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ABSTRACT
Migrating resources is a useful tool for balancing load in a
distributed system, but it is difficult to determine when to
move resources, where to move resources, and how much
of them to move. We look at resource migration for file
system metadata and show how CephFS’s dynamic subtree
partitioning approach can exploit varying degrees of local-
ity and balance because it can partition the namespace into
variable sized units. Unfortunately, the current metadata
balancer is complicated and difficult to control because it
struggles to address many of the general resource migra-
tion challenges inherent to the metadata management prob-
lem. To help decouple policy from mechanism, we introduce
a programmable storage system that lets the designer in-
ject custom balancing logic. We show the flexibility and
transparency of this approach by replicating the strategy of
a state-of-the-art metadata balancer and conclude by com-
paring this strategy to other custom balancers on the same
system.

CCS Concepts
•Information systems → Distributed storage; Indexed
file organization; Inodes; •Software and its engineering
→ File systems management;

Keywords
Distributed file systems, file system metadata, inode caching,
namespace locality

1. INTRODUCTION
Serving metadata and maintaining a POSIX namespace

is challenging for large-scale distributed file systems because
accessing metadata imposes small and frequent requests on
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Figure 1: Metadata hotspots, represented by different
shades of red, have spatial and temporal locality when com-
piling the Linux source code. The hotspots are calculated
using the number of inode reads/writes and smoothed with
an exponential decay.

the underlying storage system [19]. As a result of this skewed
workload, serving metadata requests does not scale for suf-
ficiently large systems in the same way that read and write
throughput do [1, 2, 25]. Many distributed file systems de-
couple metadata from data access so that data and meta-
data I/O can scale independently [2, 7, 9, 25, 27, 28]. These
“metadata services” manage the namespace hierarchy and
metadata requests (e.g., file and directory creates, file and
directory renaming, directory listings). File properties that
a metadata service manages can include permissions, size,
modification times, link count, and data location.

Unfortunately, decoupling metadata and data is insuffi-
cient for scaling and many setups require customized appli-
cation solutions for dealing with metadata intensive work-
loads. For example, Google has acknowledged a strain on
their own metadata services because their workloads in-
volve many small files (e.g., log processing) and simulta-
neous clients (e.g., MapReduce jobs) [13]. Metadata inef-
ficiencies have also plagued Facebook; they migrated away
from file systems for photos [3] and aggressively concatenate
and compress small files so that their Hive queries do not



overload the HDFS namenode [23]. The elegance and sim-
plicity of the solutions stem from a thorough understanding
of the workloads (e.g., temperature zones at Facebook [14])
and are not applicable for general purpose storage systems.

The most common technique for improving the perfor-
mance of these metadata services is to balance the load
across dedicated metadata server (MDS) nodes [16, 25, 26,
21, 28]. Distributed MDS services focus on parallelizing
work and synchronizing access to the metadata. A popu-
lar approach is to encourage independent growth and re-
duce communication, using techniques like lazy client and
MDS synchronization [16, 18, 29, 9, 30], inode path/permis-
sion caching [4, 11, 28], locality-aware/inter-object transac-
tions [21, 30, 17, 18] and efficient lookup tables [4, 30]. De-
spite having mechanisms for migrating metadata, like lock-
ing [21, 20], zero copying and two-phase commits [21], and
directory partitioning [28, 16, 18, 25], these systems fail to
exploit locality.

File system workloads have locality because the names-
pace has semantic meaning; data stored in directories is re-
lated and is usually accessed together. Figure 1 shows the
metadata locality when compiling the Linux source code.
The “heat” of each directory is calculated with per-directory
metadata counters, which are tempered with an exponential
decay. The hotspots can be correlated with phases of the job:
untarring the code has high, sequential metadata load across
directories and compiling the code has hotspots in the arch,
kernel, fs, and mm directories. Exploiting this locality has
positive implications for performance because it reduces the
number of requests, lowers the communication across MDS
nodes, and eases memory pressure. The Ceph [25] (see also
www.ceph.com) file system (CephFS) tries to leverage this
spatial, temporal, and request-type locality in metadata in-
tensive workloads using dynamic subtree partitioning, but
struggles to find the best degree of locality and balance.

We envision a general purpose metadata balancer that re-
sponds to many types of parallel applications. To get to
that balancer, we need to understand the trade-offs of re-
source migration and the processing capacity of the MDS
nodes. We present Mantle1, a system built on CephFS that
exposes these factors by separating migration policies from
the mechanisms. Mantle accepts injectable metadata migra-
tion code and helps us make the following contributions:

• a comparison of balancing for locality and balancing
for distribution

• a general framework for succinctly expressing different
load balancing techniques

• an MDS service that supports simple balancing scripts
using this framework

Using Mantle, we can dynamically select different tech-
niques for distributing metadata. We explore the infrastruc-
tures for a better understanding of how to balance diverse
metadata workloads and ask the question “is it better to
spread load aggressively or to first understand the capacity
of MDS nodes before splitting load at the right time under
the right conditions?”. We show how the second option can
lead to better performance but at the cost of increased com-
plexity. We find that the cost of migration can sometimes

1The mantle is the structure behind an octopus’s head that
protects its organs.
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Figure 2: The MDS cluster journals to RADOS and ex-
poses a namespace to clients. Each MDS makes decisions by
exchanging heartbeats and partitioning the cluster/names-
pace. Mantle adds code hooks for custom balancing logic.

outweigh the benefits of parallelism (up to 40% performance
degradation) and that searching for balance too aggressively
increases the standard deviation in runtime.

2. BACKGROUND: DYNAMIC
SUBTREE PARTITIONING

We use Ceph [25] to explore the metadata management
problem. Ceph is a distributed storage platform that stripes
and replicates data across a reliable object store called RA-
DOS. Clients talk directly to object storage daemons (OSDs)
on individual disks by calculating the data placement (“where”
should I store my data) and location (“where” did I store
my data) using a hash-based algorithm (CRUSH). CephFS
is the POSIX-compliant file system that uses RADOS. It
decouples metadata and data access, so data IO is done di-
rectly with RADOS while all metadata operations go to a
separate metadata cluster. The MDS cluster is connected
to RADOS so it can periodically flush its state. The hier-
archical namespace is kept in the collective memory of the
MDS cluster and acts as a large distributed cache. Directo-
ries are stored in RADOS, so if the namespace is larger than
memory, parts of it can be swapped out.

The MDS nodes use dynamic subtree partitioning [26] to
carve up the namespace and to distribute it across the MDS
cluster, as shown in Figure 2. MDS nodes maintain the
subtree boundaries and “forward” requests to the authority
MDS if a client’s request falls outside of its jurisdiction or
if the request tries to write to replicated metadata. Each
MDS has its own metadata balancer that makes indepen-
dent decisions, using the flow in Figure 2. Every 10 seconds,
each MDS packages up its metrics and sends a heartbeat
(“send HB”) to every MDS in the cluster. Then the MDS
receives the heartbeat (“recv HB”) and incoming inodes from
the other MDS nodes. Finally, the MDS decides whether to
balance load (“rebalance”) and/or fragment its own directo-
ries (“fragment”). If the balancer decides to rebalance load,
it partitions the namespace and cluster and sends inodes



(“migrate”) to the other MDS nodes. These last 3 phases
are discussed below.

Migrate: inode migrations are performed as a two-phase
commit, where the importer (MDS node that has the ca-
pacity for more load) journals metadata, the exporter (MDS
node that wants to shed load) logs the event, and the im-
porter journals the event. Inodes are embedded in directo-
ries so that related inodes are fetched on a readdir and
can be migrated with the directory itself.

Partitioning the Namespace: each MDS node’s bal-
ancer carves up the namespace into subtrees and directory
fragments (added since [26, 25]). Subtrees are collections of
nested directories and files, while directory fragments (i.e.
dirfrags) are partitions of a single directory; when the direc-
tory grows to a certain size, the balancer fragments it into
these smaller dirfrags. This directory partitioning mecha-
nism is equivalent to the GIGA+ [16] mechanism, although
the policies for moving the dirfrags can differ. These sub-
trees and dirfrags allow the balancer to partition the names-
pace into fine- or coarse-grained units.

Each balancer constructs a local view of the load by iden-
tifying popular subtrees or dirfrags using metadata coun-
ters. These counters are stored in the directories and are
updated by the MDS whenever a namespace operation hits
that directory or any of its children. Each balancer uses
these counters to calculate a metadata load for the subtrees
and dirfrags it is in charge of (the exact policy is explained
in Section §2.2.3). The balancer compares metadata loads
for different parts of its namespace to decide which inodes
to migrate. Once the balancer figures out which inodes it
wants to migrate, it must decide where to move them.

Partitioning the Cluster: each balancer communicates
its metadata load and resource metrics to every other MDS
in the cluster. Metadata load metrics include the metadata
load on the root subtree, the metadata load on all the other
subtrees, the request rate/latency, and the queue lengths.
Resource metrics include measurements of the CPU utiliza-
tion and memory usage. The balancer calculates an MDS
load for all MDS nodes using a weighted sum of these met-
rics (again, the policy is explained in Section §2.2.3), in order
to quantify how much work each MDS is doing. With this
global view, the balancer can partition the cluster into ex-
porters and importers. These loads also help the balancer
figure out which MDS nodes to “target” for exporting and
how much of its local load to send. The key to this load ex-
change is the load calculation itself, as an inaccurate view of
another MDS or the cluster state can lead to poor decisions.

CephFS’s Client-Server Metadata Protocols: the
mechanisms for migrating metadata, ensuring consistency,
enforcing synchronization, and mediating access are discussed
at great length in [24] and the Ceph source code. MDS
nodes and clients cache a configurable number of inodes so
that requests like getattr and lookup can resolve locally.
For shared resources, MDS nodes have coherency protocols
implemented using scatter-gather processes. These are con-
ducted in sessions and involve halting updates on a directory,
sending stats around the cluster, and then waiting for the
authoritative MDS to send back new data. As the client
receives responses from MDS nodes, it builds up its own
mapping of subtrees to MDS nodes.

2.1 Advantages of Locality
Distributing metadata for balance tries to spread meta-

data evenly across the metadata cluster. The advantage of
this approach is that clients can contact different servers for
their metadata in parallel. Many metadata balancers dis-
tribute metadata for complete balance by hashing a unique
identifier, like the inode or filename; unfortunately, with
such fine grain distribution, locality is completely lost. Dis-
tributing for locality keeps related metadata on one MDS
and can improve performance. The reasons are discussed in
[24, 26], but briefly, improving locality can:

• reduce the number of forwards between MDS nodes
(i.e. requests for metadata outside the MDS node’s
jurisdiction)

• lower communication for maintaining coherency (i.e.
requests involving prefix path traversals and permis-
sion checking)

• reduce the amount of memory needed to cache path
prefixes. If metadata is spread, the MDS cluster repli-
cates parent inode metadata so that path traversals
can be resolved locally

Figure 3 alters the degree of locality by changing how
metadata is distributed for a client compiling code on CephFS;
with less locality, the performance gets worse and the num-
ber of requests increases. The number of requests (y axis)
increases when metadata is distributed: the “high locality”
bar is when all metadata is kept on one MDS, the “spread
evenly” bar is when hot metadata is correctly distributed,
and the “spread unevenly” bar is when hot metadata is in-
correctly distributed2. For this example, the speedup for
keeping all metadata on a single MDS is between 18% and
19%. Although this is a small experiment, where the client
clearly does not overload one MDS, it demonstrates how
unnecessary distribution can hurt performance.

The number of requests increases when distributing meta-
data because the MDS nodes need to forward requests for
remote metadata in order to perform common file system
operations. The worse the distribution and the higher the
fragmentation, the higher the number of forwards. Figure 3b
shows that a high number of path traversals (y axis) end in
”forwards” to other MDS nodes when metadata is spread
unevenly. When metadata is spread evenly, much more of
the path traversals can be resolved by the current MDS (i.e.
they are cache ”hits”). Aggressively caching all inodes and
prefixes can reduce the requests between clients and MDS
nodes, but CephFS (as well as many other file systems) do
not have that design, for a variety of reasons.

2.2 Multi-MDS Challenges
Dynamic subtree partitioning achieves varying degrees of

locality and distribution by changing the way it carves up
the namespace and partitions the cluster. To alleviate load
quickly, dynamic subtree partitioning can move different
sized resources (inodes) to computation engines with vari-
able capacities (MDS nodes), but this flexibility has a cost.
In the sections below, we describe CephFS’s current ar-
chitecture and demonstrate how its complexity limits per-
formance. While this section may seem like an argument
2To get high locality, all metadata is kept on one MDS. To
get different degrees of spread, we change the setup: “spread
unevenly” is untarring and compiling with 3 MDS nodes and
“spread evenly” is untarring with 1 MDS and compiling with
3 MDS nodes. In the former, metadata is distributed when
untarring (many creates) and the workload loses locality.



(a) The number of requests for the compile job.
(b) Path traversals ending in hits (local metadata) and forwards.

Figure 3: Spreading metadata to multiple MDS nodes hurts performance (“spread evenly/unevenly” setups in Figure 3a) when
compared to keeping all metadata on one MDS (“high locality” setup in Figure 3a). The times given are the total times of the
job (compile, read, write, etc.). Performance is worse when metadata is spread unevenly because it “forwards” more requests
(Figure 3b).

against dynamic subtree partitioning, our main conclusion
is that the approach has potential and warrants further ex-
ploration.

2.2.1 Complexity Arising from Flexibility
The complexity of deciding where to migrate resources in-

creases significantly if these resources have different sizes and
characteristics. To properly balance load, the balancer must
model how components interact. First, the model needs
to be able to predict how different decisions will positively
impact performance. The model should consider what can
be moved and how migration units can be divided or com-
bined. It should also consider how splitting different or re-
lated objects affects performance and behavior. Second, the
model must quantify the state of the system using avail-
able metrics. Third, the model must tie the metrics to the
global performance and behavior of the system. It must
consider how over-utilized resources negatively affect perfor-
mance and how system events can indicate that the system
is performing optimally. With such a model, the balancer
can decide which metrics to optimize for.

Figure 4 shows how a 10 node, 3 MDS CephFS system
struggles to build an accurate model that addresses the chal-
lenges inherent to the metadata management problem. That
figure shows the total cluster throughput (y axis) over time
(x axis) for 4 runs of the same job: creating 100,000 files in
separate directories. The top graph, where the load is split
evenly, is what the balancer tries to do. The results and per-
formance profiles of the other 3 runs demonstrate that the
balancing behavior is not reproducible, as the finish times
vary between 5 and 10 minutes and the load is migrated to
different servers at different times in different orders. Below,
we discuss the design decisions that CephFS made and we
demonstrate how policies with good intentions can lead to
poor performance and unpredictability.

2.2.2 Maintaining Global & Local State
To make fast decisions, CephFS measures, collects, and

communicates small amounts of state. Each MDS runs its
balancing logic concurrently - this allows it to construct its
own view of the cluster. The design decisions of the current
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Figure 4: The same create-intensive workload has differ-
ent throughput (y axis; curves are stacked) because of how
CephFS maintains state and sets policies.

balancer emphasizes speed over accuracy:

1. Instantaneous measurements: this makes the bal-
ancer sensitive to common system perturbations. The
balancer can be configured to use CPU utilization as
a metric for making decisions but this metric depends
on the instant the measurement is taken and can be
influenced by the measurement tool. The balancer
dulls this effect by comparing the current measure-
ment against the previous measurement, but in our
experiences decisions are still made too aggressively.

2. Decentralized MDS state: this makes the balancers
reliant on state that is slightly stale. CephFS commu-
nicates the load of each MDS around the cluster using
heartbeats, which take time to pack, travel across the
network, and unpack. As an example, consider the in-
stant MDS0 makes the decision to migrate some of its
load; at this time, that MDS considers the aggregate
load for the whole cluster by looking at all incoming



Policy Hard-coded implementation
metaload = inode reads + 2*(inode writes)

+ read dirs + 2*fetches + 4*stores

MDSload = 0.8*(metaload on auth)

+ 0.2*(metaload on all)

+ request rate + 10*(queue length)

when if my load > (total load)/#MDSs

where for each MDS

if load > target:add MDS to exporters

else:add MDS to importers

match large importers to large exporters

how-much for each MDS

accuracy while load already sent < target load

export largest dirfrag

Table 1: In the CephFS balancer, the policies are tied to
mechanisms: loads quantify the work on a subtree/MDS;
when/where policies decide when/where to migrate by as-
signing target loads to MDS nodes; how-much accuracy is
the strategy for sending dirfrags to reach a target load.

heartbeats, but by the time MDS0 extracts the loads
from all these heartbeats, the other MDS nodes have
already moved on to another task. As a result of these
inaccurate and stale views of the system, the accuracy
of the decisions varies and reproducibility is difficult.

Even if maintaining state was instant and consistent, mak-
ing the correct migration decisions would still be difficult
because the workload itself constantly changes.

2.2.3 Setting Policies for Migration Decisions
In complicated systems there are two approaches for set-

ting policies to guide decisions: expose the policies as tun-
able parameters or tie policies to mechanisms. Tunable pa-
rameters, or tunables, are configuration values that let the
system administrator adjust the system for a given work-
load. Unfortunately, these tunable parameters are usually
so specific to the system that only an expert can properly
tune the system. For example, Hadoop version 2.7.1 ex-
poses 210 tunables to configure even the simplest MapRe-
duce application. CephFS has similar tunables. For exam-
ple, the balancer will not send a dirfrag with load below
mds_bal_need_min. Setting a sensible value for this tun-
able is almost impossible unless the administrator under-
stands the tunable and has an intimate understanding of
how load is calculated.

The other approach for setting policies is to hard-code
the policies into the system alongside the mechanisms. This
reduces the burden on the system administrator and lets the
developer, someone who is very familiar with the system, set
the policies.

The CephFS Policies
The CephFS policies, shown in Table 1, shape decisions us-
ing two techniques: scalarization of logical/physical metrics
and hard-coding the logic. Scalarization means collapsing
many metrics into a single value, usually with a weighted
sum. When partitioning the cluster and the namespace,
CephFS calculates metadata and MDS loads by collapsing
the logical (e.g., inode reads, inode writes, readdirs, etc.)
and physical metrics (e.g., CPU utilization, memory usage,
etc.) into a single value. The exact calculations are in the
“metaload” and “MDS load” rows of Table 1.
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to increase with 5, 6, or 7 clients. The standard deviation
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2.3×).

The other technique CephFS uses in its policies is to com-
pile the decision logic into the system. The balancer uses
one approach for deciding when and where to move inodes;
it migrates load when it thinks that it has more load than
the other MDS nodes (“when” row of Table 1) and it tries to
migrate enough of its load to make the load even across the
MDS cluster (“where” row of Table 1). While this approach
is scalable, it reduces the efficiency of the cluster if the job
could have been completed with less MDS nodes. Figure 5
shows how a single MDS performs as the number of clients
is scaled, where each client is creating 100,000 files in sepa-
rate directories. With an overloaded MDS servicing 5, 6, or
7 clients, throughput stops improving and latency continues
to increase. With 1, 2, and 3 clients, the performance vari-
ance is small, with a standard deviation for latency between
0.03 and 0.1 ms and for throughput between 103 and 260
requests/second; with 3 or more clients, performance is un-
predictable, with a standard deviation for latency between
0.145 and 0.303 ms and for throughput between 406 and
599 requests/second. This indicates that a single MDS can
handle up to 4 clients without being overloaded.

Each balancer also sets policies for shedding load from
its own namespace. While partitioning the cluster, each
balancer assigns each MDS a target load, which is the load
the balancer wants to send to that particular MDS. The
balancer starts at its root subtrees and continuously sends
the largest subtree or dirfrag until reaching this target load
(“how-much accuracy” row of Table 1). If the target is not
reached, the balancer “drills” down into the hierarchy. This
heuristic can lead to poor decisions. For example, in one of
our create heavy runs we had 2 MDS nodes, where MDS0
had 8 “hot” directory fragments with metadata loads: 12.7,
13.3, 13.3, 14.6, 15.7, 13.5, 13.7, 14.6. The balancer on
MDS0 tried to ship off half the load by assigning MDS1 a
target load of: total load

# MDSs
= 55.6. To account for the noise in

load measurements, the balancer also scaled the target load
by 0.8 (the value of the mds_bal_need_min tunable). As
a result, the balancer only shipped off 3 dirfrags, 15.7 + 14.6
+ 14.6, instead of half the dirfrags.

It is not the case that the balancer cannot decide how



much load to send; it is that the balancer is limited to one
heuristic (biggest first) to send off dirfrags. We can see why
this policy is chosen; it is a fast heuristic to address the bin-
packing problem (packing dirfrags onto MDS nodes), which
is a combinatorial NP-Hard problem. This approach opti-
mizes the speed of the calculation instead of accuracy and,
while it may work for large directories with millions of en-
tries, it struggles with simpler and smaller namespaces be-
cause of the noise in the load measurements and calculations.

3. MANTLE IMPLEMENTATION
The CephFS policies shape the decision making to be de-

centralized, aggressive, fast, and slightly forgetful. While
these policies work for some workloads, including the work-
loads used to benchmark CephFS [26], they do not work for
others (as demonstrated in Figure 4), they underutilize MDS
nodes by spreading load to all MDS nodes even if the job
could be finished with a subset, they destroy locality by dis-
tributing metadata without considering the workload, and
they make it harder to coalesce the metadata back to one
server after the flash crowd. We emphasize that the problem
is that the policies are hardwired into the system, not the
policies themselves.

Decoupling the policies from the mechanisms has many
advantages: it gives future designers the flexibility to explore
the trade-offs of different policies without fear of breaking
the system, it keeps the robustness of well-understood imple-
mentations intact when exploring new policies, and it allows
policies to evolve with new technologies and hardware. For
example, McKusick [12] made the observation that when
designing the block allocation mechanism in the Fast File
System (FFS), decoupling policy from mechanism greatly
enhanced the usability, efficiency, and effectiveness of the
system. The low-level allocation mechanism in the FFS has
not changed since 1982, but now the developer can try many
different policies, even the worst policy imaginable, and the
mechanism will never curdle the file system, by doing things
like double allocating.

Mantle builds on the implementations and data structures
in the CephFS balancer, as shown in Figure 6. The mecha-
nisms for dynamic subtree partitioning, including directory
fragmentation, moving inodes from one MDS to another,
and the exchange of heartbeats, are left unmodified. While
this is a standard technique, applying it to a new problem
can still be novel, particularly where nobody previously re-
alized they were separable or has tried to separate them.

3.1 The Mantle Environment
Mantle decouples policy from mechanism by letting the

designer inject code to control 4 policies: load calculation,
“when” to move load, “where” to send load, and the accuracy
of the decisions. Mantle balancers are written in Lua be-
cause Lua is fast (the LuaJIT virtual machine achieves near
native performance) and it runs well as modules in other
languages [8]. The balancing policies are injected at run
time with Ceph’s command line tool, e.g., ceph tell mds.0

injectargs mds_bal_metaload IWR. This command means
“tell MDS 0 to calculate load on a dirfrag by the number of
inode writes”.

Mantle provides a general environment with global vari-
ables and functions, shown on the left side of Figure 6, that
injectable code can use. Local metrics are the current values
for the metadata loads and are usually used to account for

Current MDS metrics Description
whoami current MDS
authmetaload metadata load on authority subtree
allmetaload metadata load on all subtrees
IRD,IWR # inode reads/writes (with a decay)
READDIR,FETCH,STORE # read directories, fetches, stores

Metrics on MDS i Description
MDSs[i]["auth"] metadata load on authority subtree
MDSs[i]["all"] metadata load on all subtrees
MDSs[i]["cpu"] % of total CPU utilization
MDSs[i]["mem"] % of memory utilization
MDSs[i]["q"] # of requests in queue
MDSs[i]["req"] request rate, in req/sec
MDSs[i]["load"] result of mds_bal_mdsload
total sum of the load on each MDS

Global Functions Description
WRstate(s) save state s
RDstate() read state left by previous decision
max(a,b),min(a,b) get the max, min of two numbers

Table 2: The Mantle environment.

the difference between the stale global load and the local
load. The library extracts the per-MDS metrics from the
MDS heartbeats and puts the global metrics into an MDSs
array. The injected code accesses the metric for MDS i using
MDSs[i][“metric”]. The metrics and functions are described
in detail in Table 2. The labeled arrows between the phases
in Figure 6 are the inputs and outputs to the phases; inputs
can be used and outputs must be filled by the end of the
phase.

The WRstate and RDstate functions help the balancer
“remember” decisions from the past. For example, in one of
the balancers, we wanted to make migration decisions more
conservative, so we used WRstate and RDstate to trigger
migrations only if the MDS is overloaded for 3 straight it-
erations. These are implemented using temporary files but
future work will store them in RADOS objects to improve
scalability.

3.2 The Mantle API
Figure 6 shows where the injected code fits into CephFS:

the load calculations and “when” code is used in the “mi-
grate?” decision, the “where” decision is used when par-
titioning the cluster, and the “howmuch” decision is used
when partitioning the namespace for deciding the accuracy
of sending dirfrags. To introduce the API we use the original
CephFS balancer as an example.

Metadata/MDS Loads: these load calculations quan-
tify the work on a subtree/dirfrag and MDS. Mantle runs
these calculations and stuffs the results in the auth/all
and load variables of Table 2, respectively. To mimic the
scalarizations in the original CephFS balancer, one would
set mds_ bal_metaload to:

IRD + 2*IWR + READDIR + 2*FETCH + 4*STORE

and mds_bal_mdsload to:

0.8*MDSs[i]["auth"] + 0.2*MDSs[i]["all"]
+ MDSs[i]["req"] + 10*MDSs[i]["q"]

The metadata load calculation values inode reads (IRD)
less than the writes (IWR), fetches and stores, and the MDS
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Figure 6: Designers set policies using the Mantle API. The injectable code uses the metrics/functions in the environment.

load emphasizes the queue length as a signal that the MDS is
overloaded, more than the request rate and metadata loads.

When: this hook is specified as an “if” statement. If the
condition evaluates to true, then migration decisions will
be made and inodes may be migrated. If the condition is
false, then the balancer exits immediately. To implement
the original balancer, set mds_bal_when to:

if MDSs[whoami]["load"] > total/#MDSs then

This forces the MDS to migrate inodes if the load on it-
self is larger than the average cluster load. This policy is
dynamic because it will continually shed load if it senses
cluster imbalance, but it also has the potential to thrash
load around the cluster if the balancer makes poor decisions.

Where: the designer specifies where to send load by pop-
ulating the targets array. The index is the MDS number
and the value is set to how much load to send. For example,
to send off half the load to the next server, round robin, set
mds_bal_where to:

targets[i] = MDSs[whoami + 1]["load"]/2

The user can also inject large pieces of code. The original
CephFS “where” balancer can be implemented in 20 lines of
Lua code (not shown).

How Much: recall that the original balancer sheds load
by traversing down the namespace and shedding load until
reaching the target load for each of the remote MDS nodes.
Mantle traverses the namespace in the same way, but ex-
poses the policy for how much to move at each level. Every
time Mantle considers a list of dirfrags or subtrees in a direc-
tory, it transfers control to an external Lua file with a list
of strategies called dirfrag selectors. The dirfrag selectors
choose the dirfrags to ship to a remote MDS, given the tar-
get load. The “howmuch” injectable argument accepts a list
of dirfrag selectors and the balancer runs all the strategies,
selecting the dirfrag selector that gets closest to the target
load. We list some of the Mantle example dirfrag selectors
below:

1. big_first: biggest dirfrags until reaching target

2. small_first: smallest dirfrags until reaching target

3. big_small: alternate sending big and small dirfrags

4. half: send the first half of the dirfrags

If these dirfrag selectors were running for the problematic
dirfrag loads in Section §2.2.3 (12.7, 13.3, 13.3, 14.6, 15.7,

13.5, 13.7, 14.6), Mantle would choose the big_small dirfrag
selector because the distance between the target load (55.6)
and the load actually shipped is the smallest (0.5). To use
the same strategy as the original balancer, set mds_bal_how-
much to: {"big_first"}

This hook does not control which subtrees are actually se-
lected during namespace traversal (i.e. “which part”). Let-
ting the administrator select specific directories would not
scale with the namespace and could be achieved with sepa-
rate mount points. Mantle uses one approach for traversing
the namespace because starting at the root and drilling down
into directories ensures the highest spatial and temporal lo-
cality, since subtrees are divided and migrated only if their
ancestors are too popular to migrate. Policies that influence
decisions for dividing, coalescing, or migrating specific sub-
trees based on other types of locality (e.g., request type) are
left as future work.

4. EVALUATION
All experiments are run on a 10 node cluster with 18 ob-

ject storage daemons (OSDs), 1 monitor node (MON), and
up to 5 MDS nodes. Each node is running Ubuntu 12.04.4
(kernel version 3.2.0-63) and they have 2 dual core 2GHz
processors and 8GB of RAM. There are 3 OSDs per phys-
ical server and each OSD has its own disk formatted with
XFS for data and an SSD partition for its journal. We use
Ceph version 0.91-365-g2da2311. Before each experiment,
the cluster is torn down and re-initialized and the kernel
caches on all OSDs, MDS nodes, and clients are dropped.

Performance numbers are specific to CephFS but our con-
tribution is the balancing API/framework that allows users
to study different strategies on the same storage system.
Furthermore, we are not arguing that Mantle is more scal-
able or better performing than GIGA+, rather, we want to
highlight its strategy in comparison to other strategies us-
ing Mantle. While it is natural to compare raw performance
numbers, we feel (and not just because GIGA+ outperforms
Mantle) that we are attacking an orthogonal issue by pro-
viding a system for which we can test the strategies of the
systems, rather than the systems themselves.

Workloads: we use a small number of workloads to show
a comprehensive view of how load is split across MDS nodes.
We use file-create workloads because they stress the system,
are the focus of other state-of-the-art metadata systems, and
they are a common HPC problem (checkpoint/restart). We
use compiling code as the other workload because it has dif-
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Figure 7: With clients creating files in the same direc-
tory, spilling load unevenly with Fill & Spill has the highest
throughput (curves are not stacked), which can have up to
9% speedup over 1 MDS. Greedy Spill sheds half its meta-
data immediately while Fill & Spill sheds part of its meta-
data when overloaded.

Figure 8: The per-client speedup or slowdown shows
whether distributing metadata is worthwhile. Spilling load
to 3 or 4 MDS nodes degrades performance but spilling to
2 MDS nodes improves performance.

ferent metadata request types/frequencies and because users
plan to use CephFS as a shared file system [6]. Initial exper-
iments with 1 client compiling with 1 MDS are, admittedly,
not interesting, but we use it as a baseline for comparing
against setups with more clients.

Metrics: Mantle pulls out metrics that could be impor-
tant so that the administrator can freely explore them. The
metrics we use are instantaneous CPU utilization and meta-
data writes, but future balancers will use metrics that better
indicate load and that have less variability. In this paper,
the high variance in the measurements influences the results
of our experiments.

Balancing Heuristics: we use Mantle to explore tech-
niques from related work: “Greedy Spill” is from GIGA+,
“Fill & Spill” is a variation of LARD [15], and the“Adaptable
Balancer” is the original CephFS policy. These heuristics are
just starting points and we are not ready to make grandiose
statements about which is best.

4.1 Greedy Spill Balancer
This balancer, shown in Listing 1, aggressively sheds load

to all MDS nodes and works well for many clients creating
files in the same directory. This balancing strategy mimics
the uniform hashing strategy of GIGA+ [16, 18]. In these
experiments, we use 4 clients each creating 100,000 files in
the same directory. When the directory reaches 50,000 di-
rectory entries, it is fragmented (the first iteration fragments
into 23 = 8 dirfrags) and the balancer migrates half of its
dirfrags to an “underutilized” neighbor.

-- Metadata load
metaload = IWR
-- Metadata server load
mdsload = MDSs[i]["all"]
-- When policy
if MDSs[whoami]["load"]>.01 and

MDSs[whoami+1]["load"]<.01 then
-- Where policy
targets[whoami+1]=allmetaload/2
-- Howmuch policy
{"half"}

Listing 1: Greedy Spill Balancer using the Mantle environ-
ment (listed in Table 2). Note that all subsequent balancers
use the same metadata and MDS loads.

The metadata load for the subtrees/dirfrags in the names-
pace is calculated using just the number of inode writes; we
focus on create-intensive workloads, so inode reads are not
considered. The MDS load for each MDS is based solely on
the metadata load. The balancer migrates load (“when”) if
two conditions are satisfied: the current MDS has load to
migrate and the neighbor MDS does not have any load. If
the balancer decides to migrate, it sheds half of the load to
its neighbor (“where”). Finally, to ensure that exactly half
of the load is sent at each iteration, we employ a custom
fragment selector that sends half the dirfrags (“howmuch”).

The first graph in Figure 7 shows the instantaneous through-
put (y axis) of this balancer over time (x axis). The MDS
nodes spill half their load as soon as they can - this splits
load evenly for 2 MDS nodes, but with 4 MDS nodes the
load splits unevenly because each MDS spills less load than
its predecessor MDS. To get the even balancing shown in
the second graph of Figure 7, the balancer is modified ac-
cording to Listing 2 to partition the cluster when selecting
the target MDS.

-- When policy
t=((#MDSs-whoami+1)/2)+whoami
if t>#MDSs then t=whoami end
while t~=whoami and MDSs[t]<.01 do t=t-1 end
if MDSs[whoami]["load"]>.01 and

MDSs[t]["load"]<.01 then
-- Where policy
targets[t]=MDSs[whoami]["load"]/2

Listing 2: Greedy Spill Evenly Balancer.

This change makes the balancer search for an underloaded
MDS in the cluster. It splits the cluster in half and iterates
over a subset of the MDS nodes in its search for an under-
utilized MDS. If it reaches itself or an undefined MDS, then
it has nowhere to migrate its load and it does not do any
migrations. The “where” decision uses the target, t, discov-



ered in the “when” search. With this modification, load is
split evenly across all 4 MDS nodes.

The balancer with the most speedup is the 2 MDS config-
uration, as shown in Figure 8. This agrees with the assess-
ment of the capacity of a single MDS in Section §2.2.3; at 4
clients, a single MDS is only slightly overloaded, so splitting
load to two MDS nodes only improves the performance by
10%. Spilling unevenly to 3 and 4 MDS nodes degrades per-
formance by 5% and 20% because the cost of synchronizing
across multiple MDS nodes penalizes the balancer enough to
make migration inefficient. Spilling evenly with 4 MDSs de-
grades performance up to 40% but has the lowest standard
deviation because the MDS nodes are underutilized.

The difference in performance is dependent on the number
of flushes to client sessions. Client sessions ensure coherency
and consistency in the file system (e.g., permissions, capabil-
ities, etc.) and are flushed when slave MDS nodes rename or
migrate directories3: 157 sessions for 1 MDS, 323 session for
2 MDS nodes, 458 sessions for 3 MDS nodes, 788 sessions for
4 MDS nodes spilled unevenly, and 936 sessions for 4 MDS
nodes with even metadata distribution. There are more ses-
sions when metadata is distributed because each client con-
tacts MDS nodes round robin for each create. This design
decision stems from CephFS’s desire to be a general pur-
pose file system, with coherency and consistency for shared
resources.

Performance: migration can have such large overhead that
the parallelism benefits of distribution are not worthwhile.
Stability: distribution lowers standard deviations because
MDS nodes are not as overloaded.

4.2 Fill and Spill Balancer
This balancer, shown in Listing 3, encourages MDS nodes

to offload inodes only when overloaded. Ideally, the first
MDS handles as many clients as possible before shedding
load, increasing locality and reducing the number of for-
warded requests. Figuring out when an MDS is overloaded
is a crucial policy for this balancer. In our implementa-
tion, we use the MDS’s instantaneous CPU utilization as
our load metric, although we envision a more sophisticated
metric built from a statistical model for future work. To
figure out a good threshold, we look at the CPU utilization
from the scaling experiment in Section §2.2.3. We use the
CPU utilization when the MDS has 3 clients, about 48%,
since 5, 6, and 7 clients appear to overload the MDS.

The injectable code for both the metadata load and MDS
load is based solely on the inode reads and writes. The
“when” code forces the balancer to spill when the CPU load
is higher than 48% for more than 3 straight iterations. We
added the “3 straight iterations” condition to make the bal-
ancer more conservative after it had already sent load; in
early runs the balancer would send load, then would receive
the remote MDS’s heartbeat (which is a little stale) and
think that the remote MDS is still underloaded, prompting
the balancer to send more load. Finally, the “where” code
tries to spill small load units, just to see if that alleviates
load enough to get the CPU utilization back down to 48%.

3The cause of the latency could be from a scatter-gather
process used to exchange statistics with the authoritative
MDS. This requires each MDS to halt updates on that di-
rectory, send the statistics to the authoritative MDS, and
then wait for a response with updates.

-- When policy
wait=RDState(); go = 0;
if MDSs[whoami]["cpu"]>48 then
if wait>0 then WRState(wait-1)
else WRState(2); go=1; end

else WRState(2) end
if go==1 then
-- Where policy
targets[whoami+1] = MDSs[whoami]["load"]/4

Listing 3: Fill and Spill Balancer.

Figure 9: For the compile workload, 3 clients do not over-
load the MDS nodes so distribution is only a penalty. The
speedup for distributing metadata with 5 clients suggests
that an MDS with 3 clients is slightly overloaded.

This balancer has a speedup of 6% over 1 MDS, as shown
in Figure 8, and only uses a subset of the MDS nodes. With
4 available MDS nodes, the balancer only uses 2 of them
to complete the job, which minimizes the migrations and
the number of sessions. The experiments also show how the
amount of spilled load affects performance. Spilling 10%
has a longer runtime, indicating that MDS0 is slightly over-
loaded when running at 48% utilization and would be better
served if the balancer had shed a little more load. In our ex-
periments, spilling 25% of the load has the best performance.

Performance: knowing the capacity of an MDS increases
performance using only a subset of the MDS nodes.
Stability: the standard deviation of the runtime increases
if the balancer compensates for poor migration decisions.

4.3 Adaptable Balancer
This balancer, shown in Listing 4, migrates load frequently

to try and alleviate hotspots. It works well for dynamic
workloads, like compiling code, because it can adapt to the
spatial and temporal locality of the requests. The adapt-
able balancer uses a simplified version of the adaptable load
sharing technique of the original balancer.

Again, the metadata and MDS loads are set to be the
inode writes (not shown). The “when” condition only lets
the balancer migrate load if the current MDS has more than
half the load in the cluster and if it has the most load. This
restricts the cluster to only one exporter at a time and only
lets that exporter migrate if it has the majority of the load.
This makes the migrations more conservative, as the bal-
ancer will only react if there is a single MDS that is severely
overloaded. The “where” code scales the amount of load the
current MDS sends according to how much load the remote
MDS has. Finally, the balancer tries to be as accurate as
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Figure 10: With 5 clients compiling code in separate di-
rectories, distributing metadata load early helps the cluster
handle a flash crowd at the end of the job. Throughput
(stacked curves) drops when using 1 MDS (red curve) be-
cause the clients shift to linking, which overloads 1 MDS
with readdirs.

possible for all its decisions, so it uses a wide range of dirfrag
selectors.

Figure 9 shows how Mantle can spread load across MDS
nodes in different ways. That figure shows the overall per-
formance for 5 clients compiling the Linux source code in
separate directories. The balancer immediately moves the
large subtrees, in this case the root directory of each client,
and then stops migrating because no single MDS has the
majority of the load. We conclude that 3 clients do not sat-
urate the system enough to make distribution worthwhile
and 5 clients with 3 MDS nodes is just as efficient as 4 or 5
MDS nodes.

The performance profile for the 5 MDS setups in Figure 10
shows how the aggressiveness of the balancer affects perfor-
mance. The bold red curve is the metadata throughput for
the compile job with 1 MDS and the stacked throughput
curves correspond to the same job with 5 MDS nodes. The
top balancer sets a minimum offload number, so it behaves
conservatively by keeping all metadata on one MDS until a
metadata load spike at 5 minutes forces distribution. The
middle balancer is aggressive and distributes metadata load
immediately. The flash crowd that triggers the migration in
the top graph does not affect the throughput of the aggres-
sive balancer, suggesting that the flash crowd requests meta-
data that the single MDS setup cannot satisfy fast enough;
metadata is subsequently distributed but the flash crowd is
already gone. The bottom balancer is far too aggressive and
it tries to achieve perfect balance by constantly moving sub-
trees/dirfrags. As a result, performance is worse (60× as
many forwards as the middle balancer), and the standard
deviation for the runtime is much higher.

Performance: adapting the system to the workload can
improve performance dramatically, but aggressively search-
ing for the perfect balance hurts performance.
Stability: a fragmented namespace destroys locality and
influences the standard deviation dramatically.
Overhead: the gap between the 1 MDS curve and the
MDS0 curve in the top graph in Figure 10 is the overhead

-- Metadata load
metaload = IWR + IRD
-- When policy
max=0
for i=1,#MDSs do
max = max(MDSs[i]["load"], max)

end
myLoad = MDSs[whoami]["load"]
if myLoad>total/2 and myLoad>=max then
-- Balancer where policy
targetLoad=total/#MDSs
for i=1,#MDSs do
if MDSs[i]["load"]<targetLoad then
targets[i]=targetLoad-MDSs[i]["load"]

end
end
-- Howmuch policy
{"half","small","big","big_small"}

Listing 4: Adaptable Balancer.

of the balancing logic, which includes the migration deci-
sions, sending heartbeats, and fragmenting directories. The
effect is significant, costing almost 500 requests per second,
but should be dulled with more MDS nodes if they make
decisions independently.

4.4 Discussion and Future Work
In this paper we only show how certain policies can im-

prove or degrade performance and instead focus on how the
API is flexible enough to express many strategies. While we
do not come up with a solution that is better than state-
of-the-art systems optimized for file creates (e.g., GIGA+),
we do present a framework that allows users to study the
emergent behavior of different strategies, both in research
and in the classroom. In the immediate future, we hope
to quantify the effect that policies have on performance by
running a suite of workloads over different balancers. Other
future endeavors will focus on:

Analyzing Scalability: our MDS cluster is small, but
today’s production systems use metadata services with a
small number of nodes (often less than 5) [6]. Our bal-
ancers are robust until 20 nodes, at which point there is
increased variability in client performance for reasons that
we are still investigating. We expect to encounter problems
with CephFS’s architecture (e.g., n-way communication and
memory pressure with many files), but we are optimistic that
we can try other techniques using Mantle, like GIGA+’s au-
tonomous load splitting, because Mantle MDS nodes inde-
pendently make decisions.

Adding Complex Balancers: the biggest reason for de-
signing Mantle is to be able to test more complex balancers.
Mantle’s ability to save state should accommodate balancers
that use request cost and statistical modeling, control feed-
back loops, and machine learning.

Analyzing Security and Safety: in the current pro-
totype, there is little safety - the administrator can inject
bad policies (e.g., while 1) that brings the whole system
down. We wrote a simulator that checks the logic before
injecting policies in the running cluster, but this still needs
to be integrated into the prototype.



5. RELATED WORK
Mantle decouples policy from mechanism in the metadata

service to stabilize decision making. Much of the related
work does not focus on the migration policies themselves
and instead focuses on mechanisms for moving metadata.

Compute it - Hashing: this distributes metadata evenly
across MDS nodes and clients find the MDS in charge of
the metadata by applying a function to a file identifier.
PVFSv2 [9] and SkyFS [28] hash the filename to locate
the authority for metadata. CalvinFS [22] hashes the path-
name to find a database shard on a server. It handles many
small files and fully linearizable random writes using the fea-
ture rich Calvin database, which has support for WAN/LAN
replication, OLLP for mid-commit commits, and a sophisti-
cated logging subsystem.

To further enhance scalability, many hashing schemes em-
ploy dynamic load balancing. [11] presented dynamic bal-
ancing formulas to account for a forgetting factor, access
information, and the number of MDS nodes in elastic clus-
ters. [28] used a master-slave architecture to detect low re-
source usage and migrated metadata using a consistent hashing-
based load balancer. GPFS [20] elects MDS nodes to manage
metadata for different objects. Operations for different ob-
jects can operate in parallel and operations to the same ob-
ject are synchronized. While this approach improves meta-
data parallelism, delegating management to different servers
remains centralized at a token manager. This token manager
can be overloaded with requests and large file system sizes
- in fact, GPFS actively revokes tokens if the system gets
too big. GIGA+ [16] alleviates hotspots and “flash crowds”
by allowing unsynchronized directory growth for create in-
tensive workloads. Clients contact the parent and traverse
down its “partition history” to find which authority MDS
has the data. The follow-up work, IndexFS [16], distributes
whole directories to different nodes. To improve lookups
and creates, clients cache paths/permissions and metadata
logs are stored in a log-structured merge tree for fast inser-
tion and lookup. Although these techniques improve perfor-
mance and scalability, especially for create intensive work-
loads, they do not leverage the locality inherent in file sys-
tem workloads and they ignore the advantages of keeping
the required number of servers to a minimum.

Many hashing systems achieve locality by adding a meta-
data cache [11, 28, 30]. For example, Lazy Hybrid [4] hashes
the filename to locate metadata but maintains extra per-file
metadata to manage permissions. Caching popular inodes
can help improve locality, but this technique is limited by
the size of the caches and only performs well for tempo-
ral metadata, instead of spatial metadata locality. Further-
more, cache coherence requires a fair degree of sophistica-
tion, limiting its ability to dynamically adapt to the flash
crowds.

Look it up - Table-based Mapping: this is a form of
hashing, where indices are either managed by a centralized
server or the clients. For example, IBRIX [10] distributes
inode ranges round robin to all servers and HBA [30] dis-
tributes metadata randomly to each server and uses bloom
filters to speedup the table lookups. These techniques also
ignore locality.

Traverse it - Subtree Partitioning: this technique
assigns subtrees of the hierarchal namespace to MDS nodes
and most systems use a static scheme to partition the names-
pace at setup, which requires an administrator. Ursa Mi-

nor [21] and Farsite [5] traverse the namespace to assign
related inode ranges, such as inodes in the same subtree, to
servers. This benefits performance because the MDS nodes
can act independently without synchronizing their actions,
making it easy to scale for breadth assuming that the incom-
ing data is evenly partitioned. Subtree partitioning also gets
good locality, making multi-object operations and transac-
tions more efficient. If carefully planned, the metadata dis-
tributions can achieve both locality and even load distri-
bution, but their static distribution limits their ability to
adapt to hotspots/flash crowds and to maintain balance as
data is added. Some systems, like Panasas [27], allow cer-
tain degrees of dynamicity by supporting the addition of new
subtrees at runtime, but adapting to the current workload
is ignored.

6. CONCLUSION
The flexibility of dynamic subtree partitioning introduces

significant complexity and many of the challenges that the
original balancer tries to address are general, distributed
systems problems. In this paper, we present Mantle, a pro-
grammable metadata balancer for CephFS that decouples
policies from the mechanisms for migration by exposing a
general “balancing” API. We explore the locality vs. distri-
bution space and make important conclusions about the per-
formance and stability implications of migrating load. The
key takeaway from using Mantle is that distributing meta-
data can negatively both performance and stability. With
Mantle, we are able to compare the strategies for metadata
distribution instead of the underlying systems. With this
general framework, broad distributed systems concepts can
be explored in depth to gain insights into the true bottle-
necks that we face with modern workloads.
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