
1

Reading 1-D Barcodes with Mobile Phones Using
Deformable Templates

Orazio Gallo, Student Member, IEEE, and Roberto Manduchi.

Abstract— Camera cellphones have become ubiquitous, thus
opening a plethora of opportunities for mobile vision applications.
For instance, they can enable users to access reviews or price
comparisons for a product from a picture of its barcode while still
in the store. Barcode reading needs to be robust to challenging
conditions such as blur, noise, low resolution, or low quality
camera lenses, all of which are extremely common. Surprisingly,
even state-of-the-art barcode reading algorithms fail when some
of these factors come into play. One reason resides in the early-
commitment strategy that virtually all existing algorithms adopt:
the image is first binarized and then only the binary data is
processed. We propose a new approach to barcode decoding
that bypasses binarization. Our technique relies on deformable
templates and exploits all the gray level information of each pixel.
Due to our parametrization of these templates, we can efficiently
perform maximum likelihood estimation independently on each
digit and enforce spatial coherence in a subsequent step. We show
by way of experiments on challenging UPC-A barcode images
from five different databases that our approach outperforms
competing algorithms. Implemented on a Nokia N95 phone, our
algorithm can localize and decode a barcode on a VGA image
(640×480, JPEG compressed) in an average time of 400-500 ms.

Index Terms— Barcodes, UPC-A, Mobile Devices, Deformable
Templates.

I. INTRODUCTION

TODAY, virtually every item on the market is labeled with
at least one form of barcode, generally a flavor of either the

EAN or the UPC standards. The success of barcode technology
for identification, tracking, and inventory derives from its ability
to encode information in a compact fashion with low associated
cost.

Barcode reading via dedicated scanners is a mature technol-
ogy. Commercial laser-based, hand-held barcode scanners achieve
robust reading with a reasonable price tag. Recently, there has
been growing interest in accessing barcodes also with regular
cellphones, without the need for a dedicated device. Indeed, a
number of cellphone apps have appeared that provide access via
barcode reading to the full characteristics of and user reviews for
a product found at a store.

Unfortunately, images taken by cellphone cameras are often of
low quality. Many cellphone cameras on the market are equipped
with low-grade lenses, generally lacking focusing capability,
which often produce blurred images. Few cellphones have a
flash and, therefore, motion blur and noise can be expected with
low ambient light. All of these factors, possibly combined with
low image resolution, make barcode reading difficult in certain
situations. Indeed, all existing image-based barcode readers have
limited performance when it comes to images taken in difficult

Orazio Gallo is with the University of California, Santa Cruz.
Roberto Manduchi is with the University of California, Santa Cruz.

Fig. 1. Our algorithm is able to decode a barcode without requiring the user
to precisely frame it within the viewfinder. The result is shown on the screen
of the phone above the captured picture, in this case 043396 111554.

light conditions, or when the camera is not close enough to
the barcode. In order to improve accuracy, barcode reading apps
usually prompt the user to precisely position the camera to ensure
that the barcode covers as much of the frame as possible. This
operation can be somewhat bothersome, as it requires a certain
amount of interaction with the user, who needs to frame the
barcode correctly using the viewfinder.

This paper presents a new algorithm for 1-D barcode reading
that produces excellent results even for images that are blurred,
noisy, and with low resolution. A quantitative comparison based
on existing and new barcode image data sets shows that our
technique outperforms other state-of-the-art software and other
reported results. The execution time on a Nokia N95 running
Symbian OS is 400-500 ms on VGA (640 × 480), JPEG com-
pressed, still images (this is the wall-clock time from the moment
the analysis of the frame begins).

The main novelty of our approach is that it never binarizes
the image. Virtually any existing algorithm for barcode reading
performs some sort of binarization of the input brightness data.
We argue that this early-commitment operation translates into un-
recoverable information loss, which makes the reader susceptible
to noise, blur, and low resolution. This is especially the case
for low-resolution images, where binarization errors may have
catastrophic effects. For example, Fig. 2 shows a challenging
barcode which would be hardly read by a binarization-based
approach: any binarization strategy, even one based on an adaptive
threshold, would not allow for the extraction of some of the bars.

In contrast to previous approaches, our algorithm uses the full
gray-level information throughout its most critical stages. We
employ a particular form of deformable template matching, that
produces robust results even in difficult situations, such as the one

2

shown in Fig. 2. In such cases, our approach implicitly enables
‘soft’ assignment of each pixel to either black or white via the
pixel likelihood function in Eq. (9)-(10). Pixels with very high
or very low brightness values contribute more than pixels with
intermediate values to the digit likelihood function in Eq. (7). If,
due to noise or blur, a few pixels have intermediate gray values
as in Fig. 2, the ambiguity is generally resolved by the barcode-
specific structural priors M. We shift and scale the archetypal
models of each individual barcode digit to match the measured
brightness profile in a maximum likelihood framework. Although
deformable template matching usually requires costly optimiza-
tion techniques, we prove that in the case of these patterns,
matching can be obtained exactly with a simple discrete search. In
addition, we propose an optimization procedure to enforce spatial
coherence of the individual digits found by deformable template
matching.

Our decoding algorithm requires that the barcode has been
localized with fairly good precision (within twice the width of
the base width, that is, the smallest possible bar in the barcode).
This operation is facilitated by the fact that a barcode is bordered
to the side by a quiet (white) area whose size is prescribed by the
standard. We propose a simple and fast algorithm for localization
that assumes that the bars are approximately vertical. It should be
understood that the main contribution of this work, and the more
intellectually original one, is the barcode decoding algorithm.
The localization algorithm has no pretense of optimality but
works reasonably well in our tests, better so than other published
algorithms that we also experimented with.

This paper is organized as follows. Sec II describes the previous
work on image-based barcode localization and decoding. Sec. III
describes in detail the proposed algorithm. Sec. IV-A reports a
thorough performance analysis of the algorithm, implemented in
Matlab and tested on different data sets. Sec. IV-B describes the
Symbian implementation of the algorithm.

II. PREVIOUS WORK

Barcode reading has been studied and optimized for decades
and it now represents a well established industrial standard.
(Pavlidis et al. provide an interesting analysis of this technol-
ogy from an information theory standpoint [9].) Until recently,
however, barcode reading was performed almost exclusively with
dedicated hardware. Despite the rapid growth of interest in
camera-based readers, most of the challenges posed by this new
approach are yet to be solved.

Commercial scanners, such as those used in supermarkets,
shine a stripe of pulsed light on the code and measure the
intensity of its reflection; the use of active illumination makes
them virtually insensitive to changes of ambient illumination.
Additionally, their design often requires the codes to be fairly
close to the scanner. In general, these dedicated devices produce
a high quality signal that allows for robust barcode reading.
On the other hand, reading barcodes with cameras presents new
challenges. In particular, the image may be of poor quality, due
to noise and possibly low contrast.

The first step for a barcode reader is the localization of the
barcode in the image. Most existing applications require the user
to move the camera towards the barcode so as to maximize its
apparent width in the image. Although beneficial to resolution,
this procedure can be bothersome for the user. Our system lets
the user take a snapshot of the barcode once it is at a reasonable

26 28 30 32 34 36 38 40 42 44

100

140

180

220

260

n

I
(n

)

Fig. 2. A challenging barcode image that is correctly decoded by our
algorithm. The intensity profile from the segment highlighted in red on the
blue scanline is shown in the plot, where the black lines represent the symbols
as output by our algorithm. Note how blur and low resolution affect the
intensity profile. A system that binarizes the intensity would be hard-pressed
to detect the correct pattern. For example, consider the segment between pixels
32 and 38 representing a sequence of two black and two white bars. The
observed brightness has an almost flat profile which is nearly impossible to
binarize. The barcode shown was automatically extracted from a 1152×864,
JPEG image and its total width was 114 pixels.

distance from the camera; it then proceeds to identify the location
of the endpoints of the barcode in the image. Once the barcode
has been localized, decoding takes place. Keeping localization
and decoding distinct allows for a higher computational effi-
ciency. Existing approaches for barcode localization apply to
the binarized image methods based on Hough transforms [6],
edge orientation histograms [14], morphological operators [4], or
wavelet transforms [13]. Other approaches assume that the center
of the image falls within the barcode area [7], [12], thus greatly
simplifying the problem: Ohbuchi et al. reduce the problem to one
of finding the angular direction of the bars [7], while Wachenfeld
et al. extract a scanline thought the center of the image and
binarize it with an adaptive threshold; the endpoints are localized
by counting the number of bars detected [12].

Decoding can be performed by simply finding the sequence
of digits that best explains one or more binarized scanlines.
Chai and Hock use a single scanline binarized using the average
gray level as a threshold [4] whereas Wachenfeld et al. use a
simple adaptive thresholding [12]. Adelmann et al. use multiple
scanlines with different thresholds and a voting scheme [3].
These approaches report high accuracy, but unfortunately do
not present comparative tests nor make their data sets public.
Krešić-Jurić et al. find potential edges by computing brightness
derivatives of the scanline and then use hidden Markov models to
remove false positives [5]. Their method compares favorably with
previous approaches although it was only implemented on laser-
based barcode scanners. Tekin and Coughlan propose an elegant
Bayesian framework for barcode decoding [10]. Their approach
aims to find the edges of the bars in a fashion similar to Krešić-
Jurić et al. [5] while allowing for undetected peaks.

Early-commitment approaches, whether based on binarization
or edge detection, are efficient from a computational standpoint,

3

but rely heavily on the good quality of the input image. Un-
fortunately, binarization is very sensitive to noise and blur, in
particular when the features to be detected, such as the narrow
bars of a barcode, are smaller in size than a couple of pixels. The
same can be said for edge extraction. In contrast, our decoding
algorithm never performs a binarization or an edge extraction
operation. As a result, our approach is capable of decoding 1-D
barcodes from noisy pictures even in the presence of motion blur
or lack focus. Additionally, our method also proves effective on
highly compressed pictures. In order to allow other researchers
to compare their results against ours, we provide a publicly
accessible barcode image data set [2].

III. THE BARCODE READER

Given an image containing a barcode, two distinct operations
are needed for accessing the information contained in the barcode:
localization and decoding. Localization typically relies on the
strong textural content of the barcode, without the need to exactly
measure and interpret the width distribution of the bars. Decoding
can be performed on one or more scanlines. Throughout this paper
we make use of the following definitions (see the Appendix for a
more complete description of the terminology). A UPC-A barcode
encodes 12 symbols (each representing a number 0 − 9). Each
of the consecutive, non-overlapping segments which encode the
symbols are called digits segments or simply digits. For instance,
in the barcode shown in Fig. 1, the symbol encoded in the second
digit is ‘4’. Note that each symbol is encoded by two white and
two black bars.

A. Barcode localization

The localization algorithm provides the decoding algorithm
with a scanline, where the barcode’s endpoints have been local-
ized as accurately as possible. In principle, any reliable algorithm
for localization could be used, including the techniques mentioned
in Sec. II. However we have found out that the simple and fast
algorithm presented in this section provides excellent results even
in challenging situations. Note that, contrary to approaches that
assume that the barcode is in the center of the captured frame
(e.g. [1], [12]), our method only requires that the barcode be
completely visible. We implemented other algorithms from the
literature [11], [14]; however, these methods produced results
comparable or inferior to our simple method, at a substantially
higher computational cost.

Our localization algorithm assumes that the image of the
barcode is captured with the camera oriented so that its vertical
axis is approximately parallel to the bars. Thus, in correspondence
of a barcode, one should expect an extended region characterized
by strong horizontal gradients and weak vertical gradients. Ac-
cordingly, we first compute the horizontal and vertical derivatives,
Ix(n) and Iy(n), at each pixel n. We then combine them together
in a non-linear fashion as by

Ie(n) = |Ix(n)| − |Iy(n)|. (1)

It is reasonable to assume that many points within a barcode
should have a large value of Ie(n). We run a block filter of size
31×31 over Ie(n), obtaining the smoothed map Is(n). The size of
the filter was chosen based on the range of the size of the input
images and the minimum size of the barcode readable by our
method. Note that block filtering can be implemented efficiently

so that only few operations per pixel are required. Finally, we
binarize Is(n) with a single threshold, selected using the method
proposed by Otsu [8]. Note that this binarization is only used
to localize the barcode while the decoding is performed on the
graylevel image. As a consequence of thresholding, the map Is(n)

may contain more than one blob. Rather than computing the
connected components of the thresholded map, we simply select
the pixel n0 that maximizes Is(n), under the assumption that the
correct blob, i.e. the one corresponding to the barcode, contains
such pixel. In our experiments, this assumption was always found
to be correct. Then, we expand a vertical and an horizontal line
from n0, and form a rectangle with sides parallel to the axes of the
image and containing the intersections of these lines with the edge
of the blob. The horizontal line l(n) that passes through the center
of this rectangle is chosen as the scanline for the analysis. Note
that the leftmost and rightmost bars of a barcode are bordered by
a quiet zone, a white region around the barcode which facilitates
localization (see Appendix). The quiet zone, along with the large
size of the block filter, ensures that the vertical sides of this
rectangle fall outside the area of the barcode by at least a few
pixels. Therefore, in order to localize the endpoints oL and oR

of the barcode, we first determine the intersections iL and iR of
the scanline l(n) with the rectangle and then, the rectangle being
larger than the actual barcode, we proceed inwards from each end
(see Fig. 3-(d)). We stop when we find a value that is less than
85% of the average luminance from the intersection points to the
current pixels:

oL : l(oL) < 0.85 ·
∑oL−1

n=iL
l(n)

oL − iL − 1
(2)

and

oR : l(oR) < 0.85 ·
∑n=oR+1

iR
l(n)

iR − oR + 1
. (3)

Although this algorithm relies on the assumption that the bars
of the barcode are approximately vertical in the image, our
studies show that the map Ie(n) can be segmented even when
this assumption is not satisfied. Indeed, as long as the barcode’s
bars are slanted by an angle smaller than 45◦, the segmentation
algorithm usually succeeds. However, it must be noted that our
algorithm only uses horizontal scanlines for decoding and requires
that all bars of a barcode be intersected by one such scanline. Due
to the aspect ratio of typical barcodes, this adds the requirement
that the bars form an angle no larger than 30◦ from the vertical.
We present an assessment of the performance and speed of this
algorithm when implemented in Matlab and Symbian in Sec IV-A
and Sec IV-B.

B. Barcode decoding

Our decoding algorithm analyzes a single scanline extracted
from the detected barcode area as described in Sec. III-A. The
only requirement is that the beginning and the end of the barcode
pattern in the scanline are detected with a certain accuracy. In our
implementation we assume a localization tolerance in either end
point equal to twice the width of the narrowest bar.

Algorithm outline. First, based on the previously detected
endpoints of the scanline, we compute the spatial location of
each digit segment in the barcode. As described in the Appendix,
these digits are encoded independently of each other and occupy
contiguous, non-overlapping intervals on the scanline. For each of
the 12 digits in the barcode, we compare the intensity profile of

4

−0.5

0

0.5

1

1.5

2

2.5

3
x 104

(a) (b)

l(n)oL oRiL iR

(c) (d)

Fig. 3. An example of barcode localization with our algorithm. (a): Original
image (1152×864, JPEG compressed). (b): The smoothed map Is(n) with
its maximum marked by a black square. (c): Binarization by thresholding of
Is(n). (d): The resulting rectangular segment (black square), along with the
selected scanline l(n), the intersection points iL and iR, and the endpoints
oL and oR.

the corresponding segment of the scanline with binary templates,
each representing a symbol as shown in Fig. 4. In order to
account for inaccuracy in the localization of the spatial extent
of each digit, we allow these templates to shift and scale in
the horizontal direction. We then define a likelihood function
to measure how well a deformed (shifted and scaled) template
explains the observed intensity. A possible strategy could be
to search for the deformation parameters that maximize the
likelihood, i.e. the shifted and scaled template that best explains
the data, hoping to avoid the many existing local maxima. Rather
than focusing on a single deformation, we propose to integrate
the likelihood over the space of deformations, having defined a
prior distribution of the deformation parameters. One important
contribution of this work is to derive an algorithm to compute
this integral exactly and in affordable computing time.

Independent likelihood maximization over each digit segment
produces a sequence of symbols. However, the result of this
operation may be incorrect due to noise, blur or other causes. The
risk of such errors can be reduced by exploiting global constraints
on the overall sequence of symbols. The idea is that the “optimal”
sequence of deformed templates should not present overlaps or
gaps. We define a global cost function that, for each possible
sequence of symbols, penalizes overlaps or gaps in the sequence
of deformed templates, with the deformation parameters obtained
by least squares regression. The minimum cost sequence can then
be found via dynamic programming. We now describe in detail
each of the steps of this procedure.

Deformable models. We define a model (or template)Mk for a
given symbol k as a continuous piecewise constant function that
alternates between -1 and 1, where a value of -1 (1) represents
a black (white) bar (see Fig. 4). A model Mk for a symbol in
the left half of a UPC-A barcode begins with a ‘-1’ segment and
ends with a ‘1’ segment, where both such segments have length
of 1. The lengths of the i-th constant segment between these two
end segments is equal to the module width rk

i (as defined in the
Appendix). A model is therefore an archetypal representation of
one symbol of a standardized scanline, plus one bar from each one

M0

-1 0 3 5 6 7 8

-1
0
1

M1

-1 0 2 4 6 7 8

-1
0
1

M2

-1 0 2 3 5 7 8

-1
0
1

M3

-1 0 1 5 6 7 8

-1
0
1

M4

-1 0 1 2 5 7 8

-1
0
1

M5

-1 0 1 3 6 7 8

-1
0
1

M6

-1 0 1 2 3 7 8

-1
0
1

M7

-1 0 1 4 5 7 8

-1
0
1

M8

-1 0 1 3 4 7 8

-1
0
1

M9

-1 0 3 4 5 7 8

-1
0
1

Fig. 4. Each digit in a UPC-A code is encoded with a sequence of two bars
and two spaces, represented in these graphs by values of 1 and -1.

of the nearby symbols. These two additional bars have base width
and known polarity; adding such bars to the template increases
the robustness of the matching process.

A parameterized model is a shifted and scaled (deformed)
version of the original model:

Mk
o,w(x) =Mk((x− o)/w), (4)

where o represents the starting point of the pattern and w

represents the base width. (Note that models are functions of
the continuous line, while the observation I(n) is defined over
the discrete space of pixels.) An example of deformed model is
shown in Fig. 5.

Digit segment – conditional likelihood. Once the barcode has
been localized in the image, and the endpoints (oL, oR) of the
selected scanline have been estimated, the approximate position
of each digit segment of the barcode is computed. More precisely,
the j-th digit segment in the left side of the barcode is assumed
to start at

o = oL + 3w + 7w (j − 1), (5)

where:
w =

oR − oL

95
(6)

is the estimated base width. These expressions derive from the
fact that the overall length of the barcode is (ideally) equal to 95
times the base width, that each digit occupies a segment equal to
7 times the base width, and that the first 3 bars are guard bars.

We should stress the fact that, for a generic digit being
considered, the value of o as computed in Eq. (5) is, in general, an
incorrect estimate of the actual left edge of the digit segment, as a
consequence of errors in the estimation of the endpoints (oL, oR)

together with image distortion as due, for example, to perspective.
However, suppose for a moment that the estimated location o and
minimum bar width w are indeed correct. Then, in order to read
the value of the digit, we could simply compare the intensity I(n)

within the segment with the models Mk
o,w for 0 ≤ k ≤ 9, and

pick the model that best fits the data. More precisely, we define
the likelihood of the intensity within a generic digit segment for
symbol k (conditioned on o and w) as

pk(I|o, w) ∝ e−D(I,Mk
o,w), (7)

where I(n) represents the intensity profile of the considered
scanline. The log-likelihood term D can be expressed as

D(I,Mk
o,w) =

bo+8wc∑
n=do−we

D
(
I(n),Mk

o,w(n)
)
, (8)

5

25 30 35 40 45 50

50

100

150

200

250

n

I(
n)

µb

µw

7wo

ō2 7w̄2

Fig. 5. A sample of intensity profile in a scanline (blue line). The segment
[o, o+ 7w] represents the location of the initial digit segment obtained from
Eq. (5)-(6), whereas the segment [ō2, ō2 + 7w̄2] is the estimated support
segment as by Eq. (15) for k = 2. The red line represents the deformed
model M2

ō2,w̄2
. For the sake of graphical clarity, the model was scaled in

amplitude so that it alternates between µb and µw (as defined in Sec. III-B).

where the variable n takes on only integer values (see Fig. 5).
Note that this sum is computed over all pixels that fall within the
segment [o− w, o+ 8w], which is the support of Mk

o,w(x).
A variety of functions can be considered for the log-likelihood

D modeling the discrepancy between model and observation. We
use the following robust formulation, which gave good results in
our experiments. First, the quantities µw and µb representing the
mean of the largest 50% and smallest 50% values of I(n) are
computed, along with their variance σ2. Then,

D(I(n),−1) =
[max(I(n)− µb, 0)]2

2σ2
(9)

and
D(I(n), 1) =

[min(I(n)− µw, 0)]2

2σ2
. (10)

This function penalizes values of I(n) that are small when
Mk

o,w(n) = 1 or large when Mk
o,w(n) = −1. Note that this is

not equivalent to binarizing the data. Indeed, the original value
of I(n) can be recovered from D(I(n),−1) and D(I(n), 1).

Digit segment – total likelihood. In order to compute the like-
lihood of an observed scanline for given symbol, it is necessary
to take the uncertainty about o and w into consideration. This
uncertainty derives from the finite tolerance on the estimation
of oL and oR. Assume for example that both oL and oR are
computed with a tolerance of ±∆o. Then, barring deformations
or perspective effects, o has a tolerance of ±∆o as well, whereas
w has a tolerance of ±2∆o/95.

We approach this problem by first defining a probability density
function p(o, w) over the space of deformations. We then compute
the total likelihood pk(I) by averaging pk(I|o, w) over such
density:

pk(I) =

∫ ∫
pk(I|o, w)p(o, w) do dw. (11)

Computing this integral may seem like a daunting task, especially
if it needs to be performed on an embedded system such as a
cellphone. On the contrary, we show that due to the particular
nature of the model Mk, and assuming a simple form for the
prior p(o, w), the integral in Eq. (11) can be computed exactly
via numerical means with reasonably small complexity.

Our derivation exploits the fact that D(I,Mk
o,w) is piecewise

constant in the (o, w) space. This, in turn, is due to the very nature

of the scanline which is itself piecewise constant: if the change in
o and w is small enough, none of the boundaries di will “jump”
to a different pixel. If we break up the sum in Eq. (8) into six
pieces, corresponding to the segments in which Mk

o,w(x) takes
on constant values of 1 or -1, we notice that, within segment
[di, di+1], where di = o + w

∑i
l=0 r

k
l for 0 ≤ i ≤ 5 and having

set rk
0 = −1 and rk

5 = 1, the function Mk
o,w(x) is identically

equal to (−1)i.

D(I,Mk
o,w) =

5∑
i=1

Ai, (12)

with

Ai =

bdic∑
n=ddi−1e

D(I(n), (−1)i). (13)

Hence, a variation of o or w determines a change of Ai (and
therefore of pk(I|o, w)) only when it causes di−1 or di to cross
over an integer value. Consequently, pk(I|o, w) is piecewise
constant, and the integral in Eq. (11) can be computed exactly
as a sum of a few dozen terms. Next, we show how to compute
the terms in this sum.

Let {Vt
k} be the minimum partition of the (o, w) plane such

that pk(I|o, w) is constant within each cell Vt
k (with t representing

the index of cells in the partition). Then

pk(I) ∝
∑

t

e−Dt

∫ ∫
Vt

k

p(o, w) do dw, (14)

where Dt = D(I,Mk
o,w) for any (o, w) in Vt

k. Note that the cells
Vt

k are polygonal, as they are defined by the lines of equation
o + w(

∑i
l=1 r

k
l − 1) = q, where q is any integer, and i is any

integer between 1 and 4 (see Fig. 6). The list of cells {Vt
k}, as

well as the integral of p(o, w) within each cell, can be computed
offline and stored for online use. In fact, one easily sees that the
cells form a periodic pattern (with period equal to 1 both in o and
w), hence only the cells within such a period need to be stored.

Regarding the implementation of this procedure, the following
observations are in order:

1) The computation of the likelihood in Eq. (14) can be
sped up by precomputing the sequences D(I(n), 1) and
D(I(n),−1). Then, for each cell, one only needs to add
together selected samples from the two sequences. Suppose
that Eq. (11) requires summing over Nj cells. For each cell
Vt

j,k, the negative log-likelihood Dt needs to be computed,
which requires two additions and two multiplications per
sample. Overall, 2Nj additions and 2Nj multiplications per
sample. However, it is easily seen that by precomputing
D(I(n), 1) and D(I(n),−1), each computation of Dt only
requires one addition per sample. This reduces the compu-
tational weight to 2 + Nj additions and 4 multiplications
per sample.

2) At run time, a specific set of cells is chosen from the list
based on the tolerance ∆o and ∆w on the estimated values
of o and w, which are easily derived from the tolerance
of the estimated endpoints oL and oR. More precisely, we
compute the sum in Eq. (14) over the cells that intersect the
rectangle with sides [o−∆o, o+∆o] and [w−∆w,w+∆w],
where o and w are estimated as by Eq. (5).

3) The integration of p(o, w) within each cell results particu-
larly simple if p(o, w) is assumed to be uniform within the

6

−1 −0.5 0 0.5 1
−0.5

−0.25

0

0.25

0.5

(a)

−1 −0.5 0 0.5 1
−0.5

−0.25

0

0.25

0.5

−1 −0.5 0 0.5 1
−0.5

−0.25

0

0.25

0.5

(b) (c)

−1 −0.5 0 0.5 1
−0.5

−0.25

0

0.25

0.5

−1 −0.5 0 0.5 1
−0.5

−0.25

0

0.25

0.5

(d) (e)

Fig. 6. The space (do, dw) can be broken into polygons in which the
conditional likelihoods pk(I|o, w) are constant. Plot (a) shows this partition
for symbol ‘2’, for which {r2

i } is {2, 1, 2, 2}. Each one of the four bars in
a symbol defines a set of parallel lines in the space (do, dw); for example,
when the values of (do, dw) in plot (b) cross one of the red lines, the right
boundary of the first bar crosses a pixel and, therefore, the likelihood changes.
Plots (c)-(d) show in red the sets of parallel lines corresponding to bars 2-4.
The equations for these lines are easily computed; for the third bar (plot (d)),
for instance, we can write: dw = − 1

2+1+2
do + q. The final partition is

shown in plot (a). Intuitively, if (o1, w1) and (o2, w2) fall within the same
cell of plot (a), the conditional likelihoods p2(I|o1, w1) and p2(I|o2, w2)
are identical. In other words, instead of computing the integral in Eq. (11)
over every point of the space, the problem can be made tractable by only
considering one point per cell without introducing any approximation (see
Sec. III-B).

considered rectangle in the (o, w) space. In this case, the
integral is proportional to the area of the polygonal cell,
which can be easily computed and stored offline. In our
implementation we made use of this simple, yet effective
model.

As will be shown shortly, it is also useful to estimate, for each
possible symbol k, the deformation parameters (o, w) given the
intensity profile I(n) within a digit segment. We choose the least
squares estimator (ōk, w̄k) of these quantities (under the density
p(o, w)), which is given by the conditional expectation. Using
Bayes rule, this is equivalent to

(ōk, w̄k) =

∫ ∫
(o, w)

pk(I|o, w)p(o, w)

pk(I)
do dw (15)

∝ 1

pk(I)

∑
t

e−Dt

∫ ∫
Vt

k

o w p(o, w) do dw.

The integrals in the above equation can be precomputed and
stored for online use. If the assumption of uniformly distributed
(o, w) is made (as in point 3. above), then the terms in the sum
are the centroids of the cells {Vt

k}.

1 2 43 5 6 7 8 9 101112

Fig. 7. The support segments [ōj,k(j), ōj,k(j) + 7w̄j,k(j)], where k(j) are
the maximizers of the total likelihood pj,k(j)(I) for each digit index j, are
shown in blue against the support segments corresponding to the sequence
of values {k} minimizing the global cost C in Eq. (17), shown in green.
Digits 5, 6, and 11 are not correctly decoded and their position is therefore
miscalculated (blue). The algorithm described in Sec. III-B successfully
enforces global consistency and, thus, correct decoding (green). The red lines
represent the original digit segments, obtained from Eq. (5)-(6). In order
to provide a visual intuition of the intensity profile of the scanline under
consideration, the latter was repeated vertically to form a graylevel image.

Imposing spatial coherence. Our model makes the simplifying
initial assumption that the digit segments are equally spaced (see
Eq. (5)-(6)). This also implies that the base width w is constant
across the barcode. In practice, we should expect that the digit
segment length may vary from segment to segment, generally
within the confidence intervals ∆o and ∆w. Ideally, however, the
segment representing a given digit in the scanline (as computed
from the estimates ōk and w̄k) should be adjacent to (but non
overlapping with) the neighboring segments. The choice of an
incorrect value of k due to single-digit analysis is likely to result
in a supported segment that does not fit well together with the
other segments (see Fig. 7). This observation can be exploited by
imposing a global constraint as follows.

Suppose that the j-th digit takes value k(j). (Note that we
need to make the dependency on j explicit in our notation from
now on.) The estimated deformation parameters (ōj,k(j), w̄j,k(j))

define the supported segment [ōj,k(j), ōj,k(j) + 7w̄j,k(j)]. We
define the overlap/gap extent between the j-th and (j + 1)-th
estimated digit segments as

Oj,k(j),kj+1
= |ōj,k(j) + 7w̄j,k(j) − ōj+1,k(j+1)|. (16)

Now define a global cost function as follows:

C({k}) =
∑

j

αO2
j,k(j),k(j+1) − log pj,k(j), (17)

where α is a balancing parameter, and the sum extends to all
digit segments in the left and right half of the barcode. (α was
set to be equal to 0.1 in our experiments). The cost function in
Eq. (17) penalizes sequences of symbols that create large overlaps
or gaps between two consecutive digit segments or that produce
low values of likelihood. Dynamic programming can be used to
minimize the cost function C over the space of sequences {k}
of symbols. Fig. 7 shows the outcome of the application of this
technique.

IV. IMPLEMENTATION AND TESTS

We implemented and tested our algorithm both in Matlab and
in Symbian OS, a platform used by several cellphone brands. In
the following subsections we provide results in terms of accuracy
and computational load for both implementations.

A. Matlab implementation

Localization. The algorithm described in Sec. III-A proved
rather robust in our experiments. Although the algorithm relies on

7

~ 37°

(a) (b)

~ 45°

(c) (d)

Fig. 8. The localization algorithm assumes that the cellphone is held in an
approximately vertical fashion. However, it proves robust to a large deviation
from the ideal setup. (a) an image of a barcode at 37◦, (b) the corresponding
energy map computed as described in Sec. III-A, (c) a barcode at 45◦, and
(d) the corresponding energy map. Note that, as long as the barcode’s angle
is below 45◦, the map is still easy to segment, whereas the energy in the area
corresponding to the barcode is dramatically low for angles from 45◦ and
above.

the assumption that the user is holding the cellphone so that the
bars are vertical in the image, it produces good results even when
the phone is rotated at an angle. The maximum rotation angle for
correct localization is bound by simple geometric considerations.
Recall that localization comprises two steps: segmentation of the
barcode image, followed by determination of the horizontal scan-
line segment used for decoding. The first step fails if the barcode
is rotated by more than 45◦, since in that case the horizontal image
gradient has smaller magnitude than the vertical gradient (see
Fig. 8(d)). Our experiments show that the segmentation generally
fails for angles larger than 40◦ - 45◦, depending on the overall
quality of the image.
The second step requires that the scanline intersect all the bars,
from the left to the right guard bars; since we extract an horizontal
line, this becomes harder as the angle increases too much. In our
tests, the scanline was correctly extracted for angles up to 30◦.

We also characterize the performance of the localization algo-
rithm in terms of its accuracy. For each image in the data sets, we
manually selected the endpoints oL and oR and compared them
with the output of our localization algorithm (see Fig. 9). Note
that approximately 75% of the points are detected within one pixel
of the correct location. Approximately 10% of the points have a
localization error of more than 10 pixels. In the case of these
“gross errors”, the decoding algorithm typically breaks down.
These situations are responsible for most of the failures in the
experiments described below.

The execution time is only a function of the size of the
image. Our Matlab implementation takes from approximately
0.065 seconds for a 640 × 480 image to approximately 0.21
seconds for a 1152× 864 image.

Decoding. The localization algorithm is used to provide a single
scanline segment together with its endpoints as the input to our
reader. The maximum tolerance ∆o at the endpoints oL and oR

was set to ±2w, where w, the initial estimate of the base width,
was defined in Eq. (6). In practice, this means that we expect the

0 5 10 15 20+
0 %

25 %

50 %

Pr
op

or
tio

n

Error (in pixels)

Localization Accuracy

Fig. 9. Accuracy of the localization algorithm in pixels. The endpoints oL

and oR were manually selected for each image in our data sets and compared
with the output of the localization algorithm described in Sec. III-A. The bin
labeled ‘20+’ contains all the pixels that were at least 20 pixels away from
the ground truth.

localization algorithm to possibly miss up to one bar in both the
start and end patterns. The minimum scanline width oR−oL that
our algorithm was able to decode was of 100 pixels. Note that
this corresponds to a base width of only 1.05 pixels.

The computational speed of the algorithm depends heavily on
the scanline width. This is mostly due to the fact that the number
of cells V t

k depends on the tolerances ∆o and ∆w, which are
proportional to the scanline width. For example, when the scanline
width is equal to 100 pixels, then 25 cells are generated. However,
in the case of a high resolution image of a barcode at a short
distance, producing a scanline width of 1128 pixels, 2185 cells are
generated. In order to reduce the number of cells to be processed,
we implemented a simple variation of the algorithm, by fixing the
width of the first and last bars in the model to the minimum width
considered. Remember that these are “overlap” bars with nearby
digits, and that they always have unitary width in the modelMk.
With this modification, the number of cells is reduced to 17 in the
100 pixel scanline width case, and to 641 in the 1128 pixel case.
The computational speed of the decoder (excluding localization)
ranges between 0.076 seconds to 0.65 seconds.

In order to assess the performance of the system, we tested
it on a variety of images. Unfortunately, we could find only
one barcode image database for comparative assessment1. This
database, which was created by Tekin and Coughlan, is accessible
at www.ski.org/Rehab/Coughlan_lab/Barcode. The
images are all of high resolution, and each image was manually
cropped around the barcode. The authors divided it into “Hard”
and “Clean” subsets, and showed results of their algorithm on
both sets [10].

In order to assess our system in other realistic situations, we
gathered a number of images taken from two different cellphones,
and created three new data sets. Data set 1 contains images at
high resolution (1024× 768) from a Nokia N95 cell phone. This
device has autofocus capability, although not all images collected
were properly in-focus (whether because the focus was on the
wrong object or because the focusing algorithm failed), and some
were affected by motion blur. Data set 2 contains images taken

1Wachenfeld et al. [12] claim to have assembled a barcode image database
for public use, but we have not been granted access to it.

8

by the same cell phone, but at 640 × 480 resolution, and highly
compressed in JPEG (with apparent coding artifacts). Data set 3
contains images at 1152×864 resolution taken with an older Nokia
7610 phone, with fixed focus. All three data sets have multiple
pictures of several barcodes, taken from different distances and
in different conditions.

Our algorithm was tested against the algorithm of Tekin and
Coughlan [10], for the “Hard” and “Clean” data set, as well as
against two barcode reading softwares that are available online.
The first one, from DataSymbol2, was also considered by Tekin
and Coughlan [10]. The second one, from DTK3, was shown
to produce impressive results. A third online software, from
QualitySoft, was considered by Tekin and Coughlan [10], but
we neglected comparison with it since it gives very poor results.

Numerical results from our tests are presented in Fig. 10. Note
that the checksum digit can be used to determine whether a
barcode is correctly decoded. In all the data sets, our algorithm
outperforms the other techniques, in particular for the most
challenging sets (Data set “Hard” and Data set 3). A sample of
images correctly decoded by our algorithm is shown in Fig. 11,
while examples of failures are shown in Fig. 12. Note that in
many cases, failure was due to incorrect initial localization. Our
algorithm correctly decodes barcodes even when the image quality
is extremely poor, as can be appreciated by zooming in on the
images.

B. Symbian implementation

We implemented our algorithm in Symbian and tested it on a
Nokia N95 8GB device using VGA (640×480) still images. The
localization algorithm is implemented exactly as in the Matlab
version. As for the decoding algorithm, we implemented a minor
modification concerning the storage of the polygons in Sec. III-B.
Indeed, storing the partition of the (do, dw) plane and intersecting
it at runtime with a rectangle whose sides are given by the
tolerances described in Sec. IV-A, would be computationally
intensive. Therefore, we only store area and centroid location of
each polygon. Then, at runtime, we compute Eq. (11) using all
the polygons whose centroid falls within mentioned rectangle.
While dramatically decreasing the search time, based on our
experiments, this change does not seem to affect the accuracy
of the algorithm.

From the moment that the frame is received from the camera
and the analysis begins, our algorithm takes an average of 400-
500 ms for both localization and decoding. (Localization is only
a function of the image size and it takes approximately 250 ms
for a VGA image.) This shows that our algorithm is suitable for
mobile applications and also proves that, in the event of failure
at reading the barcode, the process can be quickly repeated.

It is important to note that our algorithm allows the user
to take a shot of the scene without strong constraints on the
location or distance of the barcode, as long as the resolution is
sufficient for decoding. This is in contrast to other mainstream
applications, such as RedLaser for iPhone [1], which require the
user to carefully maneuver the cellphone in close proximity of
the barcode to center it and to maximize its apparent size in
the viewfinder frame. Moreover, the user needs to wait, slightly
adjusting the position of the phone, until a frame is grabbed that

2http://www.datasymbol.com
3http://www.dtksoft.com

Fig. 11. Example of barcodes correctly decoded by our algorithm from the
three data sets described in Sec. IV-A: the crop-outs in the first row are from
1024×768 images (data set 1), those in the second are from 640×480 images
(data set 2), and those in the third from 1152×864 images (data set 3). These
crop-outs are the output of the localization algorithm described in Sec. III-A.
The green stars indicate (oL, oR), the original estimates for the endpoints of
the scanline. Please note the extremely poor quality of the images by zooming
in.

Fig. 12. Example of images in which our algorithm fails from data
sets 1 (1024×768) and 3 (1152×864). These crop-outs are the output of
the localization algorithm described in Sec. III-A. The green stars indicate
(oL, oR), the original estimates for the endpoints of the scanline.

can be successfully decoded by the algorithm.
The barcodes printed on commercial products have sizes typically
ranging from 2.5 to 4 cm, which directly affects the maximum
distance at which it can be correctly read. Given the field of view
of the Nokia N95, our implementation can successfully localize
and read barcodes that are 2.5 cm wide when they are imaged
from up to 30 cm away. Barcodes that are 4 cm wide can be
decoded from up to 45 cm. This provides an advantage over
other methods in cases where it might not be possible to place
the phone in close proximity to the barcode, a strict requirements
of RedLaser and similar applications.

V. CONCLUSIONS

We have presented a new algorithm for barcode decoding
(localization and reading) that can deal with images that are
blurred, noisy, and with low resolution.
Our localization technique is fast and accurate even for cluttered
images; in more than 75% of the images in our challenging data
sets, the detected endpoints of the barcodes are within one pixel
of their actual location, a higher accuracy than that required by
our decoding algorithm.
Unlike previous approaches, our algorithm does not binarize the
image, thus sidestepping a critical and often error-prone, early-
commitment procedure. We use deformable templates to represent
each digit of the barcode, averaging over the set of all expected
deformations. A final procedure for global spatial coherence helps
reducing the risk of errors at the individual digit level. We
extensively tested our algorithm showing improved performance
with respect to other state-of-the-art software and algorithms,
especially for the most challenging images. We also made the
data sets public to allow other researchers to test and compare
their methods.

9

43

19

43

1

39

0

42

2
0

10

20

30

40

50

Clean Hard

Total: 44

Total: 35 32

10
9

34

6 0

22

4 0
0

10

20

30

40

50

Regular High Compression No Focus

Total: 43

Total: 10

Total: 21

Our algorithm
DTK
DataSymbol
Tekin and Coughlan

Im
ag

es
 C

or
re

ct
ly

 D
ec

od
ed

Fig. 10. Comparative results showing the number of barcodes correctly detected in the different data sets considered (on the left the data sets from Tekin
and Coughlan [10], on the right our data sets). For each data set, the black, horizontal line indicates the total number of images.

Implemented on a Nokia N95, the complete reading algorithm
is executed in less than 0.5 seconds and is therefore suitable for
mobile vision applications.

REFERENCES

[1] Redlaser. http://redlaser.com/, accessed on February15th,
2010.

[2] UCSC UPC Dataset. http://soe.ucsc.edu/˜orazio/Data/
UCSC_UPC_Dataset.zip, accessed on March13th, 2010.

[3] R. Adelmann, M. Langheinrich, and C. Flörkemeier. A toolkit for
bar-code recognition and resolving on camera phones—jump starting
the internet of things. In Workshop Mobile and Embedded Interactive
Systems (MEIS06) at Informatik, 2006.

[4] D. Chai and F. Hock. Locating and decoding EAN-13 barcodes from
images captured by digital cameras. pages 1595–9, 2005.

[5] S. Krešić-Jurić, D. Madej, and F. Santosa. Applications of hidden
Markov models in bar code decoding. Pattern Recognition Letters,
27(14):1665–1672, 2006.

[6] R. Muniz, L. Junco, and A. Otero. A robust software barcode reader
using the Hough transform. Information Intelligence and Systems, 1999.
Proceedings. 1999 International Conference on, pages 313–319, 1999.

[7] E. Ohbuchi, H. Hanaizumi, and L. Hock. Barcode readers using
the camera device in mobile phones. In Proceedings of the Third
International Conference on Cyberworlds (CW’04), volume 00, pages
260–265, Los Alamitos, CA, USA, 2004. IEEE Computer Society.

[8] N. Otsu. A threshold selection method from gray-level histograms. IEEE
Transactions on Systems, Man, and Cybernetics, 9(1):62–6, 1979.

[9] T. Pavlidis, J. Swartz, and Y. Wang. Fundamentals of bar code
information theory. Computer, 23(4):74–86, 1990.

[10] E. Tekin and J. Coughlan. A Bayesian algorithm for reading 1D
barcodes. In Sixth Canadian Conference on Computer and Robot Vision,
2009.

[11] A. Tropf and D. Chai. Locating 1-D bar codes in DCT-domain. In
2006 IEEE International Conference on Acoustics, Speech and Signal
Processing, 2006. ICASSP 2006 Proceedings, volume 2, 2006.

[12] S. Wachenfeld, S. Terlunen, and X. Jiang. Robust recognition of 1-D
barcodes using camera phones. In International Conference of Pattern
Recognition, pages 1–4, 2008.

[13] K. Wang, Y. Zou, and H. Wang. 1D bar code reading on camera phones.
International Journal of Image and Graphics, 7(3):529–550, July 2007.

[14] C. Zhang, J. Wang, S. Han, M. Yi, and Z. Zhang. Automatic real-time
barcode localization in complex scenes. In International Conference of
Image Processing, pages 497–500, 2006.

APPENDIX: UPC-A BARCODES - SYNTAX

UPC-A is a technology to encode numbers with 12 decimal
digits (symbols) as an alternating sequence of black bars and
white bars (spaces) with different widths. (The last digit is an
error correcting check digit which can be used to detect decoding
errors.) Each bar may have width equal to r × w, where r

(the module width) is an integer between 1 and 4, and w, the
base width (sometime called X-dimension), is the width of the
narrowest bar. The code is divided into two halves separated by a
sequence of three spaces and two bars (central guard bars), all of
unitary module width. At the two ends of the barcode there is a

sequence of two bars separated by a space, all of unitary module
width (lateral guard bars). The lateral guard bars are sided by a
space of width equal to at least 9 times the base width (quiet
zone), although this requirement is sometimes violated in real-
world instances. Between the lateral and the central guard bars,
the code is divided into 6 equally spaced digit segments, or simply
digits, each of which with length equal to 7 times the base width.
Thus, the overall length of the barcode is equal to 95 base widths.
Each digit represents one symbol as a sequence of two spaces and
two bars. The value k of a symbol is encoded by the sequence of
module widths (rk

1 , r
k
2 , r

k
3 , r

k
4) of the bars and spaces in the digit

segment. The standardized UPC-A sequences for the left half of
the code are shown in Fig. 4. In the right half of the code, the
same sequence of widths is used to encode a symbol, however
the role of spaces and bars is inverted.

ACKNOWLEDGMENT

This material is based upon work supported in part by the
National Science Foundation under Grant No. IIS - 0835645 and
in part by the the National Institute of Health under Grant 1 R21
EY017003-01A1.

Orazio Gallo received his Laurea degree (MS) in
Biomedical Engineering from the “Politecnico di
Milano”, Italy, in 2004. He then worked on a novel
bioimaging technique at the Smith-Kettlewell Eye
Research Institute from 2004 to 2006. Currently he
is a Ph.D. candidate at the department of Computer
Engineering at the University of California, Santa
Cruz. His main research interests are computer vi-
sion and computational photography.

Roberto Manduchi obtained his Ph.D. in Electrical
Engineering from the University of Padova, Italy,
in 1993. He is currently an Associate Professor of
Computer Engineering at the University of Califor-
nia, Santa Cruz. Prior to joining UCSC in 2001, he
worked at Apple Computer, Inc., and at the NASA
Jet Propulsion Laboratory.

