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ABSTRACT 
 
A novel technique is presented for the computation of the polarization transfer function of optical assemblies with finite 
reflection coefficients, birefringence, and other parasitic imperfections.  The methodology is directly applicable to 
optical data storage modeling, such as CD/DVD recording optics and the physical recording process. 
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1. Introduction 
 
Jones calculus [1] is a powerful tool for the modeling of optical assemblies of all types and has been particularly useful 
for the modeling of the optical pickup unit (OPU) in optical data storage drives [2] and optical sensors [3].  For this type 
of calculation, Jones matrices, which represent the optical elements, are matrix-multiplied to represent the overall 
optical train in a unidirectional manner.  Bidirectional propagation is often handled by “unfolding” the optical train, i.e. 
topologically mapping a bidirectional problem into a unidirectional, albeit less compact problem. 
 
However, the transfer-matrix approach has limitations when solving for optical systems that have re-entrant (loop) 
topologies.  This would include optical systems with closely packed optical elements having less than perfect 
antireflection coatings such as an OPU.  In the case of interferometers, and optical systems with partially coherent light 
in general, finite reflections along with the forward and backwards propagation make all but the simplest systems 
challenging to reduce to tractable equations. 
 
 In this paper, a methodology is introduced which is a powerful technique that permits the straightforward 
calculation of the polarization transfer function including the recursive mathematics that arise from the physics of 
multiple reflections. Although this is a generally applicable tool, is most valuable to provide a means to do tradeoff 
analyses for realistic components. For cost reduction, molded-optics without AR coatings may be employed in low cost 
OPUs, which increases the need to understand how parasitic effects will manifest themselves.  Evaluation of system 
sensitivity to thickness, reflectivity, and birefringence variations in the media, as a function of OPU component and 
assembly tolerances may also be performed in a straightforward manner. 
 
 

 
 

Fig. 1. OPU Elements, which in this model are representing (A) Isolator, (B) Polarization Beamsplitter,  
(C) Retarder, (D) Propagation to a detector, and (E) Attenuator or “dead end”. 
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Figure 1 shows a very simple block diagram of an OPU system, which consists of two-surface elements such as 
polarizers, isolators, and retarders, and a four-surface element typified by a beamsplitter. 
 

2. Assumptions and methodology 
 
The light that travels between the elements may be decomposed into orthogonal polarizations with respect to a common 
frame of reference. The approach does not operate on k-vectors like a ray-tracing program, and thus the technique does 
not account for the spatial nature, focusing, fringe pattern, or diffraction effects of the system. It implicitly assumes a 
uniform phase and state of polarization (SOP) across the optical beams, which is valid for collimated light, weakly 
guided, and mildly diverging light. However, this assumption is valid only to first-order for light in a high ∆n 
waveguide or the beam waist of a high-NA objective lens [4]. Referring to Figure 2, the formalism is carried out in the 
following steps: 
 
• Each surface of every optical element or sub-element is given a unique identifying number, for the x- and y-

polarization states, using a careful and consistent naming convention for surfaces and ports. 
 
• The various Jones matrices that represent the various optical elements in the system are collected.  

 
• The Jones matrices are converted to scattering matrices, which support bidirectional propagation.  Figure 2(ii) 

illustrates this step, for the case of a reciprocal element with no backscattering. 
 
• The 4×4 and 8×8 scattering matrices are concatenated along the diagonal of an n×n scattering matrix S. 

 
• A 1×n column vector Eout represents the fields exiting every port at a given point in time. 

 
• Another 1×n column vector Ein represents the fields entering every port at a given point in time. 

 
• An n×n connectivity matrix G is written by inspection having terms equal to 1 or 0 to account for geometry.  This 

will be a symmetrical matrix, and can represent an arbitrarily complex assembly of elements. Figure 3 illustrates 
the connectivity between ports 3→5, 4→6, 5→3, and 6→4. 

 
• Software such as Mathematica™ or MatLab™ is used to evaluate and apply the transfer function H. 

 
 

 
 

Fig. 2.  S-matrix Development: (i) Jones matrix describing individual element A, (ii) bidirectional scattering matrix 
of individual element A, and (iii) global scattering matrix S with elemental matrices concatenated along the diagonal. 
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Fig. 3.  G-matrix showing only connectivity between the second surface of element A and the first surface of element B. 
 
 

3. Theory and algorithm 
 
Given the scattering matrix S such that  Eout    =    S Ein  (1) 
 
And a connectivity matrix G such that Ein    =    G Eout    +    Eo (2) 
 
where Eo is the initial conditions. Substituting equation (2) into equation (1) and eliminating Eout yields 
 
 Eout    =    S (G Eout    +    Eo) (3) 
 
           =    (S –1  – G ) –1 Eo    ≡    H Eo (4) 
 
The transfer function H relates the output amplitudes Eout as a function of the amplitude of the light entering from 
outside of the system [5], and includes all terms due to multiple reflections and resultant recursive transit through the 
polarizing elements.  If a large matrix H contains redundant or uninteresting terms, such as non-observable variables, it 
may be reduced in size by the multiplication by a suitable sparse rectangular n×m transformation matrix T and its 
transpose TT, reducing H to a more compact m×m size. 
 
 H    =    TT (S–1 – G ) –1 T (5) 
 
The transfer function matrix H will operate on Jones vectors, and its contents will be complex functions of the optical 
frequency ω and the physical parameters that are captured in each element’s individual one-directional Jones matrix.  
For the case of monochromatic light, a column vector Eo serves as the optical source term, for example the column 
vector (1, 0, 0, 0, 0 … 0, 0) would represent unit amplitude launched into the x-polarization of the first port of the first 
element in the assembly.  The observation of the light exiting the pth port is modeled as an ideal square law process, 
such that for a given port intensity is 
 

 
*( ) ( ) ( ) ( )p p p OI R H H E dω ω ω ω ω= ∫  

(6)
 

 
where R(ω) is the responsivity of the detector, and * indicates the complex conjugate. Ip(ω) must be evaluated for the 
two ports representing the x- and y-polarizations corresponding to the surface of interest, and summed, if the detector is 
polarization-insensitive. 
 
Cross-coupling terms, parasitic terms, functional dependencies (e.g. on manufacturing and material constant tolerances), 
and optimization strategies readily become apparent by examining term-by-term the above equation. All of the effects 
of reflection, polarization, attenuation, and optical path length, are explicitly contained in H, and this methodology may 
be generalized for the case of non-monochromatic light sources and general k-vectors [6]. Besides operations to 
compute intensity, other operations that may be performed on H include plotting of intensity as a function of some 
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variable, parametric plotting the SOP on the Poincaré sphere [5], optimization operations, calculation of eigen SOP, 
various figures of merit, embedding [7], statistical analysis with random variables, factorization, state-space techniques 
[8], etc. 
 

4. Summary and conclusion 
 
A powerful and general simulation technique for complex, folded, and/or re-entrant optical systems is presented, which 
avoids the burdensome recursive mathematics that arises from multiple reflections. While simple unidirectional systems 
may be modeled by daisy-chaining Jones matrices together, the (S–1 – G)–1 formalism permits bidirectional propagation 
to be modeled in a completely straightforward manner. Any number of reflecting surfaces can be handled by this 
technique, as can any arbitrary assemblage. 
 
 Another value of this approach is the ability to completely separate the effect of subcomponent performance 
and effect of the geometrical connectivity of the components. This feature is of considerable use in the design phase to 
evaluate tradeoffs for different topologies and system architectures. 
 
The topologies and complexity of the optical system is limited only by the computational efficiency of the simulation 
software and amount of evaluation time available to invert large matrices. The trivial example shown in Figure 1 fills a 
24×24 matrix, and complex optical fiber systems can easily populate matrices of size > 200×200, making this technique 
invaluable to zoom in on the parameters of interest in a fairly straightforward manner. 
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