Optical Gyroscopes:
Sensing Rotation
Without Moving Parts
Robert Dahlgren
Silicon Valley Photonics, Ltd.

Abstract
The desire for accurate navigation has been one of the great technology drivers since ancient
times. Astronomy, timekeeping, magnetic sensors, the GPS system, MEMs, and spinning-
mass gyroscopes are all familiar methods to measure position. The sensing of rotation by
optical means was first demonstrated by Sagnac in 1913, and in 1925 Michelson and Gale
measured the rotation of the Earth with a 2km-loop interferometer. The Sagnac effect was
relegated to being a physics curiosity, until the 1960s and the advent of the laser and optical
fiber. One of the great achievements of navigation engineering was the harnessing of the
Sagnac effect, to make practical and extremely sensitive yet rugged optical rotation sensors.
The Sagnac effect is very small, and it is necessary to measure on the order of one part out of
10^{20} to reach high-accuracy requirements. The design and manufacturing of practical optical
gyroscopes is a tour-de-force of physics and engineering. Basic concepts such as symmetry,
relativity, and reciprocity, and considerable interdisciplinary effort are needed in order to
create a design such that every perturbation cancels out except rotation. Optical gyroscopes,
and their research and production contracts, were an early driver for many ultra-high-
performance optical technologies. Such commonplace items as low-scatter mirrors, ultrasonic
machining of glass, lithium niobate integrated optics, polarization-maintaining fiber,
supernumerary and narrow-linewidth lasers found their first major applications and
customers in these sensors.

Outline
- Gyroscope Basics and Applications
- Gyroscope Specifications
- Introduction to the Sagnac effect
- The Ring Laser Gyroscope
- Interferometric Fiber Optic Gyroscope
- Resonant Fiber Optic Gyroscope
- Waveguide Laser Gyroscope
- Micro Optic Gyroscope

Gyro Application Space

Types of Gyroscopes
- Spinning-Mass gyroscope
 - Exquisite single and dual-axis versions
 - Generally not a “strapdown” IMU
- Vibratory gyroscope (Coriolis force)
 - Hemispherical, cylindrical, tuning-fork
 - MEMS gyroscope
- Nuclear Magnetic Resonance
- Optical Gyroscope
Important Concepts

- **Intertial Frame**
 - Absolute reference system
- **Reciprocity**
 - Replace (t) with (-t) and (x,y,z) with (-x,-y,-z)
- **Symmetry**
 - Exploited whenever possible
- **Special Theory of Relativity**
 - Light in vacuum travels at 3×10^8 meters/second
 - Light speed is independent of velocity of source

Optical Interferometer

- Classic example of two precisely-aligned mirrors having ideally 100% reflection, separated by L.
- Under certain conditions, constructive interference of multiple reflections permits light to pass through.
- Transmission only for certain wavelengths?
- Generally: $m\pi/2 = L$, $2\pi/2 = L$, ...
- There will be m “Standing Waves” of size $\pi/2$

Circulation in Interferometers

- 2 Mirrors
- 3 Mirrors
- Re-circulating Waveguide

Stationary Inertial Frame = Null

- Both photons experience exactly the same time-of-flight, resulting in destructive interference at the starting point.
- $T_{cw} = T_{ccw} = 2\pi R/c$ where R is the radius
- For optical fiber $n \approx 1.5$ and $T \approx 5$ microsecond/kilometer

Rotating Inertial Frame

- Consider rotation rate to be ω?
 - Units of radians/second, $\omega > 0$ for clockwise
- Rigorous approach requires use of General Relativity, beyond the scope of this talk.
- Use a simplified approach
 - Calculate ωL and ωT
 - Refractive index = 1
 - Number of loops = 1

Rotating Inertial Frame

- Both photons start at splice
Rotating Inertial Frame

- Both photons start at splice
- Splice point rotated \(T \) radians, at tangential velocity \(R \)
- \(L_{cw} = 2\pi R + R T_{cw} - c T_{cw} \)
- \(L_{ccw} = 2\pi R - R T_{ccw} - c T_{ccw} \)

Path Length: \(L = c T = 4A / c \)
Phase shift: \(\phi = (2\pi / c) L = 8\pi A / c \)
Phase shift is measured in rotating frame
- \(\phi \) can be deduced by measuring \(\phi \) via fringe shift, without knowledge of the absolute reference frame
- Example: \(\lambda = 633\text{nm}, \ A = 100 \text{cm}^2 \) (L ~ 35 cm)
- Earth’s rate \(\omega = 7.3 \times 10^{-5} \text{radians/second} \)
 - \(L \approx 9.7 \times 10^{-15} \text{meters} \) - a very small amount
 - \(\approx \approx 9.6 \times 10^{-8} \text{radians} \) - just to measure Earth!
 - Need 1000x better than this for navigation.

Ring Laser Gyro Block

Ring Laser Gyro Schematic

- 3 or more mirrors in a stable alignment
- Sealed and filled with e.g. Helium and Neon
- Electrical discharge excites Helium and Neon ions, producing a population inversion of excited states
- These excited ions provide the gain medium
- With feedback, lasing commences when gain > loss
Lasing in a Ring Cavity

- Two lasing beams of light
 - CW and CCW
 - Occupy the same physical space
- Use readout optics to interfere CW and CCW
- If stationary, beams have same wavelength \(\lambda = c/f \)
 - Cavity length is the same for both directions
 - Null output when CW and CCW interfere \(f_{cw} = f_{ccw} \)
- For negligible rotation, beams also have same \(\lambda \)
 - Lock-in effect, due to backscatter (coupled oscillator)
- For rotation above a lock-in rate \(\omega_L \), \(f_{cw} \neq f_{ccw} \)
 - Beat frequency is observed \(\Delta f = 4A/\omega_L \)

Lock-In Effect in Optical Gyros

- Slope = Scale factor \(K \)

Beat Frequencies

- Several approaches to avoid lock-in
 - Dither motor
 - Magnetic Mirror
- Beat frequency \(\Delta f = 4A/\omega_L \)
- In terms of phase shift
 - \(\phi = 2\pi(f/\omega_L) \)
- Example \(\lambda = 633\text{nm}, A = 100 \text{ cm}^2 \) (\(L = 35 \text{ cm} \))
 - Optical frequency approximately \(f = c/\lambda \approx 4.74 \times 10^{14} \)
- Earth’s rate \(\omega_e = 7.3 \times 10^{-5} \text{ radians/second} \)
 - \(\Delta f = 13 \text{ Hertz} \)
 - \(\omega = 83 \) radians

RLG Readout Optics

- Unlike other mirrors, the readout mirror is designed to have < 100% reflectivity, along with a slight transmission factor
- Attempt to overlay CW and CCW beams
 - Several approaches to achieve stable and robust implementation
- Often uses 2 or more silicon photodetectors
- Followed by low-noise and low-drift electronic preamplification
- Several signal processing approaches to extract \(\Delta f \) from \(\omega_L \)

Signal Processing

- Fringe counting (1 fringe corresponds to \(\Delta \phi = 2\pi \))
 - Since \(\phi = \Delta \phi L/4A \), \(5.5 \text{ radians for 35cm} \)
- Fringe counting + sub-fringe interpolation
- Inverse tangent algorithm
- Numerous digital techniques

Path Length Control

- Laser power fluctuates as a function of cavity length
- Free Spectral Range \(\text{FSR} = c/\lambda L \approx 860 \text{ MHz for 35 cm} \)
- One mirror pistons in and out several microns
- Piezoelectric transducer precisely controls mirror position
- Servo electronics stabilized cavity length
Miniature Ring Laser Gyroscope

Optical Contact Bonding

• Bonding mirrors to block without adhesive
• Demanding flatness, roughness specifications
• Ultra-clean assembly brings surfaces into contact
 – Newton's rings observed, zero-order fringe is grey
• If conditions are met, a slight pressure initiates bond
 – Van Der Waals force draws surfaces together if d is << 1 micron
• Ageing produces strong, permanent, hermetic seal

Multiple Ring Laser Gyroscope

• Possible reduction from nine to six mirrors for 3-axis RLG
• Common block, gas reservoir, and cathode
• Complex machining, but overall parts savings
• Multiple scattering can cause interactions
Multiple RLG in Action

Components
- RLG block
 - Low-expansion material: ULE, Zerodur, or Cervit
 - Filled with proprietary cocktail of He_2 and Ne_2 isotopes
- Mirrors
 - Low scatter is important
 - May have path-length control
- Readout Optics
- Photodetectors
- Dither motor
- Anode/Cathode/Fill tube/Getters

Fiber Optic Gyroscope
- Resonant Fiber Optic Gyroscope (RFOG)
 - Replace cavity with optical fiber
 - Use high-splitting ratio fiber coupler
 - At resonance, light can circulate
 - Uses narrow-linewidth (coherent) optical sources
- Interferometric Fiber Optic Gyroscope (IFOG)
 - Longer coil of optical fiber
 - Use 50/50 splitting ratio fiber coupler
 - Topology produces CW and CCW beams
 - Uses broad-linewidth (incoherent) optical source

Passive Optical Gyro
- Resonant Fiber Optic Gyroscope (RFOG)
 - Replace cavity with optical fiber
 - Use high-splitting ratio fiber coupler
 - At resonance, light can circulate
 - Uses narrow-linewidth (coherent) optical sources

FOG Building Blocks
- Polarization-Maintaining Fiber Coupler
- Fiber polarizer
- PZT Phase modulator
- Fiber depolarizer
- Pigtailed optical isolator
- Planar lightwave circuit
- Optical detectors
- PM optical fiber coil
Polarization-Maintaining Fiber

- "Single-mode" fiber actually propagates 2 modes
 - Two orthogonally polarized modes, e.g. x- and y-mode
 - Ideally travel at the same propagation velocity
 - Small perturbations can cause coupling between x- and y-modes
 - Small perturbations can rotate the local fiber x- and y-axis randomly
- PM fiber has anisotropy to break modal degeneracy
 - One mode has a higher velocity than the other
 - Well-defined principal axes of PM optical fiber
 - X- and y-modes can have many dB of isolation
 - Small, random, perturbations have negligible influence on coupling

- Techniques:
 - Elliptical-core optical fiber (3M, D-shaped fiber)
 - Stress-rod fiber (PANDA, Bow-Tie, elliptical cladding)
 - Material (side-pit fiber, photonic bandgap fiber)
 - Need special components, and splicing equipment with axial alignment

Phase and Frequency Shifter

- Fiber-wrapped PZT stretcher
 - Piezoelectric cylinder
- Electro-Optic phase modulator
 - Lithium Niobate PLC
- Acousto-Optic frequency shifter
 - Uses Doppler effect. Difficult to pigtail
- Serrrodyne modulator (quasi-frequency shifter)
 - Lithium Niobate PLC phase modulator
 - Driven with sawtooth wave at constant 2\(^\text{nd}\)-amplitude
 - Slope of sawtooth = frequency shift
 - High-speed analog electronics needed

RFOG Architectures

- Resonant Fiber Optic Gyroscope (RFOG)
 - Spliced assembly of low-loss PM fiber coil and PM coupler
 - High-splitting ratio fiber coupler, optimized k = 1
 - Alternately, low-splitting ratio coupler, set k = Loss
 - Can also add 2\(^\text{nd}\) coupler and operate in transmission mode
- Planar lightwave circuit (PLC)
 - Need electro-optic effect - Ti:LiNbO\(_3\)
 - Discrete or distributed polarizer
 - Splitter with low asymmetry, good polarization performance
 - Pigtailed to PM fiber, packaged to meet aerospace requirements
- Tunable narrow-linewidth source, significant signal processing

Transmission of RFOG Cavity

- FSR = c/2L = 9.1 MHz
- \(\xi_{\text{PZT}}\) Drive Voltage
- LW = 67.9 kHz
- DD = 99.2 %
- PER = -20 dB
- BR = -53 dB

Polarization in RFOG Cavity
Coil Winding Style

- For coherent source – only narrow range of coil will suffer parasitic effects due to backscattering
- Exploit symmetry
 - Wind coil from center, alternating layers such that equidistant fibers are physically adjacent
 - Provides immunity to thermal and vibration perturbations that are slow with respect to transit time
 - Called quadrupole or anti-Shupe winding pattern

400m Anti-Shupe Coil (unpotted)

IFOG Architectures

- Minimum-configuration IFOG
 - Uses polarizer (P) and 2nd splitter for detector (D)
 - Sinusoidal phase modulation with PZT fiber stretcher
 - Unbiased operation: At zero rotation \(\phi = 0 \)
 - Open-Loop IFOG operation possible
- 3/3 splitter IFOG (not shown)
- PLC Implementation
 - Needs Ti:LiNbO
 - Phase modulator and one splitter also incorporated
 - Nonreciprocal /2 phase shift introduced
 - At zero rotation, biased at maximum sensitivity point \(\phi = \pi /2 \)

Optical Source for IFOG

- Low-coherence source reduces parasitic interference from scattering points and distributed (Rayleigh) scattering
 - Sub-threshold LD
 - Edge-emitting LED
 - Superluminescent Diode
 - Amplified Spontaneous Emission
 - Amplified broadband source
- Can share high-power source between several gyroscopes
- Need to control optical power accurately
- Need to match CW and CCW power to avoid Kerr effect
- Need to control optical center accurately
Open Loop Signal Processing

- Open loop
 - Unbiased operation $\gamma = 0$
 - Minimum sensitivity point for small γ
 - Sinusoidal oscillator at frequency f_0 optimized for transit time
 - Optical phase modulation at optimum amplitude
 - Use lock-in amplifier (LIA) to measure RMS voltage at f_0
 - Use lock-in amplifier (LIA) to measure RMS voltage at $2f_0$
 - Ratio of two RMS voltages yields magnitude and sign of γ
 - Limited dynamic range

Closed Loop Signal Processing

- Closed loop IFOG
 - Needs Ti:LiNbO$_3$ PLC for frequency shifter
 - Phase modulator and one splitter also incorporated
 - Nonreciprocal $\pi/2$ phase shift introduced. At zero rotation $\gamma = -\pi/2$
 - Servo-electronics locks operating point to $-\pi/2$ maximum sensitivity point
 - Servo-electronics differentially drives frequency shifters to keep on null
 - Servo-electronics yields magnitude and sign of γ
 - Wide dynamic range

Interferometric Fiber Gyroscope

Waveguide Laser Gyroscope

- Integrated optic implementation of RLG
 - Rare-earth doped waveguide ring cavity
 - Pumped at pumping wavelength
 - Mode competition between the two counter-propagating beams prohibit functioning
- Brillouin Effect gyroscope
 - Demonstrated at MIT
- Squeezed-light gyroscope
 - Demonstrated at MIT
Micro-Optic Gyroscope
- Northrop Corp in the 1980s
- Integrated optic implementation of RFOG
 - PLCs have higher attenuation than fiber
 - PLCs had limited length of waveguide
 - Surface acoustic wave (SAW) optical frequency shifters
 - 1-100 degrees/hour performance

Wafer with MOG Chips

Integrated Optic Rate Sensor
- Rice Systems in the 2000s
- Integrated optic implementation of IFOG
 - Improved PLC technology
 - PLCs had limited length of waveguide
 - Open-loop architecture