
Semi-Realistic Balloon Simulation

Paul Tarantino�

University of California, Santa Cruz

Abstract

This paper describes a technique to accurately simulate

a balloon expanding and bursting. Physical simulation is

achieved through use of a spring-damper model with point

masses to represent the surface of the balloon. Visual

characteristics of the balloon, such as variable opacity and

variable shininess are also addressed by this approach using

material attributes in the SGI lighting model. Spring

constants are user-de�nable as a function of height and

internal pressure of the balloon is also controlled by the

user. Bursting is achieved by using spring thresholds which

allow for fractures in the surface and lead to a chain reaction

of spring failures. Balloon models can be created in a 3D

sculpting program by an isosurface algorithm and can be

used by the simulation.

By using physically based modeling techniques, the prob-

lem can be simpli�ed and easily implemented using a few

simple data structures. To maintain simplicity and minimize

elapsed time between frames, collision detection will not be

implemented in this model. By using SGI graphics hardware

to render the balloon, interactive rates can be achieved for

simple balloon models, however, more complex balloons will

result in longer delays between frames.

Keywords: computer animation, balloons, physically based

modeling, simulation, natural phenomena.

1 Introduction

Physically-based models of natural phenomena have

been a major topic in computer animation for the past

ten years. Accurately representing exible objects such

as cloth, muscles, facial expressions, and liquids has

been the topic of many published articles. Soft objects

are di�cult to simulate in computer graphics because of

the complex and varying surface structure of the object.

�Computer Science Dept, Room 57AS, Santa Cruz CA 95064,

USA. E-mail pault@cse.ucsc.edu

As far as I know, no one has implemented a simulation

of a balloon which can be pressurized, and exploded.

The balloon simulation should reect the fact that the

material is being stretched as it is pressurized. As the

material is stretched, it becomes more transparent and

it also becomes shinier. The simulation should also

reect the elasticity of a balloon, which may not be

constant over the entire surface and it should model

the event when the surface develops a tear and the

balloon bursts. The bursting event should model the

deformation of the surface of the balloon over time.

This animation may have several applications in

studying related phenomena that may occur too quickly

in real life for the human eye to see. Realistic computer

animation of pressurized objects that burst may be used

in medicine for simulating hemorrhages and aneurysms.

Engineering applications that could bene�t may include

stress testing tires and underwater equipment, and

testing air-tight seals on aircraft. Animation of bursting

objects would also bring the entertainment industry

one step closer to modeling realistic situations using

computer graphics.

2 Background

Successful implementations of soft objects include point

masses connected by springs and dampers [TF88], im-

plicit surfaces generated from a volume of particles

[DG95, WH94], and layered structures of meshes con-

trolled by free-form deformations [CHP89]. Features in-

cluding elasticity, inelasticity, viscoelasticity, and plas-

ticity are needed to represent these di�erent materials

[TF88]. As research continues, new computer graphics

e�ects are being developed which model new and inter-

esting natural phenomena.

Terzopoulos [TF88] successfully implemented soft

objects by using point masses connected by springs

and dampers. He �rst creates a mesh of nodes that

are controlled by using a variety of partial di�erential

equations that model viscoelasticity or elastoplasticity

(�gure 1). The result is a large system of simultaneous

ordinary di�erential equations. The second step is to

1



Elastic unit

f

f

e

e

f

f

e

e

Viscous unit

f

f

e

e

Plastic unit

Figure 1: Uniaxial deformation units and their response

to applied forces. (a) Elastic spring. (b) Viscous

dashpot. (c) Plastic slip unit.

integrate the semidiscrete system through time, thus

simulating the dynamics of deformable models. Models

of deformable curves, surfaces, and solids are de�ned

earlier by Terzopoulos [TPBF87] and are based on

simpli�cations of elasticity theory.

Desbrun [DG95] also used a system of point masses,

but used them inside the volume instead of on the

surface. He used a technique of sending \seeds"

from each particle in all directions to determine the

subvolume region that each particle had. The seeds

interacted with �elds from other particles to determine

the subvolumes as well as the surface of the soft

object. Collisions between objects were done by using

a bounding box around the surface seeds and testing

against other objects. Conservation of volume was also

attained by adjusting the subvolumes until the sum

matched the initial volume of the object.

Signi�cant work has been done on the particular topic

of modeling cloth. Since cloth is used for realistic ani-

mation of humans and interior environments, both very

popular animation topics, an accurate model of repre-

senting the draping properties was developed. Weil's

paper on the synthesis of cloth objects [Wei86] gave a

new, more realistic simulation of cloth by approximating

the appearance of a piece of cloth which is suspended

at certain constraint points. Other techniques of sim-

ulating cloth at that time were limited to things like

texture mapping. Thalmann and others [CYMTT92,

VCMT95] have done work on synthetic clothing for

computer animated actors which makes use of complex

collision detection algorithms. Their algorithms can

simulate di�erent kinds of cloth by controlling factors

like bending strain and shearing strain. Breen, House,

and Wozny [BHW94] demonstrated a physically-based

technique for predicting the drape of a wide variety of

woven fabrics using particle systems. By using empir-

ical data from the Kawabata Evaluation System fabric

measuring equipment, were able to tune the model by

deriving energy functions based on the sample's non-

linear mechanical properties and then using the model

to reproduce the fabric's characteristic large-scale drap-

ing behavior.

Witkin [Wit95] gives a concise formula for the binary

force associated with Hook's spring law

fa = [ks(jlj � r) + kd
_l � l

jlj
]
l

jlj
; fb = �fa

where fa and fb are the forces on a and b, respectively,

l = a� b, r is the rest length, ks is a spring constant,

and kd is a damping constant. _l, the time derivative

of l, is just va � vb, the di�erence between the two

particles' velocities. In this equation, the spring force

magnitude is proportional to the di�erence between the

actual length and the rest length, while the damping

force magnitude is proportional to a and b's speed of

approach.

3 Implementation

My approach to implementing this project is based

on modeling the balloon using techniques developed

by Terzopoulos [TPBF87, TF88], which are useful for

modeling elastic substances. The surface is subject to

an internal force representing the air pressure inside the

balloon. The materials used to represent the surface are

updated based on the local state of the balloon surface

to reect the shininess and opacity of stretched rubber.

The idea is to make the balloon as natural looking as

possible without introducing an unnecessary amount of

complexity.

3.1 Surface Structure

The surface of the balloon is modeled by a mesh of

particles. Each particle has a mass associated with it

and is connected to its neighbors with springs. Each

spring has a spring constant and a damping constant

that provide the attraction/repulsion forces needed to

represent an elastic surface. Position and velocity of

each point mass are calculated by Euler integration

methods. The damper can be adjusted and used to

eliminate any prolonged vibrations in the surface.

The spring constants may not be the same for all

springs. They can be set as a function of the height

of the balloon. This gives the balloon the realistic

behavior of expanding in the middle more than at the

2



top or bottom due to the variance in the thickness of

the surface at those regions.

3.2 Forces

The balloon requires a force that represents the air

pressure inside. This force is an internal force pushing

out at each point on the surface mesh and is in the

direction of the normal of each point. The normal

of each point are calculated for every time step by

averaging the normals of the polygons that the point

is associated with. The forces on each point will be

equalized, before the balloon explodes, by the springs

that connect each point. The springs will have to stretch

in order to compensate for an increase in air pressure.

As the balloon bursts, the air pressure will drop

until it reaches an equilibrium with the environment.

Simulating this pressure change correctly adds unneces-

sary and expensive uid dynamic complications, so this

algorithm does not address that factor.

3.3 Materials

As the surface of the balloon stretches, it should

look shinier and it should get more translucent. The

shininess e�ect is achieved by updating the material

used for the GL lighting model. The shininess is a

function of the distance that the springs are from their

resting distance. This is calculated for each polygon

that is rendered.

The opacity of the surface is also a function of the

distance that the springs are from their resting distance.

The alpha value of the material is updated with the

shininess before each polygon is drawn. Calculating

visibility is too complicated for this short term project,

and since there should only be two polygons that

contribute to any given pixel, drawing the polygons

out of order should not be too big of a problem. As

the balloon bursts, the surface opacity should approach

1.0 as the springs return to their approximate resting

distance and this will prevent opacity related visual

problems from occurring.

3.4 Source of Balloon

The actual model of the balloon, including the point

locations and edges, is being produced by a previous

graphics project that implemented a 3D sculpting

program.

The 3D sculpting program has two main components

which enable the user to de�ne and generate a smooth

surfaced balloon. First, the user will design a three-

dimensional sculpture by chipping away at an initial

cube of material. The material is represented by an

octree that gets updated after each chip is processed.

The sculpture can be saved to �le so that it can be used

at later times for viewing or further work. This can

be considered as the modeling stage and is based on a

previous work.

The second part consists of generating a convoluted

surface around the sculpture by getting several param-

eters from the user:

� Field density (number of �elds per cube)

� Field density (number of �elds per unit area)

� Cube Size for surface algorithm.

f(x)

x0−x

Figure 2: Typical Gaussian function.

The convolution code will use the simpli�ed gaussian

function, similar to that in �gure 2 for the potential at

any point in space:

f(x; y; z) =

nX

k=1

bke
(
�(x2+y2+z2)

2 )

Where k is all points inside the octree cubes, and bk
is the coe�cient. This function will be used by the

marching cubes based algorithm to test if the point

in space is inside or outside of the surface based on a

threshold value.

Figure 3: Basic cube from sculpting program.

3



Figure 8: Triangular sculptured balloon exploding (in stereo).

Figure 4: Surface created with one point.

The marching cubes algorithm starts at point (0,0,0)

and looks at several random points until it �nds one

that is on or near the surface, a cube of user de�ned

size (representing resolution) is used at that point and

the faces of the cube are tested to determine where the

surface intersects, depending on which faces the surface

intersects, that piece of the surface is de�ned and stored

on a list of triangles that will be used to draw the

�nal surface. The algorithm continues by processing

an adjacent cube whose location is determined from

the results obtained from the previous cube. When all

cubes are adjacent to all others used by the algorithm,

Figure 5: Spherical balloon exploding.

then the surface has bee completely determined and the

algorithm is done.

The list of triangles, with surface normals can then be

drawn or saved to disk to produce the smoothed surface

of the balloon. The polygons that it produces will not

be identical in shape or size. The polygons, which

are all triangles, will be used to create the points and

the spring links between the points. This randomness

of connections and spring lengths should contribute to

a more natural looking and behaving balloon. If the

results of the balloon simulation look good for a simple

sphere, more complex balloon shapes can be created

4



Figure 6: Triangular sculpture.

with the sculpting program and converted into balloons

for the simulation. This could create a new type of

artwork balloon art , where you design the balloons with

the sculpting program, and then you blow them up with

the balloon simulator!

3.5 Data structures and algorithm

oat Normal[3]

oat Position[3]

oat Velocity[3]

oat Acceleration[3]

Table 1: Data structure for each point in the balloon

surface mesh.

int Point1

int Point2

oat RestLength

oat Length

oat InitSpringConst

oat CurrentSpringConst

int Active

oat ForceMagnitude

Table 2: Data structure for each edge in the balloon

surface mesh.

Once the triangles of the surface are created, they

are loaded into the simulation application and are

uniquely sorted into data structures for points, edges,

and triangles (see tables 1, 2, and 3). The point and

edge data structures are implemented as arrays. Each

Figure 7: Triangular sculptured balloon.

int Points[3]

int Edges[3]

oat Opacity

oat Shininess

int Active

struct Triangle * next

Table 3: Data structure for each triangle in the balloon

surface mesh.

edge uses array indices to keep track of the two points

that are associated with it. Similarly, the triangles use

array indices to keep track of the three points as well

as the three edges that are associated with them. The

triangles themselves are loaded into a linked list which

is traversed each time step for rendering.

Once the surface has been read into the data struc-

tures, the simulation is ready to begin. The user

must set the time interval, the internal air pressure,

and a weighted spring constant factor before starting

simulation. The user can change the time interval or the

internal air pressure between any time steps, however, it

is not recommended that the user change the weighted

spring constant factor more than once, as this usually

causes spring constants to vary too widely and can cause

unpredictable results.

The simulation algorithm calculates the forces, veloc-

ities, and positions of each point for a given time step

interval using the formula from section 2 along with

standard Euler integration. The algorithm is sequential

and is repeated for each time step. It is made up of the

following �ve parts:

� Process all of the points and calculate their position

and velocity. Also initialize acceleration and normal

5



vectors to (0,0,0).

� Process all of the active edges and calculate the

spring forces for the two points. Check if the length

of the edge is greater than the threshold value and

set active FALSE if so. If still active, add the forces

to the two points.

� Process all of the active triangles. If more than one

edge is inactive, set triangle inactive, else, calculate

normal and add to the three points. Also calculate

opacity and shininess based on the average length of

the three edges divided by the threshold length.

� Process all points again and normalize their normal

vectors and multiply scalar air pressure by the nor-

mal and add the resulting vector to the acceleration

vector.

� Draw all of the active triangles.

3.6 Explosion

During the simulation, the balloon will expand as the

points are pushed outward by the internal air pressure.

Each spring will stretch until its length exceeds the

threshold length. If the spring length exceeds the

threshold, the edge is set inactive and no longer

contributes spring forces on the points. Once several

edges have become inactive the remaining springs pull

the points even farther apart and a rip begins to form.

The springs along the rip begin to exceed the threshold

in a chain reaction until the rip severs the surface into

separate pieces. Several rips can form simultaneously,

resulting in the balloon exploding into many pieces.

Large pieces of the surface survive the ripping and begin

to shrink due to the spring forces of the remaining edges.

These pieces y away due to the physical simulation of

the acceleration and velocity of the points.

3.7 Visualization

The simulation is written in GL and C and runs on an

SGI graphics workstation. A lighting model is used to

implement the specular and translucent attributes of the

surface. Of course, stereoscopic viewing is a necessary

viewing feature for a more realistic looking simulation.

Since real-time animations are not provided directly by

this application, stereo methods, such as Crystal-Eyes

glasses, can not be used. Therefore, the stereo method

used is a simple combination of both left and right eye

views in the graphics window. The graphics window is

saved for each frame and the user can view a movie of

the animation using simple mirror-based glasses.

4 Results

Surprisingly realistic results were achieved after only

one full week of development of this implementation.

Simulations of a spherical surface and a triangular sur-

face, both consisting of approximately 3000 polygons,

were run. Pictures of the sculptures that were used for

the surfaces are in �gures 3 and 6. The surfaces, which

were used as input to the simulation, were created from

the sculptures and are shown in �gures 4 and 7. The

simulations, which were run on an Indigo2 with a 200

MHz CPU and 64 MB of memory, achieved frame rates

of approximately one per second. Sample pictures from

the simulation are shown in �gures 5 and 8. Figure 8

shows the left and right eye views of a stereoscopic image

of the triangular balloon exploding. Mirror glasses that

restrict each eye to its corresponding view were used to

view the stereo simulation. Approximately 400 frames

from each simulation were saved and used to create

animation movies.

Experimentation with the spring constant and damp-

ing constant showed that a spring constant of 20.0

and an damping constant of 1.0 produced simulations

that looked realistic. Spring constants higher than 20

resulted in unstable surfaces due to abnormal stretching

of the point mesh which produced premature explosions

and did not allow for the balloon surface to expand �rst.

Damping constants greater than 1.0 resulted in an over

compensation of the point velocities which produced

unstable surfaces as well.

Selection of a threshold spring length was done

through experimentation. In order to produce a realistic

simulation, the balloon must be allowed to expand

before it explodes, however, if it expands too much, it

will �ll the viewing window and exhibit in�nite volume

properties that are not characteristic of real balloons.

It was determined through trial and observation that

selecting a threshold that is approximately twice the

average resting length of the edges produces a realistic

simulation.

The internal pressure was not as critical of a factor,

however the pressure must be su�ciently large to cause

the balloon to explode or else it will achieve a stable

equilibriumand remain inert. In addition, if the internal

pressure is set to a very high level, the balloon will

simply disintegrate into many small particles. An

internal pressure of approximately 10.0 worked well with

the simulations that were discussed in this paper.

The time interval was the most critical factor in

achieving a realistic simulation. If the interval was

too large, then the Euler integration would create

an unstable surface and polygons would y apart.

Also, if the time interval were too small, then it

would take many frames before anything interesting

would happen. Through much experimentation, a time

interval of 0.025 seconds was selected. This time interval

usually produced a complete explosion animation in

approximately 400 frames.

6



4.1 Problems

In some cases, such as the sphere balloon, the surface

is su�ciently symmetrical that the rips in the surface

occur at many locations simultaneously. This is

undesirable, since the balloon resembles a disintegration

rather than an explosion. In these cases, an arti�cial

rip is introduced after the balloon expands to the point

where other rips start to occur. The arti�cial rip allows

the surface to break up into larger pieces, resulting in a

more realistic explosion.

Given the fact that this simulation was developed

on machines that did not all have alpha bit-plane

capabilities, the implementation of variable opacity

was not completed. Also, in order to insure accurate

transparency rendering, the polygons must be drawn

in visibility order. Due to time constraints, visibility

ordering was not implemented. Experimentation of

opacity and shininess calculations were done, however,

and were found to greatly increase the time per frame

when GL material settings for shininess and opacity

were bound for each polygon drawn. A possible solution

to this is to average the opacity and shininess for all of

the polygons and set these values once per frame.

5 Conclusion

The simulationof exploding balloons is achieved through

physical modeling of a surface which consists of point

masses connected by springs. Realistic animations of

di�erent shaped balloons were created using the tech-

nique described in this paper. Several issues such as self-

collision and computational uid dynamics were not ad-

dressed due to the complexity and cost of implementing

them. Realistic animations were produced despite this

fact and frame rates of approximately one per second for

a 3000 polygon balloon were achieved. This explosion

simulation is not just limited to balloons, but can be

used to model many di�erent explosive situations by

adjusting spring and damper constants and by designing

surfaces that model objects other than balloons.

References

[BHW94] David Breen, Donald House, and Michael

Wozny. Predicting the drape of woven

cloth using interacting particles. Com-

puter Graphics (ACM SIGGRAPH Pro-

ceedings), pages 365{372, 1994.

[CHP89] John Chadwick, David Haumann, and

Richard Parent. Layered construction for

deformable animated characters. Com-

puter Graphics (ACM SIGGRAPH Pro-

ceedings), 23(3):243{252, August 1989.

[CYMTT92] Michel Carignan, Ying Yang, Nadia

Magnenat-Thalmann, and Daniel Thal-

mann. Dressing animated synthetic actors

with complex deformable clothes. Com-

puter Graphics (ACM SIGGRAPH Pro-

ceedings), 26(2):99{104, July 1992.

[DG95] Mathieu Desbrun and Marie-Paul Gas-

cuel. Animating soft substances with im-

plicit surfaces. Computer Graphics (ACM

SIGGRAPH Proceedings), pages 287{290,

August 1995.

[TF88] Demetri Terzopoulos and Kurt Fleis-

cher. Modeling inelastic deforma-

tion: Viscoelasticity, plasticity, fracture.

SIGGRAPH '88 Conference Proceedings,

22(4):269{278, August, 1988.

[TPBF87] Demetri Terzopoulos, John Platt, Alan H.

Barr, and Kurt Fleischer. Elastically de-

formable models. SIGGRAPH '87 Con-

ference Proceedings, 21(4):205{214, July

1987.

[VCMT95] Pascal Volino, MArtin Courchesne, and

Nadia Magnenat-Thalmann. Versatile

and e�cient techniques for simulating

cloth and other deformable objects. Com-

puter Graphics (ACM SIGGRAPH Pro-

ceedings), pages 137{144, August 1995.

[Wei86] Jerry Weil. The synthesis of cloth objects.

SIGGRAPH '86 Conference Proceedings,

20(4):49{54, August, 1986.

[WH94] Andrew Witkin and Paul Heckbert. Us-

ing particles to sample and control im-

plicit surfaces. Computer Graphics (ACM

SIGGRAPH Proceedings), pages 269{277,

July 1994.

[Wit95] Andrew Witkin. An introduction to

physically-based modeling. ACM SIG-

GRAPH '95 Course Notes, 34:B1{C12,

August 1995.

7


