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Generic Copper Based Gigabit
Link
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*Multigigabit performance is realized by:
*Multi-tap equalizers
*Decision feed back equalizers
*Bandwidth efficient modulation

Link length for most standards is very limited



Copper Based Interconnect

Standards

802.3ae)

Standard Media Bit rate Reach Application

XAUI PCB 3.125G 0.5m Chip-Chip

CEl PCB 6G, 11G 0.2-1.2m Chip-Chip,
Backplanes

SRIO-SRIO-G Serial PCB 1.25, 2.5, 3.125, 5, 0.8-1m Backplane

Rapid 10 6.25G

SATA Ribbon Cable 1.5 G, 3G, 6G 1-2m Bus
Peripherals

Infiniband Bidirectional Serial 2G, 4G, 8G Bus-
Peripherals

10GBASE-CX4 (IEEE 8-Shielded Pairs 4x3.125 G 15m LAN

802.3ak) (“Infiniband”)

1000BASE-T (IEEE CAT5 UTP 1G 100m LAN

802.3ab)

10GBASE-T (IEEE CAT6, CAT7 UTP 10G 55 or 100m LAN




Multi gigabit Multi-mode
GlassFiber links

* Most use relatively small 50-62.5 ym core
graded index fibers and 850 nm VCSELs

« Carefully controlled launch conditions are
required for repeatable, standards-compliant
performance
— Offset launch
— Restricted NA launch
— Annular source emission patterns

* This is due to the low mode mixing in these
fibers and residual fiber index imperfections



10 Gbps link standards using MMF
Glass Fiber

10GBASE-SW | 10GBASE-SR | 10GBASE-SR | 10GBASE-

(0C192) LX4
Wavelength 850 nm 850 nm 850 nm 1320 nm
Core Diameter 50 um 50 um 62.5 um 50 um
Fiber Grade 500 MHz+km 500 MHz+km 160 MHzekm 500 MHz<km
Baud per fiber 9.95328Gbps 10.3125Gbps 10.3125Gbps 3.125Gbps
Max Link Length 82 meters 82 meters 26 meters 300 meters
Lanes 1 1 1 4




. Bit Distance | Bandwidth- | Fiber Source Emitter | Detector
SO m e G b |t/S rate Distance Core Wavelength | Type (Dia)
(Gbps) Product Diameter
POF Results > (o
Km)
1 30m 30 PMMA- | 550 670 nm VCSEL
Gl
1 100m 100 PF-GI 120 850 nm VCSEL | Si-PIN
400 pm
2.2 10 m 22 PMMA- | 1000 650 nm LD
Si
2.2 11.9 26 PMMA- | 1000 780 nm LD Si-PIN
Si 800 pm
25 14.9 37 PMMA- | 1000 780 nm LD Si-PIN
SI 800 um
25 100 m 250 PMMA- | 420 647 nm LD
Gl
25 200 m 500 PMMA- | ---- 645 nm LD Si-APD
Gl
2.5 200 m 500 PF-GI - 1310 nm LD
25 550m 1375 PF-GI 170 1310 nm LD InGaAs-
APD
80 um
25 550m 1375 PF-GI 170 840 nm LD Si-APD
230 pm
3.2 2m 6.4 PMMA- | 500 850 nm VCSEL | GaAs-
Si PIN
3.2 5m 16 SI- 980 850 nm VCSEL | GaAs-
PMMA PIN
7 80m 560 PF-GI 155 930 nm VCSEL | InGaAs-
PIN
16pmx16
Mm
1 100m 1100 PF-GI 130 1300 nm LD InGaAs-
PIN

Gl means Graded Index, SI-Step Index, LD indicates a Fabry Perot type
of semiconductor laser diode, VCSEL stands for Vertical Cavity Surface
Emitting Laser.



POF: Core Concerns and

Recent Results

 How can POF based links take advantage
of superior EMI, EMC, flexibility, weight
and ease of termination cost effectively?

* Tradeoff between core diameter, coupling,
cost and bandwidth
* We have investigated 3 areas:
— Mode Mixing
— Impulse response and DMD
— Coupling



Mode Mixing Coeff. Experiment

« Launch collimated beam into face of fiber and vary the
launch angle

» Critical angle 6, occurs where far field pattern changes
from disk shape to annular shape

* The relationship between critical angle and length is
given by

1
logg,,, = %10gz +log2D?

 Critical angle is currently recorded by observing
transition on a screen with an unaided eye

» Tentative results show mode mixing coefficient to be
several orders of magnitude greater than for glass
fiber with complete mode mixing within ~15 cm for a

straight sample of fiber
[Gambling, Payne, Matsumura, 1975]



Mode Mixing Experiment

Plane Waves
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Example of far field pattern

* For short lengths of fiber, the far field
pattern will change from monotonically
decreasing structure to an annular shape

at a critical launching angle 6,




Fiber Preparation Important

* Several causes for a large increase in

apparent coupling - no ring seen
* Any imperfection on the surface
» Beveled or otherwise under-polished endface
« Stress or bending will cause mode mixing
* Artifacts from the collimator (flare and spots)

« Cladding modes can be present in short
lengths of fiber

« Coated fiber with
optical absorber
(colloidal graphite)




Example of 12 data points

Microsoft Excel - ChromisAsahiOM
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Need Short Fibers to See Rings

* Modal coupling coefficient much higher
than initially thought

 Higher inter-modal coupling coefficient

« Core size variations and perturbations are larger
than in glass fiber

* Frozen-in fluctuations in polymer density,
orientation, and dopant density

« Much more “curl” than glass optical fiber
* Impurities in the core region

« Diffusion tails make core edge less crisp
 Imperfect refractive index profile in POF



GI-POF Fiber RIP

-400 -300 -200 -100 0 100 200 300 400

120 um core sample typical data

Data courtesy




Impulse response Test

* A psec pulsed laser is scanned across the
POF using a short length of SMF

« Carefully gather all of the modes exiting
the fiber onto a photodetector

SMFE-28

POF
Ti:Sapphire p—" | | — PD

‘I.



Amplitude (a.u)

POF Impulse Response
« /75 nm T:sapphire source: 20ps FWHM

 Launched via SMF into the POF

 The 120 micron core is butt coupled to the receiver

* Net DMD is very small

» Better temporal resolution may help; narrower pulse width
and faster receiver

Impulse Response of POF
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POF Impulse Response

«1550nm fiber laser: 2 ps pulse width
*Very close to reference (no fiber)
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Detail of Impulse response

«1550nm fiber laser: 2 ps pulse width
* DMD just observable

POF IPR on a log scale
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Approaches to Concentration

250 um
@ MSM
Lateral Tolerance
o —-
Faolymer
Cptical _
Fiber Axial

Tolerance

e

MSM image courtesy ASTRI used with permission Winstan light
concentrator
TO-46 Package
/ Metalized
molded
1 plastic
7
High-zpeed small-area
OSA Body Fhotodiode

Integral Aspheric Lens [Hogan, et. Al, 2000]



Conclusion

*A variety of solutions exist for low multigigabit rates

850 nm VCSELs and PF-GI POF present the most attractive
solution for 5-10 Gbps

*EMD distance is very short on POFs tested

*Strong mode mixing can lead to relaxed tolerances for
coupling into POF with controlled link bandwidth-length
products

Complicated equalizers are not needed for high bandwidth
POF in the 1-10 Gb/s range for very short reach links

*Relaxed tolerance coupling into small high bandwidth
detectors is needed for cost effective "snap together”
detector coupling









Power Penalty — Radial Misalign

*Matlab model of power penalty for
. simple obscuration of missing
| aperture

Transmission

*Simple overlap or round

detector
-1dB -3dB
. T i *Working on Z power
ol \ ] penalty for butt-coupling

Power Penalty [dB]

| ] *Working on Gaussian
] beam, square detector

Offset of centerlines [um]

200 um diameter detector and
120 uym diameter uniform beam



Data On Fiber Samples

* Four samples per fiber length
3 to 5 different lengths per fiber vendor
« Estimate of coefficient [ radians?/m ]

» Glass Fiber D c Xope

« Eska 0.0075 (long sample) 980 Sl 0.5

« Chromis 0.066 0.027 120 Gl 0.185
» Asahi 0.054 0.0147 120 Gl 0.185
* Optimedia 0.037 0.0070* 900 Gl 0.3

* Much better data when cutback used
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Proposed Topics for "Alignment tolerant
Highbandwidth POF Links"

Demonstrator link based on Picolight VCSEL, Hamamatsu PD, Chromis 120 um fiber.
— Proof of concept, base line design
— Correlation of experimental results with modeling effort
— Test bed for evaluation of new components and approaches
— Demonstrate equalization-alignment tolerance tradeoff

Critical circuit blocks
— TIA, equalizer, low-power low-jitter serial-to-parallel/ parallel-to-serial conversion
— Laser Driver, CDR, have? needed?
— CMOS vs. BICMOS, technology choice trade-offs

Other Research Questions:
— Quantify equalization penalty
— Measure modal noise due to under fill, MSM contact shadowing
Quantify power penalty and estimate costs for link and coupling options
*  Tradeoff between equalization and alignment tolerance

» Physical Interface-ball lens, butt coupling, lens, concentrators
*  Tradeoff between fiber core size, input coupling, output coupling, equalization

— Assessment of manufacturability

Possible work division
— lIT- equalizer, equalizer/TIA
— Georgia Tech, modeling, equalizer investigations, numerical link optimizations, modal noise

— UCSC, hardware demonstrator, serializer/deserializer, modal noise, connector design, assessment of
manufacturability



