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ABSTRACT 
Preparing complex jobs for crowdsourcing marketplaces 
requires careful attention to workflow design, the process of 
decomposing jobs into multiple tasks, which are solved by 
multiple workers. Can the crowd help design such 
workflows? This paper presents Turkomatic, a tool that 
recruits crowd workers to aid requesters in planning and 
solving complex jobs. While workers decompose and solve 
tasks, requesters can view the status of worker-designed 
workflows in real time; intervene to change tasks and 
solutions; and request new solutions to subtasks from the 
crowd. These features lower the threshold for crowd 
employers to request complex work. During two 
evaluations, we found that allowing the crowd to plan 
without requester supervision is partially successful, but 
that requester intervention during workflow planning and 
execution improves quality substantially. We argue that 
Turkomatic’s collaborative approach can be more 
successful than the conventional workflow design process 
and discuss implications for the design of collaborative 
crowd planning systems. 
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INTRODUCTION 
Crowdsourcing marketplaces are increasingly used to solve 
computational problems that require human intelligence, 
such as audio transcription and data verification [11,16]. 
Many problems on markets like Amazon Mechanical Turk 
are solved as a series of microtasks: narrowly focused, brief 
tasks designed to be completed in a few minutes, such as 
labeling an image or checking the accuracy of data through 

web search. For quality assurance and to accomplish 
complex work, multiple microtasks are frequently chained 
together into workflows. Such workflows may decompose 
larger tasks into smaller subtasks, and later recompose 
subtask solutions into an overall work product. For 
example, a text editing workflow may ask one group of 
workers to find problems, another set to fix the identified 
problems, and a third to verify these edits [6]. A 
fundamental challenge in the use of crowdsourcing markets 
is the workflow design problem: how can employers divide 
a complex task into a set of microtasks that can be 
accurately solved by a pool of crowd workers?  

Effective workflow design remains a major challenge 
today, involving both substantial planning, software 
development, and testing. Absent formal design 
methodologies, requesters commonly rely on an iterative 
process to construct good workflows. Requesters guess at a 
viable workflow, implement all of its steps as software that 
interfaces with a crowd platform, test it live with workers, 
identify points of failure, then iterate and modify the 
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Figure 1: Turkomatic harnesses crowds to design and 
execute workflows in collaboration with requesters. A request 
(top) is subdivided into steps by the crowd. Turkomatic shows 
a task graph as work is progressing (left). Multiple workers 
execute steps of the created workflow until a global solution is 
produced – in this case, a new blog (right). Requesters can 
modify workflows in real-time. 



 

workflow. The cost and complexity of this process limits 
participation in crowdsourcing marketplaces to experts 
willing to invest substantial time. These barriers to 
participation also limit the kinds of work that are 
crowdsourced today. 

We propose that the responsibility for workflow design can 
be shared between the crowd and the requester. Turkomatic 
(Figure 1) is a novel crowdsourcing tool that allows the 
crowd to collaboratively design and execute workflows in 
conjunction with a requester. Turkomatic accepts a 
requester’s specification of a broad objective, then asks 
workers on Amazon’s Mechanical Turk to determine how 
to structure workflows to achieve the objective. The 
requester is able to monitor and edit the resulting 
workflows as they are produced.  

Turkomatic uses a novel meta-workflow to induce the 
crowd to design and execute workflows. The system 
executes a continuous price-divide-solve loop that asks 
workers to recursively divide complex steps into simpler 
ones until they are at an appropriately simple level, then to 
solve them. Other workers are asked to verify the solutions 
and combine the results into a coherent answer to the 
original request. The use of pre-structured task templates 
and the participation of the crowd enables requesters to 
produce workflows without implementing software or 
designing intermediate tasks themselves. Compared to 
existing toolkits for programmatic workflow design, e.g., 
TurKit [14] and Jabberwocky [4], these features lower the 
threshold for employer participation in crowdsourcing. 

The price-divide-solve loop produces directed, acyclic task 
graphs: nodes represent subtasks and links describe task 
dependencies. The task graph is constructed during divide 
steps, and completed during solve steps. Turkomatic’s 
graphical user interface allows the requester to visualize, 
monitor and interact with task graphs in real-time. 
Requesters can delete or modify plans made by workers, 
request the crowd to re-plan components of workflows, or 
seed the system with partial plans to evaluate their 
effectiveness. Real-time visualization of workflow 
structures and partial solutions enable requesters to debug 
many of the common failure modes that arise in multi-step 
workflows. These include cases where workers 
misunderstand tasks, give inadequate solutions, or where 
the requester’s original language is unclear. 

Following a review of related work, we introduce the 
algorithmic foundations of the price-divide-solve loop and 
discuss how Turkomatic operates from both the requester 
and worker perspectives. A first experiment explores how 
workers succeed and fail to plan tasks without expert 
supervision. A second experiment demonstrates how 
workers and requesters can successfully interact through 
Turkomatic on a variety of planning and execution tasks. 
We close by reporting on usage of Turkomatic outside the 
lab. Our findings lead to a number of design implications 
for collaborations on crowdsourcing platforms. 

RELATED WORK 
Early work in human computation emphasized its utility as 
a tool for efficiently processing large datasets in 
applications like tagging and classification that were 
outside the reach of autonomous algorithms [5]. Artificial 
intelligence researchers emphasized the utility of crowds 
for supporting active learning problems [17,19]. Most paid 
microtask work today remains batch data processing [11]. 
Quinn and Bederson’s taxonomy of human computation 
does not include any creative or integrative tasks [16].  

More recent research has attempted to expand the types of 
tasks that can be solved via distributed human computation. 
VizWiz is capable of handling open-ended, natural-
language requests from users [7]. Soylent provides crowd-
powered text editing services in a word processor [6]. Its 
“find-fix-verify” design pattern divides work in a manner 
that maintains consistency and accuracy. Legion enables 
multiple crowd workers to control existing user interfaces 
in real-time [13]. 

New toolkits seek to support such complex applications. 
TurKit aids requesters in deploying iterative tasks on 
Mechanical Turk; its crash-and-rerun architecture saves 
intermediate results to avoid redundant crowd assignments 
[14]. Jabberwocky can target workers in both paid and 
volunteer workforces [4]. In these toolkits, it is assumed 
that task designers (not workers) will determine how tasks 
are broken down in all cases.  

While most crowdsourcing tasks are designed manually 
based on prior experience and intuition, formal techniques 
can also play a useful. By optimizing task parameters 
programmatically [10], modeling the market [8], or 
introducing auction mechanisms [18], response quality and 
response rate can be improved. Task templates can also be 
automatically created for data gathering tasks based on an 
underlying database schema [9].  

Both text-based and visual workflow languages have been 
devised in prior work; Stohr presents a survey of such 
systems [20]. Some workflow languages have recently been 
extended to connect to crowdsourcing marketplaces. 
Crowdsourcing companies such as Crowdflower use the 
domain-specific workflow language Ruote [1] to implement 
complex tasks. Ruote is only accessible to expert 
programmers. RunMyProcess is a commercial service to 
author and execute business processes in the cloud [2]. It 
uses Business Process Modeling Notation [21], a standard 
diagramming convention, as the basis for a visual workflow 
design tool. Olsen used RunMyProcess to post tasks and 
receive answers from Mechanical Turk [15].  

Most recently, CrowdForge introduced a map-reduce 
paradigm to divide complex work into smaller steps for 
crowdsourcing platforms [12]. We also employ a divide-
and-conquer strategy, but introduce a recursive algorithm. 
In addition, Turkomatic adds workflow visualization and 
editing capabilities not present in CrowdForge. 



THE TURKOMATIC SYSTEM 
Turkomatic consists of two major components. First, a 
meta-workflow uses the crowd to assist in the design of the 
workflow, and to execute it. Our novel price-divide-solve 
algorithm (PDS) uses a divide-and-conquer strategy to let 
workers decide how to split up tasks. Second, an editable 
workflow visualization enables requesters to observe and 
manage work being executed by the crowd. We discuss the 
algorithm and the associated worker interfaces first, then 
describe Turkomatic’s requester interfaces. 

Algorithmic Model: Price-Divide-Solve, Then Merge 
PDS is a general-purpose algorithm for inducing the crowd 
to generate workflows for tasks specified by the requester. 
The algorithm guides workers through the process of 
converting large, complex tasks into microtasks appropriate 
for crowd markets. Once all the microtasks for a given 
component of the workflow are solved, a merge stage asks 

workers to recombine work back into a coherent single 
solution to the original task. Both stages rely on verification 
functions that determine when work needs to be checked or 
repeated. For each step in the algorithm, task templates are 
automatically instantiated with task context and posted to a 
crowd marketplace (see Figure 2). Turkomatic posts Human 
Intelligence Tasks (HITs) on Amazon Mechanical Turk, 
through the algorithm is independent of this particular 
platform. 

Price-Divide-Solve  
The price-divide-solve phase splits work into fairly priced 
sub-tasks. An initial pricing HIT presents the overall task 
goal and asks whether or not this task can be solved for a 
fixed price (in our implementation, twenty cents). If a 
worker indicates the task can be solved directly at the stated 
price, a new HIT will be posted, asking another worker to 

 
Figure 2: The worker interface: HITs corresponding to (A) subdivision, (B) verification, (C) solution and (D) merging. 



 

do so (Figure 2C). If the task is judged too complex, the 
next worker is asked to divide the task into two or more 
subtasks that are easier to solve than the original task 
(Figure 2A). To capture information dependencies, workers 
indicate whether the subtasks can be worked on in parallel 
or whether they must be completed sequentially.  

The set of subtasks is then posted to Mechanical Turk. This 
process is recursive: subtasks generated by the subdivide 
step may themselves be broken down by another step. 
Figure 3 shows pseudo-code for the entire PDS algorithm. 

Merge Phase 
The merge step combines subtask solutions elements 
produced during divide steps. Once all the subtasks 
produced in a given subdivide step have been solved, the 
solutions are listed together in a merge HIT (Figure 2D). 
The HIT instructs a worker to combine the subtask 
solutions in a way that solves the overall goal at the given 
level of the task hierarchy. The merge process continues 
until the requester’s original task is solved. 

Verification 
Turkomatic validates the quality of work produced by 
subdivide, solve, and merge functions by asking the crowd 
to vote on the best of several redundant answers. For each 
of these functions, Turkomatic requests r answers from the 
crowd, where r is an initial redundancy parameter specified 
by the requester (see Figure 3). For simplicity, r is kept 
uniform across all types of HITs, though this parameter 
could be optimized for each HIT independently. In 
verification HITs (Figure 2B), a worker is presented with a 
task and its candidate decompositions or solutions; the 
worker is asked to vote on the answer that best 
accomplishes the task. Using workers to select from 
redundant answers for quality control is a common strategy 
in many crowdsourcing applications [6,14]. 

Task Design Strategies 
Designing general-purpose HITs that fit a wide variety of 
tasks while still conveying specific requirements of the 
decomposition and merge phases to a worker is 
challenging. In our experience, two design techniques 
proved especially useful and necessary: 1) including larger 
task context in subtasks, and 2) visually separating task 
language from context language. 

Show Context of Tasks in a Workflow  
Providing workers with a birds-eye view of the overall 
decomposition is critical. Workers can easily become 
confused if their role in the larger process is not made 
explicit. In addition, workers may need to refer to 
information contained in prior answers to adequately solve 
their sub-task. To communicate the larger goal, and the 
work completed towards this goal, Turkomatic shows an 
indented list view of the decomposition generated by other 
workers (Figure 4), highlighting the current subtask. This 
view shows all available information. However, presenting 
complete task status can also lead to confusion if the task is 
already extensively subdivided. We reserve further study of 
the optimal amount of context information that should be 
presented to future work. 

Visually Separate Task Language from Context Language 
The HITs for subdivide and merge steps contain complex 
information and require careful attention of the worker. 
Workers can have difficulty identifying which task in a 
complex plan they were being asked to carry out. We used 
background colors to emphasize and separate the primary 
task instructions from explanatory and context information. 
Type treatment, e.g., bold, red text, was used as an effective 
second level of emphasis. In pilot testing, these attributes 
were more effective than indentation or whitespace.  

Requester Interfaces 
This section reviews interaction with Turkomatic from the 
requester’s perspective. 

Requesting Work  
Requesters post new Turkomatic jobs through a natural-
language web interface (Figure 1). Inspired by web search, 
it offers a single text box where the requesters specify what 
they want to accomplish. 

Expert requesters can also author decompositions that serve 
as a starting point for the PDS algorithm. Such 
decompositions may be preferred if the requester believes 

PDS(Task t, Price p, Redundancy r): 
 if crowdIsFairPrice(t,p): 
  return solve(t,r) 
 else: 
  subtasks = divide(t,r) 
   for s in subtasks: 
     subsolutions += PDS(s,p,r) 
  return merge(t,subsolutions,r) 
 
divide(Task t, Redundancy r): 
   for j in [1,r]:  
     divisions += crowdSubdivide(j) 
  return crowdChooseBest(divisions) 
 
solve(Task t, Redundancy r): 
   for j in [1,r]: 
    solutions += crowdSolve(t) 
  return crowdChooseBest(solutions) 
  
merge(Task t, Subsolutions s, Redundancy r): 
   for j in [1,r]: 
     merges += crowdMerge(t,s) 
  return crowdChooseBest(merges) 
 

Figure 3: Pseudocode for the PDS algorithm. Calls to crowd 
functions (blue) correspond to HITs shown in Figure 2. 

 
Figure 4: Turkomatic shows task context to workers. 



that crowds will not be able to properly decompose a given 
task, e.g., because the decomposition requires significant 
domain expertise. A decomposition specifies a tree 
structure where the leaves of the tree are the tasks that have 
to either be solved or further sub-divided. Turkomatic 
provides an indented list interface for authoring 
decompositions (Figure 6). Once a new task prompt or task 
tree is loaded, the PDS algorithm recruits crowd workers to 
price, subdivide, and solve the leaf tasks, and eventually 
merge solutions to accomplish the root task. 

Visualizing Ongoing Work 
To enable requesters to gain insight into partially completed 
work, Turkomatic provides a workflow visualization that 
shows the current state of an ongoing job as either an 
indented list (Figure 5A) or a decomposition graph (Figure 
5B). The list view allocates most screen space to task 
content (i.e., written descriptions and solutions). The graph 
shows hierarchy, as well as parallel and serial 
decompositions. Both visualizations inform requesters how 
much of the work has been accomplished, what strategies 
have been taken, and whether subtask solutions or 
decompositions are of sufficient quality. 

Turkomatic uses GraphViz [3] to render decomposition 
graphs. Nodes in the graph represent the component tasks 
of a job. Solid directed edges show the relationship between 
tasks and sub-tasks (i.e., when there is a subdivision). 
Dashed directed edges indicate the order of tasks in a serial 
split, where one sibling must complete before another 
sibling can be posted.  

Each node contains a summary of the task prompt, the 
solution to the prompt (if available), and a status indicator. 
A task can either be a) waiting on a decision whether to 
split or solve (orange in Figure 5B); b) in-progress and 
waiting for subtasks to complete (cyan); or c) solved 
(green). The tree visualization is interactive: brushing over 
nodes displays complete instructions and solutions in a 
floating panel, as the text often cannot fit in the node. This 
visualization remains legible for tasks with tens of nodes. 
For complex graphs, additional interaction techniques such 
as collapsible branches may become necessary. 

Editing Workflows 
Ongoing work can be unsatisfactory for multiple reasons: a 
crowd-authored decomposition may be flawed, or a solution 
to a subtask may be of low quality. Requesters can edit 
existing workflows in real-time to address such challenges 
(Figure 7). Requesters edit the task description, 
decomposition, or solution for any node. Once an edit is 
completed, Turkomatic computes which tasks will have to 
be performed again by additional workers.  

When a task description is changed (Figure 8A), any 
subtasks created for this task by the crowd may also no 
longer be valid. Turkomatic therefore invalidates the entire 
sub-tree below the edited task and reissues the task (Figure 
8B). If the task already had a solution, all upstream 
solutions of parents that used this stale information have to 

 
Figure 5: The requester interface: To see content, requesters use an indented list view (A). To see the dependency structure 
of the workflow, requesters use a graph view (B). A complete task description is shown in a floating panel. In both views, 
steps are color-coded to indicate their status: waiting (orange), in progress (red/cyan), completed (green). 

 

  

 

 
Figure 6: Requesters can author partial workflows before 
starting the PDS algorithm. 



 

be reissued to the crowd as well (Figure 8C). Finally, 
subsequent siblings in serial decompositions also have to be 
reissued (Figure 8D). When a requester edits a task solution 
or decomposition directly, the entire sub-tree of that task is 
discarded. Tasks in this sub-tree that are currently being 
answered will also be discarded. As with task instructions, 
serial siblings and solutions of parents are also invalidated. 

HOW WELL CAN CROWDS PLAN AND EXECUTE? 
To explore how effectively crowds can be used to support 
the execution of complex work, we performed two 
evaluations. First, we examined how crowds performed in 
producing and solving workflows without expert 
intervention. Second, we looked at how expert intervention 
can improve the crowd’s performance. Additionally, we 
informally observed use of the Turkomatic platform outside 
the lab. We discuss each of these evaluations in turn. 

Unsupervised Crowd Planning 
Can the crowd be guided algorithmically to plan and solve 
problems without any input from requesters?  Undirected 
crowd planning seems a priori unlikely to produce usable 
workflows: design problems often require extensive 
communication and coordination between client (requester) 
and designer (worker). In addition, correct interpretation of 
a prompt may rely on specific domain knowledge. If that 
knowledge is not shared between requester and worker, 
instructions are likely to be misinterpreted. To provide a 
baseline of success and failure patterns, we ran the PDS 
algorithm with no monitoring by the requester. 

Procedure 
Via Turkomatic, we requested that the crowd plan 
workflows for and compute answers to several types of 
objectives, including essay writing, natural language 

queries, itinerary planning, Java programming, and 
multimedia content generation. We ran more than twenty 
distinct kinds of queries in total. If the crowd had not 
completed planning and solving a task within 5 days, we 
posted it a second time. In each of these experiments, we 
paid $0.05 for price and verify HITs; and $0.20 for divide, 
solve and merge HITs. Workers were given 20 minutes to 
complete each HIT; payments were automatically approved 
after 24 hours. For five of these tasks, we also 
systematically modified the redundancy parameter. 
Requests given to the crowd were phrased as follows: 

• Essay writing: “Write a 3-paragraph essay about 
crowdsourcing.” 

• Natural language query: “Create a list of the names of 
the Department Chairs of the top 20 computer science 
college programs in the US.” 

• Itinerary planning: “Plan a complete road trip from San 
Francisco, California, to New York City. Completely 
include the locations of all necessary hotels, restaurants, 
and sights along the way.” 

• Java programming: “Please write a short piece of Java 
code to reverse a string. The algorithm should take as 
input a string and output its reverse. Make sure it 
compiles.” 

For each of these queries, we posed the objective to the 
crowd through Turkomatic with redundancy levels of one 
(no redundancy), two, and three. 

Results and Observations 
We observed both successes and systematic failures. Table 
1 shows some task outcomes. The results can be grouped 
into a small number of classes, described below. 

 
Figure 7: Requesters select a node to edit a workflow (A), and enter new content (B). Turkomatic computes which subtasks 
have to be re-issued due to the edit and restarts the PDS algorithm (C). 

 
Figure 8: When requesters edit subtasks, children, parent solutions, and sibling solutions may have to be recomputed. 



Snap Judgments 
On a subset of the work, the crowd provided reasonable, 
correct solutions. One class of successes were snap 
judgments: cases where there was no decomposition of the 
input task, but where a worker marked the first task as 
solvable, and a subsequent worker provided a correct, 
coherent and complete answer. In these outcomes, a correct 
result is produced without additional decomposition or 
planning. This success is unsurprising, as no collaboration 
is involved when no workflow is required: the same worker 
both determines how to solve a task and solves it.  

Successful Planning 
In some cases, groups of workers broke down tasks in line 
with requester intentions, and this was sustained over 
multiple iterations. For two writing tasks taken from sample 
SAT essay questions, Turkomatic produced coherent essays 
with reasonable arguments (Figure 9A – here the task tree 
has two levels of serial subdivision; each division split the 
original task into three subtasks).  

This outcome occurred infrequently, which is not 
surprising: it required a shared cognitive model of how 
work should be decomposed to be maintained by multiple 
workers in the execution process. We found that the active 
participation of one or more highly eager workers early in 
the process made a substantial difference in downstream 
quality. The strongest workers provided instructions that 
were self-contained and encapsulated all necessary 
information independently in each subtask. Downstream 
workers tended to pattern their contributions after models 
established by earlier workers. 

Challenges: 
Task Derailment, Emergent Complexity and Cycling 
In the majority of cases, the unsupervised crowd produced 
unsuitable workflows or unsuccessful results. The most 
frequent type of failure was derailment, a phenomenon that 
occurred when the PDS algorithm failed to terminate and 
continued to produce steps indefinitely. An example of this 
phenomenon is shown in Figure 9B. Derailment occurred 
for multiple reasons. First, workers were confused about 

 

Task Description Outcome Subtasks Sample Data & Observations 

Three-paragraph essay: Is it always essential 
to tell the truth, or are there circumstances in 
which it is better to lie? 

Success with complex 
planning 

7 Top level breakdown was to write one paragraph arguing 
for one position, another paragraph arguing for the other 
position, and a conclusion paragraph reconciling the two. 

Three paragraph essay: Do we learn more 
from finding out that we have made mistakes 
or from our successful failure? 

Failure: Starvation 17 Sample response: “I've been through a lot in my life and 
one thing I've learned is never, ever, ever, even think about 
smoking or doing drugs. I spent years quitting from 
smoking and I've learned that lesson.” 

Write Java code to reverse a string Success: Snap judgment 1  

Plan a road trip from San Francisco to New 
York City 

Derailment 55 Cyclic behavior: workers recomputed a list of landmarks at 
least 3 times. 

List department chairs of top 20 Computer 
Science programs in the US 

Derailment 5 Loss of context: Solution was a list of IKEA chairs. 

Table 1: Experimental results for several unsupervised tasks. Outcome indicates type of success (snap judgment, complex 
planning) or type of failure (derailment, starvation). 

 
Figure 9: (A) Successful essay decomposition. (B) Derailment due to task cycling Highlighted nodes mark repeated tasks. 



 

appropriate task granularity. For instance, to write a 
paragraph as part of an essay-writing task, one worker 
determined the first subtask for another worker should be to 
“acquire a writing utensil or a computer” – losing track of 
the original objective in an effort to subdivide as small as 
possible. Second, workers authored subdivisions that could 
be executed by a single worker, but not split across separate 
workers (e.g. “think about what to write for the next 
paragraph” followed by “write it down”). Finally, workers 
who had lost the context of the overall workflow generated 
decompositions that restated previous tasks as subtasks, 
leading to cyclic behavior (Figure 9B, red highlight). 

Task Starvation 
Some workflows failed to complete due to starvation – 
after a while, no new workers attempted the available tasks, 
and the time limit for the experiment expired without the 
execution of work continuing further. Task starvation has 
been observed in other projects [6,7] and has been 
counteracted in those contexts through listing optimization 
or chaining sets of tasks to retain workers. In the context of 
the PDS algorithm, starvation occurred most often when a 
worker marked a task as solvable when, judging by its 
complexity, it should have been subdivided.  

Standard Quality Assurance Techniques are Insufficient 
Surprisingly, adding redundancy by asking more workers to 
contribute and vote on subdivisions at each step failed to 
yield more successful decompositions. This is in contrast to 
other forms of collaborative content creation such as 
Wikipedia, where increasing the numbers of workers tends 
to improve the quality of content. One explanation is that 
Turkomatic’s model for redundancy does not allow workers 
to iterate towards correct answers, but simply increases the 
parallelism in each step. Workers tended to vote for 
decompositions that were more detailed and produced more 
subtasks, introducing more potential failure points. 

Interestingly, eager workers sometimes arrived in already 
derailed workflows and made efforts to correct the state of 
the system. In several cases workers accepted Turkomatic 
HITs, but were not satisfied with the workflow provided by 
previous members of the crowd: these workers chose to 
email the authors directly to suggest improvements to the 
task. This suggests that making the Turkomatic requester 
interface available to motivated workers to allow the crowd 
to self-police and improve its own work. 

COLLABORATIVE PLANNING AND EXECUTION 
The results of the previous section suggest that the crowd 
can sometimes produce acceptable results in planning and 
executing solutions to general requests, but more frequently 
faces challenges. At least two different strategies to address 
these challenges are plausible. The first strategy is to recruit 
more expert workers: it may be that the pool of workers 
available on Mechanical Turk is not sufficiently qualified to 
participate in planning tasks. The second strategy is to 
allow requesters to monitor and selectively intervene in the 
workflow design and execution process. In this section, we 
describe informal experiments for both approaches: first, 

with an expert crowd of workers recruited at UC Berkeley; 
and second, with a Mechanical Turk crowd, augmented 
through active requester participation using Turkomatic’s 
monitoring interface.   

We re-ran Turkomatic with the essay-writing, blog creation, 
and natural-language query tasks discussed earlier, in two 
conditions. In the first condition, we used a pool of five 
expert workers drawn from a graduate computer science 
course who had reported experience using Mechanical Turk 
both as workers and requesters. The experts were males 
with ages ranging from 21 to 33. These experts were 
broadly aware that Turkomatic was a system for 
crowdsourcing complex work, but were not given 
additional instructions beyond those provided in the HITs.  
In the second condition, we continued to use Mechanical 
Turk to recruit workers, but used the requester interface to 
monitor and edit tasks. To avoid snap judgments, we seeded 
initial decompositions into the workflow. HITs were priced 
identically to the unsupervised experiments.  

Task instructions Condition Outcome 

Expert workers Completed without 
intervention 

Create a list of the 
names of the 
Department Chairs of 
the top 20 computer 
science college 
programs in the US 
(each school has 1 
Department Chair) 

Requester 
monitoring 

Task completed 
after 3 interventions 

Expert workers Completed without 
intervention 

Write a 3-paragraph 
essay about 
crowdsourcing 

Requester 
monitoring 

Task completed 
after 4 interventions 

Expert workers Completed with 1 
intervention 

Please create a new 
blog about Mechanical 
Turk, with a post and a 
comment on that post. Requester 

monitoring 
Task completed with 
requester 
termination 

Table 2: Results from the second set of Turkomatic 
Experiments.  

 
Figure 10: Requesters can intervene repeatedly to 
increase the quality of the work. Here, different paragraphs 
of a three-paragraph essay are independently written by 
different workers. Some work is not acceptable to the 
requester, so she reissues subtasks. 

 



Outcome 
Table 2 summarizes the results we obtained, counting the 
number of interventions required for planning and 
execution of the tested tasks. Both conditions avoided 
starvation and derailment and resulted in usable solutions. 
When expert workers carried out decomposition and 
solution of the subtasks, solutions were reached rapidly. 

When requesters intervened using the workflow editor, the 
resulting workflows were executed correctly in all cases 
(i.e., they reached a correct solution without derailment or 
starvation). Figure 10 shows an example of how an essay-
writing workflow evolved during the experiment as 
requesters intervened to invalidate and re-request specific 
components of workflows. Requesters did not edit any 
solutions provided by workers to reach this outcome; only 
rejection of inconsistent work was required.  

Discussion:  
Why Does Collaborative Workflow Creation Succeed? 
When requesters used workflow editing tools to guide the 
crowd’s efforts, tasks completed successfully.  Intervention 
enabled requesters to provide feedback and to iterate on 
unsuccessful tasks. If a workflow is executed without input 
from the requester (unsupervised), workers must design 
plans or create content with only a limited understanding of 
the requester’s intent or preferences. This is in striking 
contrast to the traditional model of design where designer 
and clients to converge on a solution through repeated 
iteration. For complex work, it seems especially important 
for the requester to provide feedback. Manual intervention 
and editing of a crowd-generated workflow is an effective 
(if indirect) way to do so.  

For example, requester instructions in our tasks were 
sometimes inadequate in expressing what a requester 
actually wanted. In an essay-writing task, when crowd 
workers submitted solutions to individual paragraphs that 
were clearly copied from Wikipedia, we used Turkomatic’s 
editing interface to modify the task instructions (asking not 
to copy text from another source) and reissue the task. 
Improving task instructions in response to the crowd’s 
initial failed attempts can be seen as an application of 
iterative design to crowd programming. Such iterations 
allowed tasks to succeed. 

USER EXPERIENCES WITH TURKOMATIC 
The authors have been using Turkomatic as a platform 
since its creation to test a variety of tasks. We have also 
shared Turkomatic with a number of end users within 
academia and the computer science community who 
requested solutions to various tasks.  Two use case patterns 
have emerged: first, Web search and data processing, such 
as finding real estate listings, email addresses, or cross-
checking multiple web documents; second, one-time 
experimentation to see if particular new classes of tasks can 
be solved by workers on a crowd platform. Results from 
some of these tasks are illustrated in Figure 11. Some users 
indicated that the extra monetary cost involved in using 

Turkomatic over regular crowdsourcing tasks was made up 
for by its simple, fast interface.  

These outcomes illustrate two additional benefits of 
Turkomatic: It has value in quickly evaluating the ability of 
crowds to solve particular kinds of work, and it can reduce 
the complexity of accessing crowd platforms for casual use. 
These additional benefits stem from the fact that 
Turkomatic’s initial interface requires only a goal stated in 
natural language. We hypothesize that crowdsourcing 
marketplaces can grow substantially if the process of 
sending work to crowds is simplified. 

DISCUSSION  
We close with several observations that arise from our work 
with the Turkomatic system on collaboratively designing 
workflows with the crowd. 

Instructional Writing is Difficult for Workers 
Composing good instructions is not trivial and takes time 
and effort. This requirement stands in tension with the goal 
of workers to maximize the number of tasks they complete 
per unit of time. While we observed that some workers 
were able to write excellent instructions, few other tasks on 
Mechanical Turk require such careful attention, and 
workers may thus be disincentivized from delivering 
nuanced work. 

Reputation Effects Arise from Worker Planning 
Turkomatic assigns responsibility for wording tasks to the 
workers. Interestingly, this means that poor choices by 
Turkers may negatively affect the requester’s reputation. 
We noticed that workers on Turker Nation, a discussion 
forum, posted messages about tasks created by Turkomatic, 
complaining about poor wording or excessive scope. 

 
Figure 11: Results from two example tasks submitted by 
Turkomatic users. Above: asking for restaurant 
recommendations. Below: requesting blog comments. 



 

Workers were not aware that these tasks were in fact 
created by other workers and assigned their dissatisfaction 
to the requester. 

Excessive Structure Limits the Effectiveness of Leaders 
We noticed that expert workers provided more detailed 
instructions in their subdivisions and attempted to 
communicate corrections to requesters through external 
channels of communication. The PDS algorithm does not 
yet offer workers the ability to contribute at different levels 
commensurate with skill and interest. This phenomenon 
suggests that more effective platforms for collaboration 
with the crowd should permit workers to edit workflows 
much as requesters do in the current systems. 

Scaling Requires Context-Free Workflows 
Batch processes send many different problem instances 
through the same workflow (e.g., filtering a database of 
business addresses through an address verification 
workflow). This implies that such workflows must be 
designed in a context free manner – the instructions have to 
be written independently of any particular problem 
instance. Turkomatic currently does not offer a guarantee 
that crowd-planned workflows are context free. One 
promising idea for future work is to first ask the crowd to 
produce a concrete workflow; and afterwards generalize it 
to fit multiple problem instances.  

CONCLUSION 
This paper introduced Turkomatic, a system that harnesses 
crowds to design and execute workflows for complex tasks. 
Turkomatic is based on a price-divide-solve algorithm that 
guides workers through the steps of decomposing and 
solving tasks; and on generic task templates that are 
instantiated with particular task contexts. Our experience 
with Turkomatic suggests that unsupervised workers face 
planning challenges. However, experiments also showed 
that planning succeeds for an interesting range of tasks 
when more knowledgeable workers are recruited and when 
requesters can review and edit crowd work in real-time.  

However, the one-size-fits-all model of Turkomatic trades 
off simplicity of use for runtime supervision: workflows 
can be generated without exhaustive planning, but require 
requester monitoring at runtime to guarantee quality of 
results. In future work, we plan to investigate to what extent 
this supervisory function can again be assigned to crowd 
workers, and how the pricing structure of Turkomatic can 
be optimized. Effective workflow design is among the most 
common problems facing crowdsourcing researchers today. 
Why not collaborate with workers in solving it? 
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