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Abstract

Range sensors, in particular time-of-flight and stereo cameras, are being increasingly used for applications such as robotics, auto-
motive, human-machine interface and virtual reality. The ability to recover the geometrical structure of visible surfaces is critical
for scene understanding. Typical structured indoor or urban scenes are often represented via compositional models comprising
multiple planar surface patches. The RANSAC robust regression algorithm is the most popular technique to date for extracting in-
dividual planar patches from noisy data sets containing multiple surfaces. Unfortunately, RANSAC fails to produce reliable results
in situations with two nearby patches of limited extent, where a single plane crossing through the two patches may contain more
inliers than the “correct” models. This is the case of steps, curbs, or ramps, which represent the focus of our research for the impact
they can have on cars’ safe parking system or robot navigation. In an effort to improve the quality of regression in these cases, we
propose a modification of the RANSAC algorithm, dubbed CC-RANSAC, that only considers the largest connected components of
inliers to evaluate the fitness of a candidate plane. We provide experimental evidence that CC-RANSAC may recover the planar
patches composing a typical step or ramp with substantially higher accuracy than the traditional RANSAC algorithm.

1. Introduction

Range sensors, in particular time-of-flight (TOF) and stereo
cameras, are being increasingly used for applications such as
robotics, automotive, human-machine interface, and virtual re-
ality. The ability to recover the geometrical structure of visible
surfaces (for example, using parametric models such as planar
patches or other geometric primitives) is critical for scene un-
derstanding. For example, consider a sensory system for as-
sisted backup and parking [1, 2, 3, 4]. To be really effective,
such systems should be able to reason about the scene structure,
identifying, for example, planar patches and discontinuities. In
particular, they should robustly identify and localize structures
such as curbs and ramps, like those of Fig. 1, as these are im-
portant features for safe parking.

A classical method for range analysis with this type of struc-
tures is to extract the dominant planar structures (for example,
the “ground plane”), and to model the geometric feature as a
composition of planar patches. Unfortunately, the presence of
multiple planar structures at close vicinity and orientation, may
impair detection of the dominant plane using classical meth-
ods (e.g., RANSAC [5]). Consequently, hazard detection ap-
proaches which rely on detection of a dominant plane, such as
the one of [4], may be adversely affected by the presence of
curbs and ramps. An example is shown in Fig. 6 (c): rather
than selecting one of the three possible planar patches forming
the curb, RANSAC chose a plane intersecting all three. This
type of error, which is by no means unusual [6], may impair
height measurements of the objects in the scene, since height is
usually measured with reference to the ground plane.

This paper presents an improved algorithm for plane fit-
ting, dubbed CC-RANSAC, shown to be more reliable than
RANSAC in these situations. Whereas RANSAC uses the
whole set of inliers to evaluate the fitness of a candidate plane,
CC-RANSAC only considers the largest connected components
of inliers at each iteration. This seemingly minor modification
is in fact key to a substantial improvement in estimation accu-
racy, as evaluated with experiments in synthetic and real data
from a TOF camera1.

This contribution is organized as follows. We first review the
major algorithms for range analysis as well as curb and step
detection in Sec. 2. In Sec. 3 we describe out approach to plane
fitting and evaluate it on synthetic data (Sec. 3.1). We then
perform a thorough case study in Sec. 3.2. Finally, in Sec. 3.3
we present more results on real data.

2. Background and Previous Work

2.1. Algorithms for Range Processing

Research on range analysis represents a vast body of
work, encompassing Computer Vision, Robotics, and Com-
puter Graphics. In the following we attempt a simple organi-
zation, with the purpose of providing some context and back-
ground for the proposed research. A simple categorization of

1A shorter version of this paper was presented at the Time-Of-Flight Work-
shop held in conjunction with the conference of Computer Vision and Pattern
Recognition.
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Figure 1: An example of a curb (a) and of a ramp (b). These types of features
must be identified for safe parking.

range analysis algorithms may be drawn based on whether lo-
cal or global descriptors are employed. Local descriptors in-
clude local surface normals [7, 8], ridges [9], and discontinu-
ities [10, 11, 12, 13]. Contiguous point sets with similar local
descriptors may be clustered in space in order to identify ex-
tended regions. For example, chains of points with high curva-
ture may form a curb line, and groups of adjacent points with
the same normal may identify a planar patch. Only local anal-
ysis of the range data is required for this type of descriptors,
which can therefore be computed very quickly. For the same
reason, however, local descriptors are susceptible to measure-
ment noise and missing measurements.

“Global” descriptors, on the converse, are parametric rep-
resentations (typically planar or quadratic) of relatively large
surface patches. All measurements in a patch contribute to the
estimation of the parameters of the global descriptor. For ex-
ample, if a set of measurements are known to be part of a plane,
then simple linear regression (perhaps using principal compo-
nent analysis, PCA) can provide the corresponding planar equa-
tion.

When the measurements are affected by “outliers” (data
points that differ substantially from the standard noise model),
robust procedures should be employed [14, 15]. For example,
M-estimators find the model parameters that minimize a cumu-
lative “robust” loss function. With respect to the quadratic loss
function used for standard linear regression, robust loss func-
tions penalize more those samples that deviate heavily from
the model. Possibly, the best known robust parametric esti-
mators in Computer Vision are RANSAC [5] and the Hough
transform [16]. Both can be seen as particular instances of M-
estimators [14]. Another popular robust estimation method is
the Least Median of Squares (LMedS) [17] and its variants,
which include the Least K–th of Squares (LKS). It can be shown
that LMedS and LKS are instances of so-called S–estimators,
which are a particular case of M–estimators [18]. Another ap-
proach to dealing with outliers is to explicitly model them as
uniformly distributed. This assumption is at the basis of the
MLESAC algorithm [19].

An important parameter of robust estimators is the “scale”,
ε, at which they operate. Intuitively, those points that are at
a distance larger than ε from the estimated plane are consid-
ered “outliers”; the remaining points are “inliers”. Clearly, the
scale depends on the variance of the inliers, usually modeled

as normally distributed. The choice of scale may critically af-
fect the performance of an estimator. A number of solutions to
the scale estimation problem exists, including joint estimation
with the model parameters [20], minimum unbiased scale esti-
mation (MUSE [21]), adaptive least K–th order square estima-
tion (ALKS [22]) and modified selective statistical estimation
(MSSE [23]). When the variance of the inliers is not constant
(heteroscedastic data), then more complex robust algorithms
should be used [24].

In general, a given planar patch occupies only a finite por-
tion in the image, with other, competing planar regions present
as well. There are three main approaches for the simultaneous
segmentation and estimation of planar regions in the same im-
age. The first approach, which we use for the experiments in
this paper, is to simply use a robust estimator to extract a “dom-
inant” planar region, by considering all the remaining points
(including any other planar regions) as outliers. After finding
the planar region and removing the inliers, the operation is re-
peated on the remaining points, until no more sizable planar
structures can be found. This algorithm is simple and intuitive,
however, the presence of multiple structures may impair the es-
timation of individual planar patches, especially if the scale is
not estimated correctly. This phenomenon was studied in de-
tail [6, 18].

The second approach to multiple model estimation is to run
a simultaneous, concurrent optimization over all planes visi-
ble in the image. This can be obtained using the Expectation-
Maximization algorithm (an iterative technique akin to K-
means clustering) [25, 26] or the recently developed Gener-
alized PCA algorithm [27]. In this case, each plane is repre-
sented explicitly, rather than resorting to the notion of “outlier”
with respect to a dominant structure. While intuitively more ap-
pealing, this approach requires the joint estimation of the (un-
known) number of planar surface elements in the scene, an op-
eration that often proves challenging [28].

The third family of algorithms is based on region grow-
ing [29, 30]. Starting from some “seed” points or regions, ho-
mogeneous patches are grown concurrently by adding neigh-
boring points consistent with the model. Regions that have sim-
ilar models can then be merged together. Both region growing
and merging can be performed using robust criteria [31, 32].
Region growing is a simple and fast algorithm, but relies on
the selection of good seed points, which may be difficult to ob-
tain, especially when planar patches of interest occupy only a
small portion of the image. Note that region growing can also
be used as an initial step for subsequent robust parameter esti-
mation [33].

2.2. Curb and Step Detection using Range Data
Curb detection over short distances for safe driving has been

demonstrated at CMU with a laser striper [34]. The problem
with a fixed laser striper is that the viewing geometry is very
limited, while our task requires the ability to detect features
over a rather wide field of view.

Se and Brady [35] used a stereo camera pair to detect curbs
and steps. They detect candidate curbs by finding clusters of
lines in an image using the Hough Transform. Then, in order
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to classify a curb line as a step–up or step–down, they compute
the ground plane parameters of the two regions separated by the
curb line. This allows one to precisely estimate the height of the
curb.

The work of Turchetto and Manduchi [36] combined stereo
and visual information to find step edges. The idea behind this
approach is that a curb’s edge usually generates a brightness
edge in the image, and thus, in the neighborhood of the pro-
jected curb’s edge, the elevation gradient and the brightness gra-
dient are expected to both have high values and to be aligned.
Accordingly, detection is based on a weighted Hough Trans-
form on brightness edge points, with weights values propor-
tional to the scalar product of the brightness gradient and of the
depth gradient in the image.

This idea is pushed further in the work of Lu and Man-
duchi [37]. For each surface element within a certain distance
from an estimated ground plane, a surface curvature measure is
computed on the range data, characterizing the likelihood that
the point belongs to a curb or step edge. Segments in the image
that are characterized by high brightness gradient (edges) and
high surface curvature are extracted by means of a weighted
Hough transform. Finally, these segments are reprojected back
into the 3-D scene. The algorithm produced the endpoint of a
3-D segment representing the curb edge, and could be used also
to characterize staircases.

More recently, Pradeep et al. [38] proposed another stereo-
based system for curb detection that is based on plane fitting.
Tensor voting is used to calculate consistent normals at each
data point, which allow for clustering into planar patches.

3. Regression and CC-RANSAC

As discussed previously, in the presence of curbs or small
steps, dominant plane detection may produce unsatisfactory re-
sults. This was noted, for example, by Lu and Manduchi [37],
where it was shown that the estimated “ground plane” was not
reliable enough for detection of small steps. In order to under-
stand this behavior, it may be useful to quickly review some
basic concept of planar estimation.

Planar regression from a set of 3D point seeks for a plane P
that minimizes some measure of observed “fitness” to the data
points. If di is the Euclidian distance of the i-th data point to a
candidate plane P, different measures of the fitness o(P) can be
considered:

o = −
∑

i d2
i (LS)

o = −median{d2
i } (LMedS)

o = |Iε(P)| (RANSAC)
(1)

where Iε(P) is the set of inliers (i.e. data points with di ≤ ε
for a given threshold ε) and |I| represents the cardinality of the
set I. In the Least Squares approach (LS), the plane P with
maximum fitness o can be found in closed form. In the other
two cases, random sampling can be used for minimization. In
general, when the variance of the noise is known, at least ap-
proximately, RANSAC is preferable to LMedS due to its lower
computational cost. Both LMedS and RANSAC are superior to

LS when outliers are expected or, as in the scenarios considered
here, when multiple planar models are present in the scene.

However, as mentioned earlier, even RANSAC (or LMedS)
may provide poor results when the scene contains two or more
planar patches at short distance from each other. This phe-
nomenon was studied at length by Stewart [6]. This is not a
defect of sampling: rather, the proposed measure of fitness o
is not adequate, in the sense that the planes representing differ-
ent surfaces in the scene do no necessarily produce large val-
ues of fitness o. This is shown by way of example in Fig. 6.
In this case, the plane that maximizes RANSAC fitness o (i.e.,
the plane receiving the highest number of supporting inliers) is
shown in a Fig. 6 (c). This plane straddles across the two planes
representing the top and bottom surfaces of a curb. Similar re-
sults are obtained using the LMedS criterion.

Thus, even the robust fitness measures in 1 fail to correctly
identify the individual visible planar components. We argue
that the main problem with such measures is that they neglect
the spatial coherence typically exhibited by inlier points. Ac-
cordingly, we propose a modification of the RANSAC algo-
rithm, dubbed CC-RANSAC, by defining the following mea-
sure of fitness:

o = |IC(P)| (CC-RANSAC) (2)

where IC(P) is the largest connected component of inliers with
8-neighbor topology inherited from the image grid. This idea
embeds the observation that data points that are the inliers of a
“correct” plane cluster contiguously in space, whereas a plane
straddling across two planar patches typically produces two dis-
connected sets of inliers (see Fig. 6 (c)). Using IC for evaluating
the fitness of a candidate plane ensures that only the inliers from
a single planar patch will contribute to this measure. This is in-
deed the case for Fig. 6 (d), where the red points represents the
inliers belonging to IC for the same plane as in Fig. 6 (c).

3.1. Comparative Performance Assessment - Synthetic Data

In order to compare the performance of RANSAC and CC-
RANSAC quantitatively, we first consider a synthetic data set
with noisy 3-D points generated from a model of a step. This al-
lows us to test the algorithm under a wide variety of controlled
conditions. A range imaging system is assumed to collect data
from two planar patches (each providing 150 by 50 measure-
ments on a regular grid with point spacing of 1 unit along each
axis). The two patches, which are separated by a distance of
h units, are seen from above under orthography. The measure-
ments are corrupted by Gaussian noise with standard deviation
of σ units.

Our initial experiments computed robust planar regression
with different values of the distance between the planar patches,
h. Only one plane is estimated at each time. Since the two
patches have the same number of measurements, ideal robust
regression would produce a plane modeling either patch. In or-
der to measure the discrepancy between the plane P computed
by the algorithm and the fitted patch, we compute the average
square distances {d

2
1, d

2
2} of the points of the two patches to

the plane P. Then, we define the regression error as e(P) =
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Figure 2: Synthetically generated data representing a curb with height h equal
to 5 units, with added Gaussian noise (in the vertical direction) with standard
deviation σ equal to 1 unit.

min(d1, d2). In each experiment, we first fix the number N
of random samples used for RANSAC or CC-RANSAC. More
precisely, a set of N non-collinear triplets of measurements are
sampled without replacement from the data pool; the fitness
of the plane P identified by each triplet is computed using the
RANSAC and the CC-RANSAC criteria; the best fitting plane
is chosen for both cases, and a final least squares regression
based on all the inliers is computed. This procedure is repeated
for 500 times, each time with a new set of N triplets. The me-
dian value e of regression error over the 500 experiments is used
for the plots in the following figures.

2 4 6 8 10
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1

1.5

h

e

ε=1
N=500

Figure 3: Median regression error e as a function of the step height h using
RANSAC (stars) and CC-RANSAC (circles).

Fig. 3 shows the median regression error e when the distance
h between the two planar patches is varied. The value ε of the
threshold for the inliers (as defined in Sec. 2.1) is set equal to 1
(i.e., equal to the standard deviation of noise). N=500 random
samples are used for both algorithms. The most noteworthy
characteristic of the measurements in Fig. 3 is that, for h rang-
ing between 4 and 8, RANSAC produces a relative large error,
which drops to a low value for h > H, where H is a break-
down value that in this case is approximately equal to 8. The
reason for this behavior is that for small values of h, RANSAC
produces planes that straddle between the two patches. When
the patches are far enough from each other (relative to the mea-
surement noise), RANSAC can produce stable and robust re-
sults, reliably fitting either patch. The benefit of CC-RANSAC
is that the break-down value H is reduced from 8 to 3. In other
words, CC-RANSAC allows for planar fitting in a wider range
of step heights than RANSAC for the step considered in these
experiments.

Next, we look at the performance of both algorithms when
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Figure 4: Median regression error e as a function of inlier threshold ε using
RANSAC (stars) and CC-RANSAC (circles) for two different values of step
height (h=5 and h=10).

the inliers threshold ε is changed. As mentioned earlier, a mea-
surement point is considered an inlier with respect to a candi-
date planePwhen its distance to P is less than ε. Robustness to
incorrect (or “mismatched”) values of ε is important, since the
actual standard deviation of noise σ is not always known with
precision. Fig. 4 (a) shows the median regression error e for a
step of height h = 5 as ε is changed between 0.25 and 3 (while
the standard deviation of noise σ remains equal to 1). It is seen
that RANSAC yields basically the same (large) regression er-
ror, regardless of ε. CC-RANSAC produces reliable results for
ε between 0.5 and 1.25. For larger values of ε, it matches the
results of RANSAC. This is not surprising: for large enough
values of ε, an incorrect plane straddling across the two patches
will produce a large number of connected inliers. The only time
CC-RANSAC performs worse than RANSAC is for very small
values of ε. The reason in this case is that only very small con-
nected component are formed, which cannot provide reliable
support for the correct plane.

Fig. 4 (b) shows results from a similar experiment, but this
time for a step with height h equal to 10 units. As seen in Fig. 3,
at this step height RANSAC gives good results when ε is set to
1. When ε takes values larger than 1.5, though, RANSAC pro-
duces incorrect fitting planes with large median error. Remark-
ably, the break-down point for CC-RANSAC is quite larger:
only for ε larger than 3.5 does CC-RANSAC start behaving like
RANSAC.
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Figure 5: Median regression error e as a function of the number of random
samples N using RANSAC (stars) and CC-RANSAC (circles) for two different
values of step height (h=5 and h=10). The bars show the 10- and 90-percentiles
of the error distributions.

Finally, in Fig. 5 we show the median, along with the 10- and
90-percentile, of the regression error as a function of the num-
ber N of random samples used by the algorithms. When step
height is set to 5 (with σ = ε = 1), CC-RANSAC produces
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relatively stable results for N ≥ 100. Note that the median
error for RANSAC remains basically constant, giving exper-
imental evidence to the fact that incorrect regression is not a
consequence of poor sampling in this case. For h=10, the two
algorithms perform substantially as well when N is changed.

3.2. Comparative Performance Assessment - TOF Measure-
ments

Here we consider the measurements shown in Fig. 6 (a), ac-
quired by a Canesta TOF camera in front of a curb, as a study
case. The goal is to find the prominent planar patch, shown in
red in Fig. 6 (a). (Although there are two more planar patches
visible in the scene, the one shown in red in Fig. 6 (b) has the
largest number of data points.)

Even when the ground truth planeP0 is available, it is impos-
sible (or at least unpractical) to label each data point as belong-
ing to a particular planar patch. This means that the regression
error measure proposed in the previous section cannot be used
here. We thus define a different “goodness” measure, that does
not require knowledge of which patch each points belongs to.
Given a candidate plane P, we define its quality q(P) as the
number of inliers of P that are also inliers of the “ground truth”
plane P0, normalized by the number of inliers of P0 :

q(P) = |I(P) ∩ I(P0)|/|I(P0)| (3)

Note that q(P) = 0 when P is far enough from the planar patch,
and q(P) =1 when P coincides with P0. Hence, q seems like an
appropriate and simple to compute measure for describing how
well a given plane fits the planar patch.2

Our first step is to compute the statistical correlation between
fitness o of a candidate plane and its quality q. More precisely,
we estimate the joint probability density function (pdf) of q and
o, fq,o(q, o) by sampling the space of possible planes, where for
each plane sample P, o is set equal to either |Iε(P)| or to |IC(P)|
based on the data of Fig. 6 (a). Note that, although the space of
candidate planes is discrete (since each plane is determined by
a triplet of measured points), we make the simplifying assump-
tion that it is continuous in our analysis. The two joint pdf’s,
computed using the Parzen window method from a set of 5000
random sample planes, are shown in Fig. 7; these plots reveal
that, for both choices of fitness, the joint pdf of q and o is char-
acterized by two main “ridges”, corresponding to two different
clusters of planes.

We now show how fq,o(q, o) can be used to evaluate the ex-
pected performance of RANSAC or CC-RANSAC. More pre-
cisely, let qN be the random variable describing the quality of
the plane chosen by either algorithm after N iterations (where
each iteration corresponds to a randomly selected candidate
plane). If {on} are the measured fitness values of the N can-
didates planes, then each algorithm chooses the plane P with
o(P) = ō, where ō = max{oi}.

The pdf of qN can be found as follows:

fqN (q) =

∫ ∞
−∞

fqN |ō(q|o) fō(o) do (4)

2Note that, as opposed to the regression error e used in the previous section,
a high value of the quality q indicates good algorithm performance.

(a)

(b)

(c)

(d)

Figure 6: (a): Range data collected in front of a curb. (b): Optimal planar fit to
the lower planar patch (inliers with respect to the plane are shown in red). (c)
Incorrect planar fit (P) and inliers in Iε(P). (d) Same plane as in (c) but with
inliers in IC(P).
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Figure 7: Graphical representation of the joint densities fq,o(q, o) for the data
of Fig. 6 (a) with (a) o = |Iε(P)| and (b) o = |ICC(P)|.
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Figure 8: Plots of the pdf fqN (q) of the quality of the plane chosen in the case
of Fig. 6 using (a) RANSAC and (b) CC-RANSAC with a variable number N
of iterations.

given that qN represents the quality of the plane with the highest
fitness measure, it is clear that fqN |ō(q|o) = fq|o(q|o). The pdf of
ō can be easily derived based on the fact that the samples are
drawn independently:

fō(o) = N fo(o)FN−1
o (o) (5)

where Fo(o) is the cumulative distribution function (cdf) of o:

Fo(o) =

∫ o

−∞

fo(u) du (6)

All of those quantities are easily computed by numerical inte-
gration starting from fq,o(q, o).

Fig. 8 shows the pdf fqN (q) for RANSAC and CC-RANSAC
for different numbers N of iterations. It is interesting to note
that RANSAC yields a bimodal distribution: since the two
planes of Fig. 6 (a) and (c) both receive good inlier support, the
algorithm may choose one or the other with almost the same
likelihood (although the incorrect plane receives higher proba-
bility mass as the number of iterations increases). RANSAC-
CC, instead, yields a unimodal distribution that is peaked
around a high quality value, meaning that it almost invariably
chooses a plane that is close to the optimal one. Even if only a
limited amount of iterations (e.g., 100) is used, the chosen plane
is likely to have a good quality value.

3.3. Planar Fitting Examples for Curbs and Ramps
This section presents a few experimental results using CC-

RANSAC, in order to highlight the potential of this approach
for curb and ramp detection. These examples are of interest for
automotive applications, such as safe parking systems. Note
that, although we only present results for ramps and steps, these

patterns can be regarded as the building blocks for virtually
any structure that only comprises planar surfaces. For exam-
ple, an indoor staircase, which could be useful to detect for au-
tonomous or semi-autonomous navigation (e.g., for the assisted
control of a motor wheelchair [39]), can be seen as a sequence
of steps. The crucial aspect, regardless of the structure, is that
enough datapoints support each planar patch; in the case of au-
tonomous navigation, for example, a staircase would probably
be seen as a ramp from a distance and the steps would become
visible as the robot or the wheelchair approaches it.

In Fig. 9, as well as in Fig. 6, inliers are represented with
thick points, with color indicating to the plane they are closest
to. For each fitting plane, we show the convex hull of its closest
inliers, projected onto the planes.

Fig. 9 (a) shows the three best fitting planes to the data of
Fig. 6. After the dominant plane has been found, the corre-
sponding inliers are removed from the data, and the operation
is repeated until a maximum number of planes is found, or the
highest planar fitness for the remaining point is below a certain
threshold.

Fig. 9 (b) shows the result to a similar curb taken from a
larger distance. In this case, only two fitting planes were found.
Note that the fit is pretty good, in spite of the planar patches
being close to each other.

Examples of ramp modeling are shown in Fig. 9 (c) and (d).
In particular, Fig. 9 (d) is based on measurements taken of the
ramp shown in Fig. 1 (b). The red planar patch corresponds
to the descending concrete surface in the ramp; the blue patch
represents the asphalt surface at the bottom of the ramp; while
the green patch corresponds to the surface covered in soil to the
left of the ramp. Note that, contrary to what one would hope,
the green and the blue patches do not intersect. This is due to
the fact that the measurements supporting the green patch are
biased by the presence of a tree stump, visible near the left edge
of Fig. 1. Nonetheless, the algorithm is shown to produce very
good planar fits to the different elements of the scene, which
may enable further reasoning and recognition.

4. Conclusions

The ability to accurately measure the geometry of the scene
enables systems relying on range sensors, for instance TOF sen-
sors, to recognize features that are critical for many applica-
tions, such as safe parking. In this paper we concentrate on
situations where this task can be impaired by the presence of
multiple planar structures as in the case of curbs and ramps,
a situation that is extremely common in urban environments.
These are particularly challenging features that cannot be re-
liably detected using conventional ultrasound and microwave
sensors.

In order to describe the geometry of a curb or of a ramp,
we perform robust fitting to the different visible planar patches.
We have shown that the popular RANSAC algorithm may fail
in the case of a shallow curb; this result is in agreement with
previous work by Stewart [6]. In order to deal with these sit-
uations, we propose a new algorithm, CC-RANSAC, that uses
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only the largest connected component of inliers to evaluate the
fitness of a candidate plane. This seemingly minor modification
may in fact yield substantially better fits than RANSAC.

A critical analysis of CC-RANSAC brings a consideration to
light. The assumption that inliers cluster together into one large
connected component, although intuitively correct, needs to be
investigated further. It is clear that the size of the largest con-
nected component depends on the distribution of the distances
di of the data points to the candidate plane as well as on the
chosen threshold ε. If ε is too small, only isolated inlier clus-
ters will form, as shown by our experiments of Sec. 3.1. If ε
is too large, clusters of inliers corresponding to different planar
patches may end up connecting with each other.

In future work we will investigate methods to increase the
robustness of this approach by considering different ways to
cluster the inliers. For example, one could use the isophotic
metric [40], that combines Eulidean distance and distance be-
tween normals. This could help in situations with “holes” in the
range data, which are liable to create multiple connected com-
ponents where only one connected component is expected3.
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