
Collaboratively Crowdsourcing Workflows
with Turkomatic

Anand Kulkarni1, Matthew Can2, Björn Hartmann3
Department of IEOR1, Computer Science Division3

University of California, Berkeley
anandk@berkeley.edu, bjoern@cs.berkeley.edu

Computer Science Department2
Stanford University

mattcan@cs.stanford.edu

ABSTRACT
Preparing complex jobs for crowdsourcing marketplaces
requires careful attention to workflow design, the process of
decomposing jobs into multiple tasks, which are solved by
multiple workers. Can the crowd help design such
workflows? This paper presents Turkomatic, a tool that
recruits crowd workers to aid requesters in planning and
solving complex jobs. While workers decompose and solve
tasks, requesters can view the status of worker-designed
workflows in real time; intervene to change tasks and
solutions; and request new solutions to subtasks from the
crowd. These features lower the threshold for crowd
employers to request complex work. During two
evaluations, we found that allowing the crowd to plan
without requester supervision is partially successful, but
that requester intervention during workflow planning and
execution improves quality substantially. We argue that
Turkomatic’s collaborative approach can be more
successful than the conventional workflow design process
and discuss implications for the design of collaborative
crowd planning systems.

Author Keywords
Crowdsourcing, task decomposition, workflows.

ACM Classification Keywords
H5.3. Information interfaces and presentation (e.g., HCI):
Group and Organization Interfaces.

General Terms
Algorithms, Design, Human Factors

INTRODUCTION
Crowdsourcing marketplaces are increasingly used to solve
computational problems that require human intelligence,
such as audio transcription and data verification [11,16].
Many problems on markets like Amazon Mechanical Turk
are solved as a series of microtasks: narrowly focused, brief
tasks designed to be completed in a few minutes, such as
labeling an image or checking the accuracy of data through

web search. For quality assurance and to accomplish
complex work, multiple microtasks are frequently chained
together into workflows. Such workflows may decompose
larger tasks into smaller subtasks, and later recompose
subtask solutions into an overall work product. For
example, a text editing workflow may ask one group of
workers to find problems, another set to fix the identified
problems, and a third to verify these edits [6]. A
fundamental challenge in the use of crowdsourcing markets
is the workflow design problem: how can employers divide
a complex task into a set of microtasks that can be
accurately solved by a pool of crowd workers?

Effective workflow design remains a major challenge
today, involving both substantial planning, software
development, and testing. Absent formal design
methodologies, requesters commonly rely on an iterative
process to construct good workflows. Requesters guess at a
viable workflow, implement all of its steps as software that
interfaces with a crowd platform, test it live with workers,
identify points of failure, then iterate and modify the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
CSCW’12, February 11–15, 2012, Seattle, Washington, USA.
Copyright 2012 ACM 978-1-4503-1086-4/12/02...$10.00.

Figure 1: Turkomatic harnesses crowds to design and
execute workflows in collaboration with requesters. A request
(top) is subdivided into steps by the crowd. Turkomatic shows
a task graph as work is progressing (left). Multiple workers
execute steps of the created workflow until a global solution is
produced – in this case, a new blog (right). Requesters can
modify workflows in real-time.

workflow. The cost and complexity of this process limits
participation in crowdsourcing marketplaces to experts
willing to invest substantial time. These barriers to
participation also limit the kinds of work that are
crowdsourced today.

We propose that the responsibility for workflow design can
be shared between the crowd and the requester. Turkomatic
(Figure 1) is a novel crowdsourcing tool that allows the
crowd to collaboratively design and execute workflows in
conjunction with a requester. Turkomatic accepts a
requester’s specification of a broad objective, then asks
workers on Amazon’s Mechanical Turk to determine how
to structure workflows to achieve the objective. The
requester is able to monitor and edit the resulting
workflows as they are produced.

Turkomatic uses a novel meta-workflow to induce the
crowd to design and execute workflows. The system
executes a continuous price-divide-solve loop that asks
workers to recursively divide complex steps into simpler
ones until they are at an appropriately simple level, then to
solve them. Other workers are asked to verify the solutions
and combine the results into a coherent answer to the
original request. The use of pre-structured task templates
and the participation of the crowd enables requesters to
produce workflows without implementing software or
designing intermediate tasks themselves. Compared to
existing toolkits for programmatic workflow design, e.g.,
TurKit [14] and Jabberwocky [4], these features lower the
threshold for employer participation in crowdsourcing.

The price-divide-solve loop produces directed, acyclic task
graphs: nodes represent subtasks and links describe task
dependencies. The task graph is constructed during divide
steps, and completed during solve steps. Turkomatic’s
graphical user interface allows the requester to visualize,
monitor and interact with task graphs in real-time.
Requesters can delete or modify plans made by workers,
request the crowd to re-plan components of workflows, or
seed the system with partial plans to evaluate their
effectiveness. Real-time visualization of workflow
structures and partial solutions enable requesters to debug
many of the common failure modes that arise in multi-step
workflows. These include cases where workers
misunderstand tasks, give inadequate solutions, or where
the requester’s original language is unclear.

Following a review of related work, we introduce the
algorithmic foundations of the price-divide-solve loop and
discuss how Turkomatic operates from both the requester
and worker perspectives. A first experiment explores how
workers succeed and fail to plan tasks without expert
supervision. A second experiment demonstrates how
workers and requesters can successfully interact through
Turkomatic on a variety of planning and execution tasks.
We close by reporting on usage of Turkomatic outside the
lab. Our findings lead to a number of design implications
for collaborations on crowdsourcing platforms.

RELATED WORK
Early work in human computation emphasized its utility as
a tool for efficiently processing large datasets in
applications like tagging and classification that were
outside the reach of autonomous algorithms [5]. Artificial
intelligence researchers emphasized the utility of crowds
for supporting active learning problems [17,19]. Most paid
microtask work today remains batch data processing [11].
Quinn and Bederson’s taxonomy of human computation
does not include any creative or integrative tasks [16].

More recent research has attempted to expand the types of
tasks that can be solved via distributed human computation.
VizWiz is capable of handling open-ended, natural-
language requests from users [7]. Soylent provides crowd-
powered text editing services in a word processor [6]. Its
“find-fix-verify” design pattern divides work in a manner
that maintains consistency and accuracy. Legion enables
multiple crowd workers to control existing user interfaces
in real-time [13].

New toolkits seek to support such complex applications.
TurKit aids requesters in deploying iterative tasks on
Mechanical Turk; its crash-and-rerun architecture saves
intermediate results to avoid redundant crowd assignments
[14]. Jabberwocky can target workers in both paid and
volunteer workforces [4]. In these toolkits, it is assumed
that task designers (not workers) will determine how tasks
are broken down in all cases.

While most crowdsourcing tasks are designed manually
based on prior experience and intuition, formal techniques
can also play a useful. By optimizing task parameters
programmatically [10], modeling the market [8], or
introducing auction mechanisms [18], response quality and
response rate can be improved. Task templates can also be
automatically created for data gathering tasks based on an
underlying database schema [9].

Both text-based and visual workflow languages have been
devised in prior work; Stohr presents a survey of such
systems [20]. Some workflow languages have recently been
extended to connect to crowdsourcing marketplaces.
Crowdsourcing companies such as Crowdflower use the
domain-specific workflow language Ruote [1] to implement
complex tasks. Ruote is only accessible to expert
programmers. RunMyProcess is a commercial service to
author and execute business processes in the cloud [2]. It
uses Business Process Modeling Notation [21], a standard
diagramming convention, as the basis for a visual workflow
design tool. Olsen used RunMyProcess to post tasks and
receive answers from Mechanical Turk [15].

Most recently, CrowdForge introduced a map-reduce
paradigm to divide complex work into smaller steps for
crowdsourcing platforms [12]. We also employ a divide-
and-conquer strategy, but introduce a recursive algorithm.
In addition, Turkomatic adds workflow visualization and
editing capabilities not present in CrowdForge.

THE TURKOMATIC SYSTEM
Turkomatic consists of two major components. First, a
meta-workflow uses the crowd to assist in the design of the
workflow, and to execute it. Our novel price-divide-solve
algorithm (PDS) uses a divide-and-conquer strategy to let
workers decide how to split up tasks. Second, an editable
workflow visualization enables requesters to observe and
manage work being executed by the crowd. We discuss the
algorithm and the associated worker interfaces first, then
describe Turkomatic’s requester interfaces.

Algorithmic Model: Price-Divide-Solve, Then Merge
PDS is a general-purpose algorithm for inducing the crowd
to generate workflows for tasks specified by the requester.
The algorithm guides workers through the process of
converting large, complex tasks into microtasks appropriate
for crowd markets. Once all the microtasks for a given
component of the workflow are solved, a merge stage asks

workers to recombine work back into a coherent single
solution to the original task. Both stages rely on verification
functions that determine when work needs to be checked or
repeated. For each step in the algorithm, task templates are
automatically instantiated with task context and posted to a
crowd marketplace (see Figure 2). Turkomatic posts Human
Intelligence Tasks (HITs) on Amazon Mechanical Turk,
through the algorithm is independent of this particular
platform.

Price-Divide-Solve
The price-divide-solve phase splits work into fairly priced
sub-tasks. An initial pricing HIT presents the overall task
goal and asks whether or not this task can be solved for a
fixed price (in our implementation, twenty cents). If a
worker indicates the task can be solved directly at the stated
price, a new HIT will be posted, asking another worker to

Figure 2: The worker interface: HITs corresponding to (A) subdivision, (B) verification, (C) solution and (D) merging.

do so (Figure 2C). If the task is judged too complex, the
next worker is asked to divide the task into two or more
subtasks that are easier to solve than the original task
(Figure 2A). To capture information dependencies, workers
indicate whether the subtasks can be worked on in parallel
or whether they must be completed sequentially.

The set of subtasks is then posted to Mechanical Turk. This
process is recursive: subtasks generated by the subdivide
step may themselves be broken down by another step.
Figure 3 shows pseudo-code for the entire PDS algorithm.

Merge Phase
The merge step combines subtask solutions elements
produced during divide steps. Once all the subtasks
produced in a given subdivide step have been solved, the
solutions are listed together in a merge HIT (Figure 2D).
The HIT instructs a worker to combine the subtask
solutions in a way that solves the overall goal at the given
level of the task hierarchy. The merge process continues
until the requester’s original task is solved.

Verification
Turkomatic validates the quality of work produced by
subdivide, solve, and merge functions by asking the crowd
to vote on the best of several redundant answers. For each
of these functions, Turkomatic requests r answers from the
crowd, where r is an initial redundancy parameter specified
by the requester (see Figure 3). For simplicity, r is kept
uniform across all types of HITs, though this parameter
could be optimized for each HIT independently. In
verification HITs (Figure 2B), a worker is presented with a
task and its candidate decompositions or solutions; the
worker is asked to vote on the answer that best
accomplishes the task. Using workers to select from
redundant answers for quality control is a common strategy
in many crowdsourcing applications [6,14].

Task Design Strategies
Designing general-purpose HITs that fit a wide variety of
tasks while still conveying specific requirements of the
decomposition and merge phases to a worker is
challenging. In our experience, two design techniques
proved especially useful and necessary: 1) including larger
task context in subtasks, and 2) visually separating task
language from context language.

Show Context of Tasks in a Workflow
Providing workers with a birds-eye view of the overall
decomposition is critical. Workers can easily become
confused if their role in the larger process is not made
explicit. In addition, workers may need to refer to
information contained in prior answers to adequately solve
their sub-task. To communicate the larger goal, and the
work completed towards this goal, Turkomatic shows an
indented list view of the decomposition generated by other
workers (Figure 4), highlighting the current subtask. This
view shows all available information. However, presenting
complete task status can also lead to confusion if the task is
already extensively subdivided. We reserve further study of
the optimal amount of context information that should be
presented to future work.

Visually Separate Task Language from Context Language
The HITs for subdivide and merge steps contain complex
information and require careful attention of the worker.
Workers can have difficulty identifying which task in a
complex plan they were being asked to carry out. We used
background colors to emphasize and separate the primary
task instructions from explanatory and context information.
Type treatment, e.g., bold, red text, was used as an effective
second level of emphasis. In pilot testing, these attributes
were more effective than indentation or whitespace.

Requester Interfaces
This section reviews interaction with Turkomatic from the
requester’s perspective.

Requesting Work
Requesters post new Turkomatic jobs through a natural-
language web interface (Figure 1). Inspired by web search,
it offers a single text box where the requesters specify what
they want to accomplish.

Expert requesters can also author decompositions that serve
as a starting point for the PDS algorithm. Such
decompositions may be preferred if the requester believes

PDS(Task t, Price p, Redundancy r):
 if crowdIsFairPrice(t,p):
 return solve(t,r)
 else:
 subtasks = divide(t,r)
 for s in subtasks:
 subsolutions += PDS(s,p,r)
 return merge(t,subsolutions,r)

divide(Task t, Redundancy r):
 for j in [1,r]:
 divisions += crowdSubdivide(j)
 return crowdChooseBest(divisions)

solve(Task t, Redundancy r):
 for j in [1,r]:
 solutions += crowdSolve(t)
 return crowdChooseBest(solutions)

merge(Task t, Subsolutions s, Redundancy r):
 for j in [1,r]:
 merges += crowdMerge(t,s)
 return crowdChooseBest(merges)

Figure 3: Pseudocode for the PDS algorithm. Calls to crowd
functions (blue) correspond to HITs shown in Figure 2.

Figure 4: Turkomatic shows task context to workers.

that crowds will not be able to properly decompose a given
task, e.g., because the decomposition requires significant
domain expertise. A decomposition specifies a tree
structure where the leaves of the tree are the tasks that have
to either be solved or further sub-divided. Turkomatic
provides an indented list interface for authoring
decompositions (Figure 6). Once a new task prompt or task
tree is loaded, the PDS algorithm recruits crowd workers to
price, subdivide, and solve the leaf tasks, and eventually
merge solutions to accomplish the root task.

Visualizing Ongoing Work
To enable requesters to gain insight into partially completed
work, Turkomatic provides a workflow visualization that
shows the current state of an ongoing job as either an
indented list (Figure 5A) or a decomposition graph (Figure
5B). The list view allocates most screen space to task
content (i.e., written descriptions and solutions). The graph
shows hierarchy, as well as parallel and serial
decompositions. Both visualizations inform requesters how
much of the work has been accomplished, what strategies
have been taken, and whether subtask solutions or
decompositions are of sufficient quality.

Turkomatic uses GraphViz [3] to render decomposition
graphs. Nodes in the graph represent the component tasks
of a job. Solid directed edges show the relationship between
tasks and sub-tasks (i.e., when there is a subdivision).
Dashed directed edges indicate the order of tasks in a serial
split, where one sibling must complete before another
sibling can be posted.

Each node contains a summary of the task prompt, the
solution to the prompt (if available), and a status indicator.
A task can either be a) waiting on a decision whether to
split or solve (orange in Figure 5B); b) in-progress and
waiting for subtasks to complete (cyan); or c) solved
(green). The tree visualization is interactive: brushing over
nodes displays complete instructions and solutions in a
floating panel, as the text often cannot fit in the node. This
visualization remains legible for tasks with tens of nodes.
For complex graphs, additional interaction techniques such
as collapsible branches may become necessary.

Editing Workflows
Ongoing work can be unsatisfactory for multiple reasons: a
crowd-authored decomposition may be flawed, or a solution
to a subtask may be of low quality. Requesters can edit
existing workflows in real-time to address such challenges
(Figure 7). Requesters edit the task description,
decomposition, or solution for any node. Once an edit is
completed, Turkomatic computes which tasks will have to
be performed again by additional workers.

When a task description is changed (Figure 8A), any
subtasks created for this task by the crowd may also no
longer be valid. Turkomatic therefore invalidates the entire
sub-tree below the edited task and reissues the task (Figure
8B). If the task already had a solution, all upstream
solutions of parents that used this stale information have to

Figure 5: The requester interface: To see content, requesters use an indented list view (A). To see the dependency structure
of the workflow, requesters use a graph view (B). A complete task description is shown in a floating panel. In both views,
steps are color-coded to indicate their status: waiting (orange), in progress (red/cyan), completed (green).

Figure 6: Requesters can author partial workflows before
starting the PDS algorithm.

be reissued to the crowd as well (Figure 8C). Finally,
subsequent siblings in serial decompositions also have to be
reissued (Figure 8D). When a requester edits a task solution
or decomposition directly, the entire sub-tree of that task is
discarded. Tasks in this sub-tree that are currently being
answered will also be discarded. As with task instructions,
serial siblings and solutions of parents are also invalidated.

HOW WELL CAN CROWDS PLAN AND EXECUTE?
To explore how effectively crowds can be used to support
the execution of complex work, we performed two
evaluations. First, we examined how crowds performed in
producing and solving workflows without expert
intervention. Second, we looked at how expert intervention
can improve the crowd’s performance. Additionally, we
informally observed use of the Turkomatic platform outside
the lab. We discuss each of these evaluations in turn.

Unsupervised Crowd Planning
Can the crowd be guided algorithmically to plan and solve
problems without any input from requesters? Undirected
crowd planning seems a priori unlikely to produce usable
workflows: design problems often require extensive
communication and coordination between client (requester)
and designer (worker). In addition, correct interpretation of
a prompt may rely on specific domain knowledge. If that
knowledge is not shared between requester and worker,
instructions are likely to be misinterpreted. To provide a
baseline of success and failure patterns, we ran the PDS
algorithm with no monitoring by the requester.

Procedure
Via Turkomatic, we requested that the crowd plan
workflows for and compute answers to several types of
objectives, including essay writing, natural language

queries, itinerary planning, Java programming, and
multimedia content generation. We ran more than twenty
distinct kinds of queries in total. If the crowd had not
completed planning and solving a task within 5 days, we
posted it a second time. In each of these experiments, we
paid $0.05 for price and verify HITs; and $0.20 for divide,
solve and merge HITs. Workers were given 20 minutes to
complete each HIT; payments were automatically approved
after 24 hours. For five of these tasks, we also
systematically modified the redundancy parameter.
Requests given to the crowd were phrased as follows:

• Essay writing: “Write a 3-paragraph essay about
crowdsourcing.”

• Natural language query: “Create a list of the names of
the Department Chairs of the top 20 computer science
college programs in the US.”

• Itinerary planning: “Plan a complete road trip from San
Francisco, California, to New York City. Completely
include the locations of all necessary hotels, restaurants,
and sights along the way.”

• Java programming: “Please write a short piece of Java
code to reverse a string. The algorithm should take as
input a string and output its reverse. Make sure it
compiles.”

For each of these queries, we posed the objective to the
crowd through Turkomatic with redundancy levels of one
(no redundancy), two, and three.

Results and Observations
We observed both successes and systematic failures. Table
1 shows some task outcomes. The results can be grouped
into a small number of classes, described below.

Figure 7: Requesters select a node to edit a workflow (A), and enter new content (B). Turkomatic computes which subtasks
have to be re-issued due to the edit and restarts the PDS algorithm (C).

Figure 8: When requesters edit subtasks, children, parent solutions, and sibling solutions may have to be recomputed.

Snap Judgments
On a subset of the work, the crowd provided reasonable,
correct solutions. One class of successes were snap
judgments: cases where there was no decomposition of the
input task, but where a worker marked the first task as
solvable, and a subsequent worker provided a correct,
coherent and complete answer. In these outcomes, a correct
result is produced without additional decomposition or
planning. This success is unsurprising, as no collaboration
is involved when no workflow is required: the same worker
both determines how to solve a task and solves it.

Successful Planning
In some cases, groups of workers broke down tasks in line
with requester intentions, and this was sustained over
multiple iterations. For two writing tasks taken from sample
SAT essay questions, Turkomatic produced coherent essays
with reasonable arguments (Figure 9A – here the task tree
has two levels of serial subdivision; each division split the
original task into three subtasks).

This outcome occurred infrequently, which is not
surprising: it required a shared cognitive model of how
work should be decomposed to be maintained by multiple
workers in the execution process. We found that the active
participation of one or more highly eager workers early in
the process made a substantial difference in downstream
quality. The strongest workers provided instructions that
were self-contained and encapsulated all necessary
information independently in each subtask. Downstream
workers tended to pattern their contributions after models
established by earlier workers.

Challenges:
Task Derailment, Emergent Complexity and Cycling
In the majority of cases, the unsupervised crowd produced
unsuitable workflows or unsuccessful results. The most
frequent type of failure was derailment, a phenomenon that
occurred when the PDS algorithm failed to terminate and
continued to produce steps indefinitely. An example of this
phenomenon is shown in Figure 9B. Derailment occurred
for multiple reasons. First, workers were confused about

Task Description Outcome Subtasks Sample Data & Observations

Three-paragraph essay: Is it always essential
to tell the truth, or are there circumstances in
which it is better to lie?

Success with complex
planning

7 Top level breakdown was to write one paragraph arguing
for one position, another paragraph arguing for the other
position, and a conclusion paragraph reconciling the two.

Three paragraph essay: Do we learn more
from finding out that we have made mistakes
or from our successful failure?

Failure: Starvation 17 Sample response: “I've been through a lot in my life and
one thing I've learned is never, ever, ever, even think about
smoking or doing drugs. I spent years quitting from
smoking and I've learned that lesson.”

Write Java code to reverse a string Success: Snap judgment 1

Plan a road trip from San Francisco to New
York City

Derailment 55 Cyclic behavior: workers recomputed a list of landmarks at
least 3 times.

List department chairs of top 20 Computer
Science programs in the US

Derailment 5 Loss of context: Solution was a list of IKEA chairs.

Table 1: Experimental results for several unsupervised tasks. Outcome indicates type of success (snap judgment, complex
planning) or type of failure (derailment, starvation).

Figure 9: (A) Successful essay decomposition. (B) Derailment due to task cycling Highlighted nodes mark repeated tasks.

appropriate task granularity. For instance, to write a
paragraph as part of an essay-writing task, one worker
determined the first subtask for another worker should be to
“acquire a writing utensil or a computer” – losing track of
the original objective in an effort to subdivide as small as
possible. Second, workers authored subdivisions that could
be executed by a single worker, but not split across separate
workers (e.g. “think about what to write for the next
paragraph” followed by “write it down”). Finally, workers
who had lost the context of the overall workflow generated
decompositions that restated previous tasks as subtasks,
leading to cyclic behavior (Figure 9B, red highlight).

Task Starvation
Some workflows failed to complete due to starvation –
after a while, no new workers attempted the available tasks,
and the time limit for the experiment expired without the
execution of work continuing further. Task starvation has
been observed in other projects [6,7] and has been
counteracted in those contexts through listing optimization
or chaining sets of tasks to retain workers. In the context of
the PDS algorithm, starvation occurred most often when a
worker marked a task as solvable when, judging by its
complexity, it should have been subdivided.

Standard Quality Assurance Techniques are Insufficient
Surprisingly, adding redundancy by asking more workers to
contribute and vote on subdivisions at each step failed to
yield more successful decompositions. This is in contrast to
other forms of collaborative content creation such as
Wikipedia, where increasing the numbers of workers tends
to improve the quality of content. One explanation is that
Turkomatic’s model for redundancy does not allow workers
to iterate towards correct answers, but simply increases the
parallelism in each step. Workers tended to vote for
decompositions that were more detailed and produced more
subtasks, introducing more potential failure points.

Interestingly, eager workers sometimes arrived in already
derailed workflows and made efforts to correct the state of
the system. In several cases workers accepted Turkomatic
HITs, but were not satisfied with the workflow provided by
previous members of the crowd: these workers chose to
email the authors directly to suggest improvements to the
task. This suggests that making the Turkomatic requester
interface available to motivated workers to allow the crowd
to self-police and improve its own work.

COLLABORATIVE PLANNING AND EXECUTION
The results of the previous section suggest that the crowd
can sometimes produce acceptable results in planning and
executing solutions to general requests, but more frequently
faces challenges. At least two different strategies to address
these challenges are plausible. The first strategy is to recruit
more expert workers: it may be that the pool of workers
available on Mechanical Turk is not sufficiently qualified to
participate in planning tasks. The second strategy is to
allow requesters to monitor and selectively intervene in the
workflow design and execution process. In this section, we
describe informal experiments for both approaches: first,

with an expert crowd of workers recruited at UC Berkeley;
and second, with a Mechanical Turk crowd, augmented
through active requester participation using Turkomatic’s
monitoring interface.

We re-ran Turkomatic with the essay-writing, blog creation,
and natural-language query tasks discussed earlier, in two
conditions. In the first condition, we used a pool of five
expert workers drawn from a graduate computer science
course who had reported experience using Mechanical Turk
both as workers and requesters. The experts were males
with ages ranging from 21 to 33. These experts were
broadly aware that Turkomatic was a system for
crowdsourcing complex work, but were not given
additional instructions beyond those provided in the HITs.
In the second condition, we continued to use Mechanical
Turk to recruit workers, but used the requester interface to
monitor and edit tasks. To avoid snap judgments, we seeded
initial decompositions into the workflow. HITs were priced
identically to the unsupervised experiments.

Task instructions Condition Outcome

Expert workers Completed without
intervention

Create a list of the
names of the
Department Chairs of
the top 20 computer
science college
programs in the US
(each school has 1
Department Chair)

Requester
monitoring

Task completed
after 3 interventions

Expert workers Completed without
intervention

Write a 3-paragraph
essay about
crowdsourcing

Requester
monitoring

Task completed
after 4 interventions

Expert workers Completed with 1
intervention

Please create a new
blog about Mechanical
Turk, with a post and a
comment on that post. Requester

monitoring
Task completed with
requester
termination

Table 2: Results from the second set of Turkomatic
Experiments.

Figure 10: Requesters can intervene repeatedly to
increase the quality of the work. Here, different paragraphs
of a three-paragraph essay are independently written by
different workers. Some work is not acceptable to the
requester, so she reissues subtasks.

Outcome
Table 2 summarizes the results we obtained, counting the
number of interventions required for planning and
execution of the tested tasks. Both conditions avoided
starvation and derailment and resulted in usable solutions.
When expert workers carried out decomposition and
solution of the subtasks, solutions were reached rapidly.

When requesters intervened using the workflow editor, the
resulting workflows were executed correctly in all cases
(i.e., they reached a correct solution without derailment or
starvation). Figure 10 shows an example of how an essay-
writing workflow evolved during the experiment as
requesters intervened to invalidate and re-request specific
components of workflows. Requesters did not edit any
solutions provided by workers to reach this outcome; only
rejection of inconsistent work was required.

Discussion:
Why Does Collaborative Workflow Creation Succeed?
When requesters used workflow editing tools to guide the
crowd’s efforts, tasks completed successfully. Intervention
enabled requesters to provide feedback and to iterate on
unsuccessful tasks. If a workflow is executed without input
from the requester (unsupervised), workers must design
plans or create content with only a limited understanding of
the requester’s intent or preferences. This is in striking
contrast to the traditional model of design where designer
and clients to converge on a solution through repeated
iteration. For complex work, it seems especially important
for the requester to provide feedback. Manual intervention
and editing of a crowd-generated workflow is an effective
(if indirect) way to do so.

For example, requester instructions in our tasks were
sometimes inadequate in expressing what a requester
actually wanted. In an essay-writing task, when crowd
workers submitted solutions to individual paragraphs that
were clearly copied from Wikipedia, we used Turkomatic’s
editing interface to modify the task instructions (asking not
to copy text from another source) and reissue the task.
Improving task instructions in response to the crowd’s
initial failed attempts can be seen as an application of
iterative design to crowd programming. Such iterations
allowed tasks to succeed.

USER EXPERIENCES WITH TURKOMATIC
The authors have been using Turkomatic as a platform
since its creation to test a variety of tasks. We have also
shared Turkomatic with a number of end users within
academia and the computer science community who
requested solutions to various tasks. Two use case patterns
have emerged: first, Web search and data processing, such
as finding real estate listings, email addresses, or cross-
checking multiple web documents; second, one-time
experimentation to see if particular new classes of tasks can
be solved by workers on a crowd platform. Results from
some of these tasks are illustrated in Figure 11. Some users
indicated that the extra monetary cost involved in using

Turkomatic over regular crowdsourcing tasks was made up
for by its simple, fast interface.

These outcomes illustrate two additional benefits of
Turkomatic: It has value in quickly evaluating the ability of
crowds to solve particular kinds of work, and it can reduce
the complexity of accessing crowd platforms for casual use.
These additional benefits stem from the fact that
Turkomatic’s initial interface requires only a goal stated in
natural language. We hypothesize that crowdsourcing
marketplaces can grow substantially if the process of
sending work to crowds is simplified.

DISCUSSION
We close with several observations that arise from our work
with the Turkomatic system on collaboratively designing
workflows with the crowd.

Instructional Writing is Difficult for Workers
Composing good instructions is not trivial and takes time
and effort. This requirement stands in tension with the goal
of workers to maximize the number of tasks they complete
per unit of time. While we observed that some workers
were able to write excellent instructions, few other tasks on
Mechanical Turk require such careful attention, and
workers may thus be disincentivized from delivering
nuanced work.

Reputation Effects Arise from Worker Planning
Turkomatic assigns responsibility for wording tasks to the
workers. Interestingly, this means that poor choices by
Turkers may negatively affect the requester’s reputation.
We noticed that workers on Turker Nation, a discussion
forum, posted messages about tasks created by Turkomatic,
complaining about poor wording or excessive scope.

Figure 11: Results from two example tasks submitted by
Turkomatic users. Above: asking for restaurant
recommendations. Below: requesting blog comments.

Workers were not aware that these tasks were in fact
created by other workers and assigned their dissatisfaction
to the requester.

Excessive Structure Limits the Effectiveness of Leaders
We noticed that expert workers provided more detailed
instructions in their subdivisions and attempted to
communicate corrections to requesters through external
channels of communication. The PDS algorithm does not
yet offer workers the ability to contribute at different levels
commensurate with skill and interest. This phenomenon
suggests that more effective platforms for collaboration
with the crowd should permit workers to edit workflows
much as requesters do in the current systems.

Scaling Requires Context-Free Workflows
Batch processes send many different problem instances
through the same workflow (e.g., filtering a database of
business addresses through an address verification
workflow). This implies that such workflows must be
designed in a context free manner – the instructions have to
be written independently of any particular problem
instance. Turkomatic currently does not offer a guarantee
that crowd-planned workflows are context free. One
promising idea for future work is to first ask the crowd to
produce a concrete workflow; and afterwards generalize it
to fit multiple problem instances.

CONCLUSION
This paper introduced Turkomatic, a system that harnesses
crowds to design and execute workflows for complex tasks.
Turkomatic is based on a price-divide-solve algorithm that
guides workers through the steps of decomposing and
solving tasks; and on generic task templates that are
instantiated with particular task contexts. Our experience
with Turkomatic suggests that unsupervised workers face
planning challenges. However, experiments also showed
that planning succeeds for an interesting range of tasks
when more knowledgeable workers are recruited and when
requesters can review and edit crowd work in real-time.

However, the one-size-fits-all model of Turkomatic trades
off simplicity of use for runtime supervision: workflows
can be generated without exhaustive planning, but require
requester monitoring at runtime to guarantee quality of
results. In future work, we plan to investigate to what extent
this supervisory function can again be assigned to crowd
workers, and how the pricing structure of Turkomatic can
be optimized. Effective workflow design is among the most
common problems facing crowdsourcing researchers today.
Why not collaborate with workers in solving it?

ACKNOWLEDGMENTS
This work was supported by gifts from Intel and Google.

REFERENCES
1. Ruote. http://ruote.rubyforge.org/.
2. RunMyProcess. http://www.runmyprocess.com/.
3. Graphviz. http://www.graphviz.org/.
4. Ahmad, S., Battle, A., Malkani, Z., and Kamvar, S.

The Jabberwocky programming environment for

structured social computing. Proceedings of UIST
2011, (2011), 53-64.

5. Ahn, L. von. Games with a Purpose. IEEE Computer
39, (2006), 92–94.

6. Bernstein, M.S., Little, G., Miller, R.C., et al. Soylent:
a word processor with a crowd inside. Proceedings of
UIST 2010, ACM (2010), 313–322.

7. Bigham, J.P., Jayant, C., Ji, H., et al. VizWiz: nearly
real-time answers to visual questions. Proceedings of
UIST 2010, ACM (2010), 333–342.

8. Faridani, S., Hartmann, B., and Ipeirotis, P.G. What’s
the Right Price? Pricing Tasks for Finishing on Time.
Proceedings of HCOMP11: The 3rd Workshop on
Human Computation.

9. Franklin, M.J., Kossmann, D., Kraska, T., Ramesh, S.,
and Xin, R. CrowdDB: answering queries with
crowdsourcing. Proceedings of SIGMOD 2011, (2011),
61-72.

10. Huang, E., Zhang, H., Parkes, D.C., Gajos, K.Z., and
Chen, Y. Toward automatic task design: a progress
report. Proceedings of the ACM SIGKDD Workshop on
Human Computation, ACM (2010), 77–85.

11. Ipeirotis, P.G. Analyzing the Amazon Mechanical
Turk marketplace. XRDS: Crossroads, The ACM
Magazine for Students 17, (2010), 16–21.

12. Kittur, A., Smus, B., Khamkar, S., and Kraut, R.E.
CrowdForge: Crowdsourcing Complex Work.
Proceedings of UIST 2011, ACM (2011), 43-52.

13. Lasecki, W.S., Murray, K.I., White, S., Miller, R.C.,
and Bigham, J.P. Real-time crowd control of existing
interfaces. Proceedings of UIST 2011, (2011), 23.

14. Little, G., Chilton, L.B., Goldman, M., and Miller,
R.C. TurKit: human computation algorithms on
mechanical turk. Proceedings of UIST 2010, ACM
(2010), 57–66.

15. Olsen, T. Incorporating crowdsourcing into business
processes. Adjunct Proceedings of CSCW 2011,
(2011).

16. Quinn, A.J. and Bederson, B.B. Human computation: a
survey and taxonomy of a growing field. Proceedings
of CHI 2011, ACM (2011), 1403–1412.

17. Sheng, V.S., Provost, F., and Ipeirotis, P.G. Get
another label? Improving data quality and data mining
using multiple, noisy labelers. Proceeding of the 14th
ACM SIGKDD international conference on Knowledge
discovery and data mining, ACM (2008), 614–622.

18. Singer, Y. and Mittal, M. Pricing Tasks in Online
Labor Markets. Proceedings of HCOMP11: The 3rd
Workshop on Human Computation, (2011).

19. Sorokin, A. and Forsyth, D. Utility Data Annotation
with Amazon Mechanical Turk. Proceedings of CVPR
2008, (2008).

20. Stohr, E.A. and Zhao, J.L. Workflow Automation:
Overview and Research Issues. Information Systems
Frontiers 3, (2001), 281–296.

21. White, S. BPMN modeling and reference guide. Future
Strategies Inc., Lighthouse Point Fla., 2008.

