Standards-Based Transceivers Simplify Gigabit/Second Datacom Link Design

Hewlett-Packard HHBA-5000A PCI NIC with Fibre Channel GBIC transceiver.

In nineteen-ninety-six was the year that gigabit datacom technology was ushered into reality. That year, the release of the ANSI Fibre Channel FC-PH standard [1], and also several protocol ICs and PCI engine ICs became a reality. OEMs and numerous start-ups announced a set of products which initially targeted the storage-to-server market, such as storage arrays and host adapter cards. Since then, the IT and MIS market has started embracing gigabit/second (Gbps) technology, and interoperability testing is moving forward.

Figure 1 shows a projected port volume for Fibre Channel [2]. Note this does not include ESCON, ATM, Gigabit Ethernet, or other high-speed market segments.

Until recently, datacom applications tended to be lower-speed (below 100 MHz) and used primarily copper media such as Category-5 cable. Fibre was employed for telecom applications, to link a WAN, or the occasional low-speed backbone or token ring LAN. In the early 1990s, it was demonstrated that telecom technology, which routinely operated above a Gbps, could be exploited for datacom usage. Subsequently, the datacom community initiated the standardization process for gigabit technology. As the Fibre Channel FC-PH standard evolved, it leveraged the telecom technology as much as possible, with several cost-reducing refinements. It defined a duplex communication link and protocol transparency for multi-mode optical fibre, single-mode optical fibre, and various types of copper cable.

At that time, telecom laser technology in production included 1300 nm and 850 nm Fabry-Perot (FP) lasers, 780 nm compact disk (CD) lasers, and more recently, vertical cavity surface emitting lasers (VCSELs). Another technology which enabled the Gbps datacom market is the widening availability of high-speed optical receiver ICs, and electrical and optical driver ICs. A typical optical module would contain a laser, photodetector, duplex-SC receptacle and associated optics, and the aforementioned drive electronics. Like the lower-speed LAN components, a number of common footprints have been developed; please refer to Table 1, which summarizes some of the attributes of the different types of transceivers.

Fixed Modules

In many applications, it is desired to have the transceiver mounted directly on a PCB in the simplest manner. For example, many non-optical network interface cards (NICs) have the copper cable connector mounted directly on the NIC PCB. In the "on-board" implementation, no module is needed; the cable is driven by the serializer/deserializer IC, or via a high-speed buffer. Often a Fibre Channel Style-1 (like a D-sub-9) is the receptacle used, and the Fibre Channel Style-2 (8-pin HSSDC) is also used in this application.

For optical implementations, a module is typically soldered onto the PCB. Figure 2 shows a 1x9 optical module intended for Gigabit Ethernet (1.25 Gbps), whose form-factor is based on the ubiquitous LC/FDDI package. This package is also popular for Fibre Channel, ATM, and other Gbps applications. Figure 3 illustrates the 1x28 package, which is another common footprint. The devices shown are for up to 1.5 Gbps applications, and is shown in optical and copper cable variants. These types of modules have been very successful because of multi-vendor availability, and similarity to lower-speed packages.
Removable Modules

For applications that require more flexibility in the media, transceiver footprints have been developed with an electrical connector. This makes it possible for the OEM or the end-user to change the module to accommodate different fibre types, for example. Figure 4 shows a trio of gigabaud interface converter (GBIC) modules for Fibre Channel and Gigabit Ethernet applications [3]. Figure 5 illustrates a media interface adapters (MIAs), which is intended to convert from an on-board Style-1 connector to optical media [4]. Both the GBIC and the MIA accommodate full-speed complementary ECL/PECL signals, and have hot-pluggable features.

The gigabaud link module (GLM) is a popular footprint because it accepts and presents a 26-bit parallel TTL byte. This type of module contains the clock recovery unit (CRU) and the serializer-deserializer (SERDES) electronics. This configuration was popular with the early adopters of optical Fibre Channel, because it eliminated the need to route gigabit signals on the host PCB. The GLM generates complementary TTL 53.125 MHz recovered clock outputs, and the parallel TTL bytes are clocked at 1/20 of the baud rate. Examples of this package is shown in Figure 6, of short-wave, long-wave, and copper variants. The first GLM products contained the so-called Open Fibre Control (OFC), which is a handshake implemented in the GLM hardware, that manages laser safety. If the fiber is disconnected or broken, the handshake pulses the laser at a very low duty cycle, until it can verify that a closed optical path exists - only then may the laser be fully powered up. Advances in laser driver technology and the standards has eliminated the need for OFC except for legacy applications. When integrating gigabit transceivers into a design, the system integrator must pay particular attention to PCB layout, enclosure aperture mechanical tolerance, thermal, and signal integrity issues, such as Vcc conditioning, transmission line effects, termination, ground homogeneity EMI, and ESD. While these topics ar

Table 1: Module Attributes
by beyond the scope of this article, the interested reader is referred to [6] and [7] for further information.

Future Modules
There has been recent activity in the various physical layer committees to adopt a connector with a smaller form-factor than the current duplex-SC. The goal is to have a connector which is lower cost than the current duplex-SC technology and have a cross-section no bigger than the RJ-45 connector used in LANs (0.55 inches). Small form-factor transceivers have incorporated the VF-45 connector and the mini-MT connector to meet this requirement. Figure 7 shows a mini-MT module that employs a RJ-45 style latch mechanism. A 1x9 module and duplex-SC connector is also shown for comparison. Figure 8 shows a transceiver based upon the VF-45 connector, which has been adopted into the ANSI Fibre Channel as a future PHY variant. The FC-PH 2 standard also specifies data rates of 2.25 Gbps and above. This parallel optical communication over ribbon fibre will ensure that interconnect technology can keep pace with Moore’s Law for years to come.

REFERENCES:
[4] “Media Interface Adapter for Fibre Channel,” Rev. 2.6, Norm Harris, Ed.

FOR FURTHER INFORMATION:
Fibre Channel Standards and General Information:
http://www1.cern.ch/HSI/fcs
www.Fibrechannel.com
www.facloon.com
http://www.wsco.com/~scholeto
MIA, GBIC, GLM, Jitter standards and drafts:
http://www.waco.com/~scholeto
ftp://playground.sun.com/pub/0Ephm
ftp://playground.sun.com/pub/FCPh
Gigabit Ethernet draft standard and information:
http://sdsbibbs.ieee.org/pub/802_main/802.3/gigabae
http://www.gigabit-ethernet.org
Fujiura America Inc’s address is: 3001 Oakmead Village Drive, Santa Clara, CA 95051
To contact the author, or for further information, e-mail Info@Fujikuro.com

More Information - Write In 139

EDITORIAL EVALUATION
Write in Number on Reader Service Card
I found this article
Very Useful Useful Not Useful
140 141 142

Writing For Fiberoptic Product News

Information
FPN publishes articles on the newest trends and technologies affecting the fiber optics industry. We are interested in the latest developments in areas such as FDDI, SONET, ATM, Fibre Channel, broadband, fiber-to-the-home, fiber-to-the-curb, cable TV, etc. We also accept tutorial-based articles that help our readers who are mostly design engineers, and articles on systems design, components and cabling are welcome.

If you have developed a new design or technique, solved a problem or had a successful trial, then you have the necessary information for an article.

If you feel that you should share your information with others based on your work in the field, then let us know about your idea. And if the article idea is not acceptable, then we will offer suggestions or revisions to make it suitable for publication.

Ask yourself:
• Is the subject of interest to those in the industry?
• Are my ideas timely?
• Is my information of value in design or application?

Procedures
Send us an abstract or a one-page outline. Your abstract or outline will be reviewed and we will get back to you within two weeks.

Once we agree on the article, then you can proceed. Upon receiving the finished manuscript, it will be reviewed. We will contact you within two weeks after it is reviewed. Though we may accept the article, it may not be used for several months due to features that we are committed to based on our editorial calendar and space requirements.

Please give us at least four to six months lead time for a specific special report. As editors, we will edit, polish, clarify and make changes where we feel it may be necessary. If there are any major changes, you will be given a chance to look the article over.

Major articles should be a minimum of 1,700 words. We also will accept shorter articles (no more than 1,000 words). Keep this in mind because they are easier to place in an issue.

Please contact Joseph Brennan, editor-in-chief, at (201) 292-5100, ext. 274 if you are interested in submitting an article.