
A Framework for an In-depth Comparison of
Scale-up and Scale-out

Michael Sevilla, Ike Nassi, Kleoni Ioannidou, Scott Brandt, Carlos Maltzahn
University of California, Santa Cruz
1156 High Street, Santa Cruz, CA

{msevilla, inassi, kleoni, scott, carlosm}@soe.ucsc.edu

ABSTRACT
When data grows too large, we scale to larger systems, ei-
ther by scaling out or up. It is understood that scale-out
and scale-up have different complexities and bottlenecks but
a thorough comparison of the two architectures is challeng-
ing because of the diversity of their programming interfaces,
their significantly different system environments, and their
sensitivity to workload specifics. In this paper, we propose
a novel comparison framework based on MapReduce that
accounts for the application, its requirements, and its input
size by considering input, software, and hardware parame-
ters. Part of this framework requires implementing scale-out
properties on scale-up and we discuss the complex trade-offs,
interactions, and dependencies of these properties for two
specific case studies (word count and sort). This work lays
the foundation for future work in quantifying design deci-
sions and in building a system that automatically compares
architectures and selects the best one.

Categories and Subject Descriptors
C.2.4 [Computer Communication Networks]: Distributed
Systems—distributed applications; D.2.8 [Software Engi-
neering]: Metrics—performance measures

General Terms
Algorithms, Design, Performance, Standardization

1. INTRODUCTION
A critical part of designing a data-intensive computing

system is choosing the best scaling1 architecture for the tar-
geted workloads. The two most popular scaling architec-
tures are scale-out (which adds nodes to a system) and scale-
up (which adds resources to a single node). Despite its well-
documented limitations, Hadoop [7], the open source imple-

1Our definition of scaling includes the addition of memory,
processing power, and storage capacity and bandwidth.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
DISCS-2013, November 18 2013, Denver, CO, USA
Copyright 2013 ACM 978-1-4503-2506-6/13/11...$15.00.
http://dx.doi.org/10.1145/2534645.2534654.

Table 1: The word count application achieves different
properties (indicated by a 3) depending on the scaling ar-
chitecture it is implemented on. The Hadoop version pro-
vides properties that are ignored in scale-up versions.

scale-out scale-up
Hadoop Sequential Parallelized

parallelism 3 3
fault tolerance 3

scalable storage 3
portability 3 3
availability 3 3
scalability 3

mentation of the popular scale-out MapReduce [5] frame-
work, is still used for big data analytics because it is easy to
program and the framework automatically distributes work
to many interchangeable nodes; the ability to seamlessly add
nodes gives scale-out the ability to, in theory, scale indefi-
nitely.

Many studies contest the notion of automatically choos-
ing scale-out and make the convincing arguments that most
“big data” working sets are not actually that big. For exam-
ple, [12] shows that many of these working sets can fit in big
memory systems and that scale-up performs better and costs
less than its scale-out counterpart, even for“embarrassingly”
parallel workloads. While we agree that scale-up has many
performance benefits for today’s “big data” jobs, we argue
that there are also certain costs that need to be considered
when choosing scale-up as the computation framework.

In addition to potentially forfeiting “indefinite scalabil-
ity”, a scale-up computation framework loses automatic par-
allelism, fault tolerance, portability, scalable data storage,
and a high degree of availability. These properties influ-
ence the effectiveness of the system and may be required by
the workload but often get overlooked in current research
when scrapping for that last drop of performance [13]. A
brief analysis of the word count application, shown in Ta-
ble 1, illustrates the problem; a generic scale-out framework,
like Hadoop, offers many nice properties but could be erro-
neously dismissed in favor of a specialized scale-up imple-
mentation purely based on performance measurements.

To choose the best scaling architecture, the architect needs
to understand the trade-offs of the implementation decisions
and the dependencies between the properties the system pro-
vides. Any attempt at quantifying the cost or benefit of
these trade-offs/dependencies must be based on a fair com-

parison. Such a comparison between scale-out and scale-up
is difficult because of the diversity of their programming in-
terfaces, their significantly different system environments,
and their sensitivity to workload specifics. How can system
architects define equivalence between such different architec-
tures and what are the parameters to consider in compar-
isons? What hardware and software metrics, that account
for the properties that are inherently ensured on scale-out,
can be used to make the systems equivalent? Acknowledging
these properties is not a new concept [6] but we use them in a
scale-out/up comparison framework and make the following
contributions:

1. A framework based on MapReduce for comparing scale-
out and scale-up that encompasses the workload, its
property requirements, and its input size (§3).

2. An analysis of the trade-offs we considered when achiev-
ing 3 scale-out properties on scale-up. The design de-
cisions heavily influence these properties (§5).

3. An analysis of the dependencies amongst these proper-
ties. Achieving one heavily influences the effectiveness
of another (§5).

Comparing the pure scalability of the two systems is a dif-
ferent topic that requires examining multiple physical lay-
outs of both scale-out and scale-up and is beyond the scope
of this paper. Instead, we focus on standard scale-up and
scale-out system architectures commonly explored in the lit-
erature and highlight the effects of achieving parallelism,
fault tolerance, and scalable storage on scale-up. This work
lays the foundation for future work in quantifying design
decisions and, ultimately, developing a system that selects
either scale-out or scale-up given the expected workload.

2. PRELIMINARIES
To make this study feasible, we limit our definition of

“scale-out” to the MapReduce programming model. This
decision provides little opportunity for advancing parallel
programming techniques or comparisons [4] but we focus on
MapReduce for two reasons: (1) MapReduce has become the
standard for big data analytics and (2) we want to make fair
comparisons and this model has API/runtime implementa-
tions for single nodes. We define “scale-up” to be a single
node architecture (one enclosure, power supply, etc.). Be-
low, we present several properties that are inherent to scale-
out which must be considered when comparing scale-up to
scale-out.
2.1 Parallelism: scale-out leverages parallel programming

concepts to automatically distribute and balance load
across nodes.

2.2 Fault tolerance: scale-out has the ability to sustain
crashes during a job - failures are the norm and com-
putation is rescheduled when nodes fail.

2.3 Scalable storage: scale-out uses a distributed file
system to store data; despite inefficiencies, it provides
scalable storage and 3× replication.

2.4 Pure scalability: scale-out can circumvent resource
limits by adding nodes without changing the runtime,
API, or application (via configuration files).

2.5 Portability: scale-out Hadoop applications can run
on any Hadoop cluster, which allows applications to
move to systems with different hardware ratios.

2.6 Availability: scale-out can always service clients; un-
available (update, upgrade, failed, etc.) nodes affect
performance, not the computation itself.

An examination of the first three properties is presented in
this paper; the ability to scale, portability, and availability
all play roles in choosing either scale-out or scale-up but
these are topics for future exploration. An in-depth cost
comparison is also outside the scope of this paper and has
been analyzed in [12] and used as the only parameter in the
comparison framework in [9].

3. METHODOLOGY
Quantifying the costs of the design decisions in scale-

out and scale-up requires a framework for an in-depth and
fair comparison. Such a comparison must ensure the two
systems are equivalent, which is complicated because the
systems have very different architectures and programming
models with variables that depend on the architecture and
the end user’s goals. For example, how does the system
architect quantify properties, like fault tolerance, that are
provided by an architecture “for free”? How does this mea-
surement change if the client or problem does not require
fault tolerance? How do we ensure that the algorithms on
the architectures are equivalent? Our comparison frame-
work helps answer these questions and is constructed using
important system parameters.

3.1 Comparison Parameters
To ensure that the two systems we are comparing are

equivalent, we must identify the variables that affect per-
formance.

Software parameters affect the application itself and
they consist of (i) the problem, (ii) the algorithm to solve
the problem, and (iii) the subset of the scale-out properties
in §2 that the solution guarantees.

The input parameters are the type of workload and the
input size to the solution.

The hardware parameters are the processing power of
the system and the available memory. Other parameters
that also affect performance, such as the network latencies,
node compute speeds, and disk bandwidths, are treated as
constants because they are dependent on hardware specifics.

3.2 Comparison Framework
Below, we present a system for designers to properly con-

struct a fair comparison between scale-out and scale-up,
given the expansive variable space.

3.2.1 Choosing software parameters
(i) The problem: we choose problems with solutions that

exercise different system parameters: word count and sort-
ing. Instead of implementing, tuning, and deploying a wide
range of applications on scale-up and scale-out, like [2], we
decided to fully examine the effects of these two applications.

MapReduce’s word count represents an optimal parallelized
implementation, since a small percentage of the execution
time is sequential. The application filters a small set of
words from a larger set and the small shuffle/output data
sizes make the job CPU bound. For proof, [8] shows high
CPU utilization during the map phases, which can be at-
tributed to the 60GB input set producing a 4GB shuffle set
and a 1.6GB output set. MapReduce’s sort is IO bound [8]

and leverages scale-out’s ability to utilize idle compute power
and disk bandwidth on each node. In Hadoop, as the map-
pers and reducers are running, background processes are
helping the computation by sorting data as keys are being
written to disk after the map phase and as keys are being
ingested by the reduce phase.

(ii) The algorithm: we pick “matching” algorithms to
solve the given problem. To “match” the algorithms, we
encompass a wide range of implementations by taking a
scale-out implementation and porting to scale-up for both
methodology (i.e. imitating the scale-out algorithm) and
functionality (i.e. focusing on the end-goal without restrict-
ing the algorithm choice). This framework transparently ex-
poses costs at both ends of the implementation spectrum in
an effort to stress the differences between the architectures.

(iii) The scale-out properties: we combine the two
ported solutions and add modules to achieve scale-out prop-
erties on scale-up.

3.2.2 Choosing input parameters
To study data-intensive computing, we fix the hardware

and increase the data on every experiment. By scaling the
input size, we force the workload to stress different aspects
of the problem being solved. We use the same parameters
to generate the random input for each experiment and take
the average of three experiments.

3.2.3 Choosing hardware parameters
We define a compute context to be an entity that is as-

signed a unit of work; for scale-out, this is an entire node and
for scale-up this is a thread. We statically match the com-
pute contexts and available RAM of the two systems. This
is a fair comparison because each compute context computes
on the same sized unit of work. This static hardware par-
titioning represents the “cross-over point” where scale-up is
no longer clearly better than scale-out. Repeating the ex-
periments for multiple hardware platforms would attest to
the pure scalability of the system but is beyond the scope of
this work.

4. EXPERIMENTAL SETUP
To port for methodology, we use Phoenix [11, 15], an

API/runtime that converts MapReduce programs to mul-
ticore, multiprocessor programs. Phoenix replaces MapRe-
duce nodes with threads and network communication with
shared-memory. Using Phoenix leverages the MapReduce
programming model and algorithms. We consider using a
single-node version of Hadoop to preserve the algorithm but
removing all the “distributed systems” aspects from Hadoop
is involved [2] and we feel that a system designed for many
nodes has a limited ceiling on scale-up. To port for func-
tionality we use sequential implementations because they
are easy to reason about and implement.

Our scale-out system uses Hadoop, an open-source API/run-
time implementation of MapReduce, and has 32 nodes, each
with 8 GB of RAM and 2 dual-core processors (32 total hard-
ware contexts). Despite the older hardware2, our method-
ology and results are still valid because (1) the nodes are
not stressed or overutilized because of how Hadoop is im-
plemented, and (2) we maximize visibility into our scale-out

2Our cluster is about 6 years old, so it has older memory
bandwidths, CPU speeds, and cache sizes.

Table 2: Our comparison framework requires implementa-
tions of scale-out properties on scale-up. Below, we list the
trade-offs of different implementation decisions (columns)
and the 3s indicate which implementation is better for which
scale-out property (rows).

Legend: ph. = Phoenix, had. = Hadoop, dmc. = DMTCP

parall- fault scalable
elism tolerance storage

ph. had. dmc. xen hdfs swift

performance 3 3 3
parallelism 3 3 3 3 3

fault tolerance 3 3 3 3 3
portability 3 3 3

scalable storage 3 3 3 3
availability 3 3 3

our justification §5.1 [2] §5.2 §5.2 §5.3 [14]
our decision 3 3 3

system; cloud solutions like Amazon’s EC2 platform may in-
troduce subtle overheads because of virtualization, locality,
etc. For simplicity, Hadoop is configured with the default
settings (2 map tasks per job, 1 reduce task per job, and
a 64MB HDFS block size). Our scale-up system is run-
ning Red Hat Enterprise Linux 6 and has 256 GB of RAM
and 2 quad-core processors with hyper-threading enabled
(32 hardware contexts).

5. ANALYSIS
Table 2 details the implementation trade-offs and prop-

erty dependencies we identify and we justify the claims we
make when we discuss how we implement parallelism (§5.1),
fault tolerance (§5.2), and scalable storage (§5.3). Figure 1
shows how achieving each scale-out property on scale-up af-
fects performance for the word count and sort applications.
The scale-out curve is the default Hadoop implementation,
the parallelized scale-up curve is the Phoenix implementa-
tion, the sequential scale-up curve uses arrays to count or
sort words, and the fault tolerance curve is the DMTCP
implementation. For reference, the HDFS transfer speed is
also plotted as the storage scale-up curve.

We do not discuss the performance results of our sequen-
tial implementations but they provide a reference for the
effects of achieving the different properties, especially par-
allelism [13]. While distributed processing will usually out-
perform a sequential implementation, it is not unreasonable
for distributed management overheads to dominate a paral-
lel application for some workloads, leading to poor perfor-
mance.

5.1 Trade-offs for Parallelism
To automatically parallelize programs, we use the Phoenix

runtime, which comes with a word count implementation.
We wrote a Phoenix sort application, which exercises the
underlying framework to sort the data; the mappers and
reducers output raw key-value pair without computation.

Performance is still limited by Amdahl’s law be-
cause of the introduction of serial job phases. For
some applications, this is acceptable because the benefit of
the parallelized computation offsets the serial penalties. For
example, Figure 1a shows the parallel scale-up word count
implementation achieves a 3.4× speedup over scale-out at

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 50 100 150 200 250

W
al

l c
lo

ck
 ti

m
e

(s
ec

on
ds

)

Input size (GB)

Word count execution times

scale-out
sequential s-up

parallel s-up
faul tol. s-up
storage s-up

(a) Word count

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 50 100 150 200 250

W
al

l c
lo

ck
 ti

m
e

(s
ec

on
ds

)

Input size (GB)

Sort execution times

scale-out
sequential s-up

parallel s-up
storage s-up

(b) Sort

Figure 1: Because word count and sort output different amounts of key-value pairs, our framework recommends different
scaling architectures. Taking into account different workload requirements (i.e. the properties) and input sizes exposes
implementation trade-offs and property dependencies, which are presented in §5.

0%

20%

40%

60%

80%

100%

 0 100 200 300 400 500 600 700 800

To
ta

l C
PU

 u
tili

za
tio

n

Wall clock time (seconds)

Sort CPU utilization

user
sys

wait IO

Read
279 sec.

Map
147 sec.

Reduce
152 sec.

Merge
241 sec.

Sort CPU utilization

Figure 2: At a 60 GB input size, the CPU utilization for the
Phoenix sort application exposes additional phases, which
prove to the bottlenecks in the job. The IO wait is very low
during the read phase because only one core (3% of the total
CPU utilization) reads the data from disk into memory.

240 GB. The application is no longer CPU bound because
it underutilizes the compute power of the scale-out system.
Because we did not stress the system, the job is bound by
I/O and network, which is directly related to the number of
intermediate/final key value pairs.

On the other hand, parallelized applications that intro-
duce long serial job phases on scale-up can experience worse
performance than scale-out. Figure 1b shows the paral-
lel scale-up sort implementation experiencing a 1.64× slow-
down compared to Hadoop and large performance deviations
at 120 GB input. Word count is faster because it has many
repetitive words so the key-value pairs can be compressed;
sort must process n

100
100 byte key-value pairs at every stage.

Figure 2 shows the job’s CPU utilization at the last stable
input size, 60 GB. The y-axis is the percentage of time spent
in kernel-space code (sys), user-space code (user), and in
code waiting for IO (IO wait). The low utilization from 0
- 279 seconds and 700 - 800 seconds reveals bottlenecks in
the job introduced by the Phoenix runtime; in this case, the
intervals correspond to new read and merge phases, respec-
tively. These long serial phases are circumvented in scale-
out Hadoop with parallel reads from different nodes and by
merging sorted data in background processes.

In an attempt to minimize the length of these phases, we
used OpenMP [10], an API for shared memory multipro-
cessing, to get finer control of the job phases. Attempts at
reading data into memory in parallel were limited by the disk
bandwidth of our 3-drive RAID-0 device (384 MB/s max-
imum). On large enough RAID devices, parallelism could
reduce this read phase significantly. We also implemented
an OpenMP sort version that achieves better parallelism
when merging data and avoids the useless reduce phase in
the Phoenix implementation but the job is limited to one
thread when parsing the key-value pairs; this computation
is parallelized in Phoenix during the map phase.

Fault tolerance, scalable storage, and portability
are not supported. Single node Hadoop achieves these
properties with replication, HDFS, and heterogenous hard-
ware but Phoenix and OpenMP forfeit these properties.

Availability is reduced if the degree of parallelism
is not limited. The Phoenix word count and sort imple-
mentation achieve 100% CPU utilization during the compu-
tation and merge (shown in Figure 2) phase, respectively.
This would block any incoming jobs from running until a
core is released; a load balancing algorithm would be re-
quired to achieve the desired availability of the system.

5.2 Trade-offs for Fault Tolerance
To achieve fault tolerance, we use tools to checkpoint in-

termediate data to disk so that we can resume computa-
tion if the node crashes. Initially, we tried Xen’s xm save

to checkpoint the RAM state to disk but for large RAM

sizes, the overhead proved overwhelming because the check-
point time took longer than the actual computation time.
Instead, we use Distributed MultiThreaded CheckPointing
(DMTCP) [1] to checkpoint an application’s execution con-
text to disk. DMTCP allows the application to restart from
the last checkpoint, is application agnostic, and only check-
points the application context.

Performance is dictated by the checkpoint inter-
val; to reason about the trade-offs/dependencies of check-
pointing, designers must understand the system character-
istics and the application’s parameters, such as the total
computation time and rate, throughput of reading data into
memory, and input size. Although the fault tolerant scale-
up curve in Figure 1a shows a 1.85× speedup over scale-out
in the worst case (240 GB), it is still 1.66× slower than a
non-checkpointed version. At the 240 GB input size, while
the data is being read into memory, DMTCP starts check-
pointing, resulting in massive IO activity on 3 cores. We
could use RAMdisk to reduce the checkpoint latency but
RAMdisk does not scale well (writes scale poorly because of
swapping) and would reduce portability (requires installa-
tion).

Changing the checkpoint granularity can lead to a shorter
recovery time, however, as shown by the word count mea-
surements in Figure 3, it comes at a performance cost. In the
same figure, the scale-out curve is Hadoop (which inherently
achieves fault tolerance), the “none” curve is the Phoenix
word count implementation, and the DMTCP curve is the
Phoenix word count implementation with DMTCP enabled
at different checkpoint intervals. We also plot the Xen per-
formance for a single checkpoint, for reference. For this 140
GB input size, a checkpoint interval of somewhere between
4 and 5 minutes makes the fault tolerant scale-up implemen-
tation slower than the Hadoop scale-out implementation.

The benefits of other scale-out properties are neg-
atively affected. The degree of parallelism is reduced be-
cause checkpointing makes the job largely sequential. For
example, for the fault tolerant Phoenix word count imple-
mentation, only 9% of the total job time is fully parallelized.
Scalable storage performance and space is reduced because
these large checkpoints require a significant amount of write
bandwidth and capacity. The checkpoints depend on the
size of the input - for our large experiments, this amounts
to about 245 GB of data. Availability is reduced for the
same reasons presented in §5.1. Portability is reduced since
DMTCP is not widely used and although Xen and MPI
checkpointing are popular, they are not “more portable”
than ignoring checkpointing entirely.

5.3 Trade-offs for Scalable Storage
With data sizes easily reaching the petabyte range, it

is unlikely that a single disk can accommodate “big data”
data sets, so we evaluate a “scale-up computation; scale-
out storage architecture”. Scale-out storage for the cloud
or large data centers falls into two main categories: object
and block storage. Cloud storage architectures, like Open-
Stack’s Swift [14], provide scalable object storage and can be
used as a back end for computation frameworks like Hadoop.
Distributed file systems provide block storage for large data
sets and can be directly integrated with Hadoop. Despite
their performance and architectural differences, both scal-
able storage solutions encounter the same bottleneck if they
use a scale-up computation framework: getting the data

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4 5 6 7 8

W
al

l c
lo

ck
 ti

m
e

(s
ec

on
ds

)

Checkpoint interval (minutes)

Checkpoint intervals (140GB input)

scale-out
none

DMTCP
Xen

Figure 3: Checkpointing with a small interval improves
granularity but could make the word count job slower than
Hadoop. Note: the Xen curve is the time to perform one
checkpoint, not a fault tolerant Xen word count.

from many nodes onto one node.
Since all “scale-up computation; scale-out storage” archi-

tectures are limited to this bottleneck, we attempt to quan-
tify a simple implementation. We use HDFS, which provides
storage scalability and 3× replication, as the primary stor-
age for one compute node and look at the transfer speeds of
HDFS’s copyToLocal.

Performance is limited by our hardware setup and
the storage architecture. Our implementation moves
large amounts of data through one 1 Gigabit network port.
Furthermore, HDFS is not designed for this type of data
transfer; it is designed for moving computation to the data.
As a result, the storage overhead of “scale-up computation;
scale-out storage” is overwhelming, as shown by the scalable
storage curve in Figure 1. We could improve performance
by adding more networking ports, upgrading the speed of
our network, or by filtering irrelevant data.

Parallelism, fault tolerance, and portability are all
inherited from the file system. HDFS is known to be
bottlenecked by a single master node. We could improve
parallelism and fault tolerance by using Ceph [17], which
pushes responsibilities to object storage devices. We could
get the same portability as Hadoop with OpenStack’s new
(unreleased) version, which will support direct integration
of Swift and Hadoop.

6. RELATED WORK
Current work benchmarking Hadoop and optimizing pa-

rameters for Hadoop examine the effects of different work-
loads [8, 3]. Although these types of studies accurately
characterize jobs by their resource dependencies, they do not
discuss how these dependencies might change on scale-up.
We leverage these results and accommodate the workload’s
property requirements and input size to make fair compar-
isons between scale-out and scale-up. Although early scale-
out/up studies clearly enumerate the trade-offs between scale-
out and scale-up, they use a simple comparison framework
based on cost or are limited by out-dated hardware, method-
ologies, and benchmarks [9, 16].

Modern scale-out/up studies question the notion that we
should scale-out by default and show that current scale-up

systems may suffice given the current composition of “big
data” jobs and because of today’s downward trending hard-
ware prices [12, 2]. Although we agree with this idea3, we
contend that there are other scale-out properties to consider
when comparing performance. We align more with the ideas
presented in [13] - in fact, they have already identified two
of our scale-out properties, although they do not provide
experimental analysis. The most useful resources for these
studies are blogs and whitepapers, many of which have al-
ready highlighted the importance of acknowledging scale-out
properties when comparing to scale-up. For example, [6] ad-
vocates this technique and suggests automating the compar-
ison process (a concept achieved in [2]). We agree with these
concepts but classify them as future work for our comparison
framework.

The community has made extensive contributions to par-
allel programming co-design [4] to determine which appli-
cations are good for specific scale-up architectures but we
leverage the MapReduce model to compare scale-out/up al-
gorithms and to achieve automatic parallelism. Work that
advances parallel programming can help assist future itera-
tions of our framework but in this work, we focus on com-
paring scale-up to scale-out.

7. CONCLUSIONS AND FUTURE WORK
We show that when judging MapReduce on scale-up, there

are many other parameters that must be considered. We
present a comparison framework that encompasses the in-
put, software, and hardware parameters to make scale-out
and scale-up MapReduce systems equivalent. Part of our
framework requires achieving scale-out properties on scale-
up and we show that system properties are tightly-coupled
to each other and to their implementations. Parallelism af-
fects and is affected by all other system properties, fault
tolerance could make scale-up Hadoop slower than scale-out
Hadoop, and scalable storage is a huge bottleneck without
sufficient hardware.

Future work will be to quantify the trade-offs and depen-
dencies in an attempt to develop automatic tools for decid-
ing between different scaling architectures given a job, its
property requirements, and its input size. We also intend to
automate the comparison process so that the portability is
more comparable to the models in [4] or concepts in [6, 2].

ACKNOWLEDGEMENTS
We would like to sincerely thank all of our anonymous re-
viewers for their helpful comments and suggestions, espe-
cially in regards to related works that we missed or future
directions we should pursue.

8. REFERENCES
[1] J. Ansel, K. Arya, and G. Cooperman. DMTCP:

Transparent Checkpointing for Cluster Computations
and the Desktop. In Proceedings of the IEEE
International Symposium on Parallel & Distributed
Processing, pages 1–12, 2009.

[2] R. Appuswamy, C. Gkantsidis, D. Narayanan,
O. Hodson, and A. Rowstron. Scale-up vs Scale-out
for Hadoop: Time to Rethink? In Proceedings of the
4th ACM Symposium on Cloud Computing, 2013.

3We paid $9,000 for our scale-up system, which initially had
384 GB of RAM, and $2,000 for each scale-out node.

[3] S. Babu. Towards Automatic Optimization of
MapReduce Programs. In Proceedings of the 1st ACM
Symposium on Cloud Computing, pages 137–142, 2010.

[4] K. Czechowski and R. Vuduc. A Theoretical
Framework for Algorithm-architecture Co-design. In
Proceedings of the 27th IEEE International
Symposium on Parallel and Distributed Processing,
pages 791–802, 2013.

[5] J. Dean and S. Ghemawat. MapReduce: Simplified
Data Processing on Large Clusters. In Proceedings of
the 6th Conference on Symposium on Operating
Systems Design & Implementation, 2004.

[6] Gigaspaces. Scale Up vs. Scale Out. In Gigaspaces
Resource Center.
http://www.gigaspaces.com/WhitePapers, 2011.

[7] Hadoop. http://hadoop.apache.org/, accessed
08/09/2012.

[8] S. Huang, J. Huang, J. Dai, T. Xie, and B. Huang.
The HiBench Benchmark Suite: Characterization of
the MapReduce-based Data Analysis. In Internatioanl
Conference on Data Engineering Workshops, pages
41–51, 2010.

[9] M. Michael, J. Moreira, D. Shiloach, and
R. Wisniewski. Scale-up x Scale-out: A Case Study
using Nutch/Lucene. In Proceedings of the IEEE
International Symposium on Parallel & Distributed
Processing, pages 1–8, 2007.

[10] OpenMP Architecture Review Board. OpenMP
Application Program Interface Version 3.0, accessed
08/09/2012.

[11] C. Ranger, R. Raghuraman, A. Penmetsa, G. Bradski,
and C. Kozyrakis. Evaluating MapReduce for
Multi-core and Multiprocessor Systems. In Proceedings
of the 13th IEEE International Symposium on High
Performance Computer Architecture, pages 13–24,
2007.

[12] A. Rowstron, D. Narayanan, A. Donnelly, G. O’Shea,
and A. Douglas. Nobody Ever Got Fired for using
Hadoop on a Cluster. In Proceedings of the 1st
International Workshop on Hot Topics in Cloud Data
Processing, pages 2:1–2:5, 2012.

[13] M. Schwarzkopf, D. G. Murray, and S. Hand. The
Seven Deadly Sins of Cloud Computing Research. In
Proceedings of the 4th USENIX Conference on Hot
Topics in Cloud Computing, pages 1–1, 2012.

[14] Swift. http://www.openstack.org/software, accessed
08/09/2012.

[15] J. Talbot, R. M. Yoo, and C. Kozyrakis. Phoenix++:
Modular MapReduce for Shared-memory Systems. In
Proceedings of the 2nd International Workshop on
MapReduce and its Applications, pages 9–16, 2011.

[16] A. Talkington and K. Dixit. Scaling-Up or Out.
International Business, 2002.

[17] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. E. Long,
and C. Maltzahn. Ceph: A Scalable,
High-Performance Distributed File System. In
Proceedings of the 7th Symposium on Operating
Systems Design & Implementation, pages 307–320,
2006.

	Introduction
	Preliminaries
	Methodology
	Comparison Parameters
	Comparison Framework
	Choosing software parameters
	Choosing input parameters
	Choosing hardware parameters

	Experimental Setup
	Analysis
	Trade-offs for Parallelism
	Trade-offs for Fault Tolerance
	Trade-offs for Scalable Storage

	Related Work
	Conclusions and Future Work
	References

