||. A convex
introduces performance metrics for oceanographic survepslytopeis the convex hull of a finite point set. For a bounded
by autonomous underwater vehicles. [12] considers a robotetS c R?, we letCR(.S) denote thecircumradiusof S. We
denote byF(S) the collection of finite subsets &f. With a
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a compact and connected sBt C R¢, d € N. Since we spatial correlation range; € R, i.e., ||s; — s;|| > r =
deal with a process which varies over time, et=D xR [K,];; = [K;];; = 0. The matrixF, € R?*™ is determined
denote the space of points ov&r and time. TheVoronoi by a set ofp € N known functionsf; : D, — R evaluated
partition V(s) = (Vi(s),...,V.(s)) of D generated by the at the locationg,. In order to ensure an analytical form for
pointss = (s1,...,s,) is defined by the predictive distribution, we assume conjugate priors on

o the parameters,
Viis) ={a €D llg—sil <lla—s;l, Vi #1}.

EachV;(s) is called aVoronoi cell Two pointss; ands; are 2’ 9
Voronoi neighborgf their Voronoi cells share a boundary. Here 3, € R?, K, € RP*?, andq, v € R, are constants,
For a random variabley, let E[Y'] denote the expectation .,own astuning parametergor the model.
of ¥ and Var[Y] its variance. We use the normal, inverse - Gjen this prior information, consider a hypothetical
gamma, and Student statistical distributions [20]. We lg§
N, (a, B) denote then-variate normal distribution with unsampled Let y € R” denote these future mea-
mean vectora € R™ and covariance matrb € R™™™. g, .ements at cofresponding space-time locatians =
We letI'~*(a, b) denote the inverse gamma distribution Wlth((s dot)s e (Sumsta))T € D, and letK,, F, denote
shape parameter and scale parametér Let ¢, (a, B, c) v e e Y e
denote am-variate shifted Student t distribution with mean
a, covariance matrix<; B, andc degrees of freedom.

v oqu

Blo ~ N, (By,0°Ko) and o ~ T (f 7). @)

ector of n € N future measurements, which we call

the correlation and basis matrices analogous to the sampled
versions. Note that the prior distributions are the same for

both sets of measurements. Lgt= (y',y")" andz =

A. Basic linear algebraic facts (zT, 21T denote the combined vectors of measurements

d locations, and leK and F denote the correlation and

sis matrices of the combined locations. K&, = KI, €
R™*™ denote the cross-covariance betwgerandy .

From the joint distribution ofy and the prior informa-
tion, we may compute the posterior predictive distribution
p(y,ly,), of y once the sampleg have been measured.
Here, the notatiop(a|b) denotes the conditional probability
of random variable or vectar givenb. An explicit form for
p(y,ly,) will be described in Section IV.

Here we present some basic facts from linear algebra [2
that will be useful throughout the paper. Let];; denote
the ¢, jth element of a matrixA and det (A) denote its
determinant. For a matrid € R"*™ let |A||r denote
the Frobenius matrix norm|A|r = /tr (AT A), where
tr(A) denotes the trace of. Given a partitioned symmetric
matrix A = [ % €], the Schur complement aB in A is

CT
(B|A) =D —cfB10.

B. Bayesian modeling of space-time processes Ill. PROBLEM STATEMENT

Let Z denote a random space-time process taking values|, saction 111-A we introduce the robotic network model

on De. W(_e deal Wi.th l:_)othsampled(_kn_own_) andunsampled and in Section IlI-B we detail the overall network objective
(hypothetical) realizations of. To distinguish, we attach the

subscriptss and u to associated vectors and matrices. LeAA. Robotic sensor network model

Y, = Usi1s-- Ys:m)” € R™ bem € N samples taken from  Consider a group(S;, ..., S, } of m € N static nodes

Z at corresponding locations, = (zs.1,...,Z«m)" € D", deployed in a convex polytop® < R% Let Q =

With z.; = (s, t:), 7 € {1,...,m}. Optimal design is the (q,,...,q,,) € D™ denote the positions of the static nodes.

process of choosing locations to take measurements in orgg$sume that each node has a limited communication radius,

to reduce the uncertainty of the resulting statisticalrefiee. R < R.,, and that they are positioned so that each one can

Since uncertainty drives the problem, it should be modelesbmmunicate with its Voronoi neighbors.

as accurately as possible. In addition to the static nodes, consider a group
In a Bayesian setting, the prediction takes the form of &Rr,,... R,} of n robotic sensor agents. The position of

distribution, called the posterior predictive [22]. If tiield roboti € {1,...,n} at timet € R is denoted byp;(t) € D.

is modeled as a Gaussian process with known covariancihe robots take point measurements of the spatial field at

the posterior predictive mean corresponds toBkst Linear discrete instants of time il>o. Between measurement in-

Unbiased Predictar and its variance corresponds to thestants, each robot moves according to the discrete dynamics

mean-squared prediction error. If the covariance of thel fiel

is not known, however, few analytical results exist which pi(k +1) = pi(k) + ui(k),

take the full uncertainty into account. The model we presemfhere ||u;|| < umax for SOomeumax € Rso. The communica-

here, extending [1], [2], is one of the few which allows fortion radius of the robotic agents is alg Each node needs

uncertainty in the covariance process and still produces @@ be able to communicate with any robot which may be in

analytical posterior predictive distribution. its Voronoi region at the next timestep. To that end, assume
We assume that the samples are distributed as R> max {CR(Vi(Q))} + umax A3)
T ie{l,...,m} !
gs ~ Nm, (F?ﬂanKS) . (1)

The robots have some limited capability of sensing each
Here 3 € R? is a vector of regression parameters, afid=  other, so that a robot knows the positions of other robots
R+ is the variance parameter, both unknodf, € R™*™  within a distance oRumax. At discrete timesteps, each robot

is the known sample correlation matrix. We assume a finiteends the measurement and location to static nodes within



communication range, along with the current locations of\/herega(ygﬁs) € R depends on theaumberof unsampled
any other sensed robots. The nodes cooperatively compub@asurements, but not on their locations or values, and
control vectors, then relay them back to the robots. The ims(z) € R(+m)* admits the expression
plementation does not require direct communication betwee
robotic agents. We refer to this network models log det (¢(z)) = log det (T) + log det (K) —

To avoid agent collision, we further restrict the motion of —logdet (T5) —logdet (K). (5)
the robotic agents as follows. Consider the locati®® =
(p1(k),...,pn(k))T. Between timestep and timesteg -1,
roboti moves within the regionﬂgk) C D defined by,

A = (Vi(PM))j2 N B(pi(h), tuma),

Here Y, respectivelyYy, is the inverse of the posterior
covariance matrix for the parameter vect@r given the all
the data, respectively the sampled data. Explicitly,

, T=K,'+FK'F’ andY, = K;' + F.K;'FT.
where (V;(P®)),,, denotes the w/2-contraction of
V;(P™)). This requirement combines the restriction imposedhe first multiplicand in the posterior predictive variance
by umax With @ minimum distance requirement such that anyp(gs,gs) € R, informs the posterior distribution of?2.
two robots are always at leastaway from each other [18]. The secondg(z) € R™*", is the covariance matrix of the
Let Q%) = [T", ¥ c D" denote the region of allowed posterior predictive distribution, conditional @r?.
movement of all the robotic agents at timesteg N. Consider now the situation at timestdp in which n
B. Network objective s_amples have aIready been taken at each of1l pr_evious
’ timesteps, and we wish to choose the best locations for the
Between measurement instants, we would like to movigext set of measurements. In the notation of Section II-8, th
the robots to those locations which ensure a maximum gagymber ofunsampledneasurements is, while the number
in information appropriate to the goal of the experimentgf sampledmeasurements isn = n(k — 1). Identifying
When the goal is to make inference about model paramgsrms in (4), the posterior predictive entropy can be witte
ters, we would I.|ke an objective function which maximizesg — 1 logdet (¢(z)) + M(y,,z,), where M(y ,z,) does
gain in information about the model. A generally acceptefot depend on the locations or values of the new samples.
practice [3], [8], [9] is to choose a set of measuremengiven past measurements at locations it is desirable to
locations which maximize the entropy of the joint posteriokake the next measurements at locatiopsvhich maximize
predictive distribution. Intuitively, to maximize the gain o4 det (¢(z)). This function, which we call theonditional
information we choose to measure those locations aboghtropy is invariant under permutations of , so we are free
which we currently know the least. The entropy of an artp choose any ordering to facilitate computation.
bitrary continuous distribution with pdi(Y’) can be written Note from (5) thatlog det (¢(z)) does not depend on the
as€ = —E [log 733, whereh(Y') is a reference measure values of the measurementsly on their locations, and that
chosen to ensure invariance under affine transformatioftse last two terms do not depend on the new locations at alll.
of Y. When the data come from a multivariate Student Thus we are interested in maximizing

distribution,y ~ t,, (1, ¥, 6), then the entropy is [3], .
= ( ) & =logdet (T) + logdet (K), (6)

1
€= §logdet((6_n+1)‘l})' ) over potential measurement sites. However, the full dis-
IV. A DISTRIBUTED CRITERION FOR ONESTER-AHEAD tributed computation of these terms or their gradients over
DATA COLLECTION the robotic sensor network is not straightforward. We
how later that the ternbgdet (T) can be handled using
nown distributed computation tools. To deal with the term
log det (K), we follow the route presented next.

In this section, we derive an expression for the entropy q?
the joint posterior predictive distribution given the mo(B.
As this function is not amenable to distributed computatjon
we propose instead an a|tel’native Wthh iS. We f|n|Sh WltB Alternative criterion for adaptive design
important smoothness properties of our proposed objective

function, including an expression for its gradient, In this section, we propose an alternative aggregate objec-

tive function to maximize the posterior predictive entray

A. Entropy of the random field estimation each timestep. Let((*) : D™ — R be defined by
We begin by extending the univariate results of [2] to *) 1 9
provide a multivariate posterior predictive distributiorth H(P) = logdet (1) — 5”( (K-1I)°), (")

a particularly useful form for the variance. )

where the matrice§’ = T®)(P) and K = K®*)(P) are

Proposition V.1 (Posterior predictive distribution) Un-  calculated using the spatial positiof’se D™ at time k + 1

der the Bayesian mod€L), the posterior predictive distri- for u_nsampled locations. y\_/e avoid the explicit functional

bution at a vector of unsampled locations, € D from notation for ease of exposition.

samplesy is a shifted Student t distribution with + m

degreesgf freedom and variance given by Proposition IV.2 (H*)(P) is a second order approxima-

tion of £) The functior?{*) is a second order approximation

Varly ly ] = o(y,, z,)6(2), of £ over the region7®) = {PeD"||K|r <2} in



the sense tha%%tr( (K- I)2) is the second order Taylor space, we may partition all measurement locations by region
approximation oflog det (K). Thus for each(s,t) € ir(z,), there is exactly ong €
{1,...,m} such thats € V;(Q). Let RU"® : N — F(N)

(k) i
Throughout the sequel, we assuiiiec 7'%). As informal an dR (k1) N x D" — F(N) be defined as follows,

justificatiQOn, we note that it can be shown that under th

(nx(k=1)" _dimensional gradient flow of the map R ’“>( N={ic{l,...,nk} | zs; = (s5,1), s € V;(Q)}

logdet (A) on correlation matrices, the level sets of the (k+1)

Frobenius norm are positively invariant. Ry "5, P)={i+nk | i€{l,...,n}andp; € V;(Q)}.

These index sets Il%columns of the matrigéandF whu;h

) correspond to pas ) and hypothetical futureR )
Here we study the smoothness propertiest) and sample locations in thgth Voronoi cell. With a sllght abuse

provide an expression for its gradient. ngu l e.{L ,d} of notation, defmeR(l FHD L Nx DR s F(N) as the union of

denote thdth coordinate op;. For notational simplicity, let the two setsR(l k+19( p) = R k)( ) R(k+1)( P). The

V;.; denote the partial derivative operator with respegt;{o in )
ie. V., = -2, and letv; denote the gradient operator with following result shows how pieces &' can be calculated.

resplect tOPblI’ Ihe vh (Vi 1h’ e s?Z:SF a)". The following | ¢yyma v1 Let P € D" be a potential set of sites for the
result establishes the smoothnes next measurement. Assume tisatfor eachj € {1,...,m}
knows the following quantities,

C. Smoothness properties Bft%)

Proposition 1V.3 Assume thafi, ..., f, and the covariance _ ,
of Z are C'! with respect to the spatial positions of their ° {xf:i = (‘;’t) Edmv@f) | d(s’vj(_Q)) <r}
arguments. Ther®) is C' on Q®). Furthermore, the ° {pi € iv(P) | d(pi, V;(Q)) <r};

X
gradient, VH(*) at P may be written as thed-dimensional ~ ° Ko € RPZP. o _
vector, VH®) | p = (Vi HW(P)T,..., (VnH(’“)(P))T)T, Using consensus and distributed JOR [23] algorithms, the

network can calculate the matricecBK—! and Y. After

where the partial derivatives take the form, : X o
running the algorlthmsS] has access to the quantitie¥,

ViH®(P) = tr (Y7, 1) — andcol; (FK~!) € R?, i € RL* (5, P).
1
= 5row; (K —I)col; (Vi K), where Next we present our main distributed computation result.
-1 T —1 T
ViaT =FK™ Vi Fo + (FK Vi F ) - Proposition V.2 For any j; # j» € {1,...,m}, and any
—~FK ' (VuK)K'F”. iy € RY™Y (i P) andiy € R “1)(] P), assume that

if Ky, # 0 then S;, can communlcate witly;,. Then,
under the assumptions of Lemma VH*) and its gradient
at P € D" can be calculated in a distributed manner A

Here the matrix partials are taken component-wise.

Lemma IV.4 Under the assumptions of Proposition V.3,

assume, in adgition, that the gartial derivativesfof. . ., f,,_ B. Distributed gradient descent algorithm
and the covariance of are C*_ with respect to the spatial Here we outline a distributed version of the projected

it i (k)
gosigzgﬁ oilthsecl:]_?rg;gar;ts. Then the mBp— VH!|p gradient descent algorithm (see, e.g. [24]), which is guar-
IS 9 y Lipschitz ' anteed to converge to a stationary point7ef®) on Q*)

V. ADAPTIVE SAMPLING VIA DISTRIBUTED ENTROPY  Let fi(»k) : D" — R denote the partial sum,
OPTIMIZATION
M (P) = row,(K® (P) — Icol;(K®(P) — I

The function(¥) depends on all of its arguments as well r )= ‘ (1;) ‘ 4 () ~ I)cok( ) =D,
as all of the past measurement locationg) (n a nontrivial i€ Ry, (4,P)
and nonlinear way. In this section, we show how bttt Then x® (P)

(k) J

and VH'*) may be calculated in a distributed way ove. k) () ,
This allows us to propose a distributed projected gradleﬁ'i(( (P)—1) ) =2j=1 %, (P). Table | describes a

descent algorithm which ensures that measurements are takéstributed line search with a starting position Bf € 0.
at local minima ofH*) over Q) The maximum stepsizeymax, ensures that all robots with

nonzero partial derivatives can move the maximum distance.

may be calculated by S;, and

A. Distributed calculations

Here, we describe a distributed method for calculating We are ready to present our technique for a greedy
H™*) and its gradient. In general, the matrices involved imptimization algorithm. At timesteg, the nodes follow a
the calculation depend on samples and locations known tpadient descent algorithm to define a sequence of configu-
multiple nodes. Furthermore, multiple samples and looatio rations,{PlT}7 [ € N, such thatP1T is P(¥) ¢ D", the vector
are known to each node. Distributed consensus algorithro$ current spatial locations of the robotic agents and
may be performed in a simil_ar manner whether each node PzT+1 = projq, (plT _ aVH(’“)|P+) , a € Rso,
knows one element or multiple elements, as long as the t
network is connected and each element is known by exactiyhere o is chosen viaDISTRIBUTED LINE SEARCH ALGO-
one node. Since’(Q) describes a partition of the physical Ritim. When K™ (P, ) — H®) (P])| = 0, the algorithm



Name: DISTRIBUTED LINE SEARCH ALGORITHM
Goal: Compute step size for gradient descent-Sf
Input: Configuration,P = (p1,...,pn) € D"
Assumes: (i) Connected network of static nodes
(i) S; knows H®(P), as well as p;,
V. H®) (P), row; (K—TI) andQ!*’ for each robot
within communication range
(iii) Shrinkage factorr, tolerancef € (0, 1), and
prior g-correlation matrix, Ko known a priori
Uses: (i) pi(e, P) = proj, ) (pi + aVH™ (P))
(i) Square distance of robots enterifig(Q),
dj(@P)= > |Ipi(a,P) = pi?
ief{l,..., n} such that
pi (e, P)EV;(Q)
Output: Step size « € R, next -configuration
P(a, Pg = i (a, P), ... ,ph(c, P))T,
andH'"®) (P'(a, P)).
Initialization
1. Si,...,Sm, use consensus to calculate the quantity

11: until » <0

amax = max { | ViH® (P)[| 7 [ViH®) (P) # 0 }umax

Forj € {1,...,m}, nodesS; executes concurrently
1! o = amax
2: repeat
3:  calculatesd; (o, P)?
4:  calculatesY according to Lemma V.1
5:  calculatess{" (P'(a, P))
6: executes consensus algorithm to calculate the following:
k /
tr (K- 1D)°) =3 " (P'(a, P))
j=1
[P = P'(c, P)||” = > dj (o, P)?
j=1
7. H® (P'(a, P)) =logdet (Y) +tr (K — I)?)
8 v=2|P—P(a,P)|?~H" (P (a,P))+HF(P)
9: if v > 0then
10: o= aT

TABLE |
DISTRIBUTED LINE SEARCH ALGORITHM.

Name: DISTRIBUTED PROJECTED GRADIENT
DESCENTALGORITHM o

Goal: Find a local minimum of{® within Q).

Assumes: (i) Connected network of nodes and robots

(i) Static nodes deployed oveD such that
R> {rPax {CR(V5(Q))} + wmax initial
1€

,,,,, m}
configurationP*) e D"
(i) Line search shrinkage factor, tolerance
0 € (0,1), and prior g-correlation matrix,Ko
known a priori by all nodes.

NG A wWN

10:
11:
12:

At time k € Z>o, robot R; executes:
1:
2:
3:
4.

At time k € Z>(, nodeS; executes:
1:

takes measurement pi(k)

sends position t&;, wherep; (k) € V;(Q)
receives next locatiop; (k + 1)

moves top; (k + 1).

collects location from eacl®; with d(p;(k), V;(Q)) < tmax
as well as locations of nearby agents

- updatesk{" 1) (4, P) and RV ()

in

. calculatesY (cf. Lemma V.1)
: computess

;k) (P(k))’ and therg{® (P(k)) via consensu

sets Buext = P

repeat
StOI‘ESPcur - Pnex[ and H(k) (Pcur) - H(k)(Pnext)
calculates—V,H™® (Puy) for eachi € RE™V (j, Peur) (cf.
Prop. V.2)
runs DSTRIBUTED LINE SEARCH ALGORITHM at Pey tO
get o, Prext, andH®) (Prex)

until [H™ (Prext) — H® (Pew)| = 0

setsP*F D) = P

conveysp;(k + 1) to R; for eachi € R (j, Pour)

D

TABLE Il

DISTRIBUTED PROJECTEDGRADIENT DESCENTALGORITHM.

C. Simulations

We implemented théiSTRIBUTED PROJECTEDGRADIENT
DESCENTALGORITHM in several simulations. The one pre-
sented here was run witi=2 spatial dimensionsm =
10 static nodes,n =30 robotic agents, and the domain
D ={(0,.1), (2.5,.1), (3.45,1.6), (3.5,1.7), (3.45,1.8),
(2.7,2.2), (1,2.4), (0.2,1.3)}. We used the separable co-
variance function defined b¥’ov[Z(s1,t1), Z(s2,t2)] =
Ctap(HSl — 82|‘,0.5)Otap(‘t1 — 1f2|,6.5>7 where

e‘%( —%4—%) ifo <w,
0 otherwise

Crap(6,7) = {

terminates, and the nodes set“*!) = P, ,. By the end This is a tapered exponential function belonging to thesclas

agentS in |tS V0r0n0i Ce” at tlmestépl—l NOdeS] transmits and Umax = 02 For the mean regression functiom’zs we

pi(k + 1) to robot R;, which then moves to that location ysed f((z,y),t) = (1,sin(27z), sin(2ry))7.
between timesteps. The overall algorithm is in Table II.

Proposition V.3 The DISTRIBUTED PROJECTED GRADIENT
DESCENT ALGORITHM is distributed over the network).

configurations ofP — H*) (P) over Q(*),

Fig. 1 shows the trajectories taken by the robots. We
compare in Fig. 2 the performance of our algorithm against
two algorithms that pre-plan agent trajectories. The figst i
a static approach in which the agents spread out around the
region and remain in place. The second is a lawnmower-
type algorithm in which the agents march back and forth
Moreover, under the assumptions of Lemma V.4, any eXgeross the region in evenly space (horizontal) lines. In all
cution is such that the robots do not collide and, at eacréaseS, two agents lost contact part way through_ Note that
timestep after the first, measurements are taken at stagionayoth dynamic algorithms perform much better than the static

one, but the gradient descent algorithm performs better tha
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(@) (b) [3]
Fig. 1. (a) Trajectories of all robots, and (b) two reprea@we trajectories,
both from the same run of the distributed projected gradiesscent 4]
algorithm. The filled squares represent the (static) posstiof the nodes,
and the filled triangles show the starting positions of tHeots. Two agents [5]
were lost in progress, their final position designated by iK'plot (a).
e, [6]
- 200] . e 50 * .
400 ‘e . 100 ty . [7]
1000} -200 '*':::". [8]
5 10 15 20 25 30 -250 5 10 15 20 25 30 [9]
a b
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Fig. 2. Plot (a) shows the progression &%) as k increases, resulting
from the static (triangle), lawnmower (diamond), and gratésscent (star)
approaches. For the gradient descent algorithm only, plot¢mpares the 11

value of £ (stars) against the approximatigk,(*) (diamonds).

the lawnmower. This is due to the facts that the gradiefiy
algorithm reacts to the basis functions of the model and that
the lawnmower does not compensate for the dropped agents.

VI. CONCLUSIONS AND FUTURE WORK (13]

We have designed a distributed algorithm for adaptive
sampling of spatiotemporal processes with unknown medf'!
and covariance known up to a scaling parameter. At each
time step, an heterogeneous network composed of stalig]
nodes and mobile agents optimizes an aggregate objective
function to maximize the information provided by future(ig)
data. We have shown that the objective function is a second-
order approximation of the conditional entropy, defined al’]
the posterior predictive entropy conditional on the cauace
scaling parameter. We have characterized the correctné&
of the proposed coordination algorithm and provided sev-
eral simulations of its performance. Immediate future worlkgj
will investigate the invariance of the regiof*) under
the gradient of{(*), comparison against a smarter, self-zo]
adjusting lawnmower algorithm, and quantification of thé
communication and computational complexity of the algoF1]
rithms. From the preliminary experiments reported here, W[Ez]
found that the JOR algorithm seems to account for the
vast majority of the communication complexity. Ongoing
work will explore the possibility of reducing the overhead?®
of this special case of the JOR algorithm. In the longeps)
term, we plan to continue exploring methods to cooperativel
estimate stochastic processes considering statisticdklsio

S . : [25]
with increasing generality.
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