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Abstract—Independent validation of experimental results in
the field of systems research is a challenging task, mainly due to
differences in software and hardware in computational environ-
ments. Recreating an environment that resembles the original is
difficult and time-consuming. In this paper we introduce Popper,
a convention based on a set of modern open source software (OSS)
development principles for generating reproducible scientific
publications. Concretely, we make the case for treating an article
as an OSS project following a DevOps approach and applying
software engineering best-practices to manage its associated
artifacts and maintain the reproducibility of its findings. Popper
leverages existing cloud-computing infrastructure and DevOps
tools to produce academic articles that are easy to validate and
extend. We present a use case that illustrates the usefulness of
this approach. We show how, by following the Popper convention,
reviewers and researchers can quickly get to the point of getting
results without relying on the original author’s intervention.

I. INTRODUCTION

A key component of the scientific method is the ability to
revisit and replicate previous experiments. Managing infor-
mation about an experiment allows scientists to interpret and
understand results, as well as verify that the experiment was
performed according to acceptable procedures. Additionally,
reproducibility plays a major role in education since the amount
of information that a student has to digest increases as the pace
of scientific discovery accelerates. By having the ability to
repeat experiments, a student learns by looking at provenance
information about the experiment, re-evaluates the questions
that the original experiment addressed and builds upon the
results of the original study.

Independently validating experimental results in the field
of computer systems research is a challenging task [1,2].
Recreating an environment that resembles the one where
an experiment was originally executed is a time-consuming
endeavour [3,4]. In this work, we revisit the idea of an
executable paper [5,6], which proposes the integration of
executables and data with scholarly articles to help facilitate
its reproducibility. Our approach is to implement it in today’s
cloud-computing world by treating an article as an open source
software (OSS) project.

We introduce Popper, a convention for systematically imple-
menting the different stages of the experimentation workflow

Figure 1: A generic experimentation workflow viewed through
a DevOps looking glass.

following a DevOps [7] approach. The convention can be
summarized in three high-level guidelines:

1. Pick a DevOps tool for each stage of the scientific
experimentation workflow (Fig. 1).

2. Put all associated scripts (experiment and manuscript)
in version control, in order to provide a self-contained
repository.

3. Document changes as an experiment evolves, in the form
of version control commits.

By following these guidelines, researchers can make all
artifacts associated to an article publicly available with the goal
of maximizing automation when an experiment is re-executed
and results are validated. This paper describes our experiences
with the Popper Convention which we have successfully
followed to aid in producing papers and classroom lessons
that are easy to reproduce. This paper makes the following
contributions:

• An analysis of how the DevOps practice can be repurposed
to an academic article (Section II and Section III);

• Popper: A methodology for writing academic articles and
associated experiments following the DevOps practice
(Section IV);

• Popper-CLI: an experiment bootstrapping tool that makes
Popper-compliant experiments readily available to re-
searchers; and



• A use case that details how to follow the convention and
illustrates its benefits (Section V).

In this work, we demonstrate the benefits of following
the Popper convention: it brings order to personal research
workflows; lowers the barrier for others to re-execute published
experiments on multiple platforms with minimal effort and
without having to speculate on what the original authors went
through; and leverages automated regression testing to maintain
the reproducibility integrity of experiments.

II. EXPERIMENTAL PRACTICES

In this section we examine common practices and identify
desired features for a new experimental methodology.

A. Common Practice

1) Ad-hoc Personal Workflows: A typical practice is the
use of custom bash scripts to automate some of the tasks of
executing experiments and analyzing results. From the point
of view of researchers, having an ad-hoc framework results in
more efficient use of their time, or at least that’s the belief.
Since these are personalized scripts, they usually hard-code
many of the parameters or paths to files in the local machine.
Worst of all, a lot of the contextual information is in the mind
of researchers. Without a list of guiding principles, going back
to an experiment, even for the original author on the same
machine, represents a time-consuming task.

2) Sharing Source Code: Version-control systems give
authors, reviewers and readers access to the same code base but
the availability of source code does not guarantee reproducibil-
ity [3]; code may not compile, and even it does, results may
differ due to differences from other components in the software
stack. While sharing source code is beneficial, it leaves readers
with the daunting task of recompiling, reconfiguring, deploying
and re-executing an experiment. Things like compilation flags,
experiment parameters and results are fundamental contextual
information for re-executing an experiment.

3) Experiment Repositories: An alternative to sharing source
code is experiment repositories [8,9]. These allow researchers
to upload artifacts associated with a paper, such as input data
sets. Similar to code repositories, one of the main problems
is the lack of automation and structure for the artifacts. The
availability of the artifacts does not guarantee the reproduction
of results since a significant amount of manual work needs to
be done after these have been downloaded. Additionally, large
data dependencies cannot be uploaded since there is usually a
limit on the artifact file size.

4) Virtual Machines: A Virtual Machine (VM) can be used
to partially address the limitations of only sharing source code.
However, in the case of systems research where the performance
is the subject of study, the overheads in terms of performance
(the hypervisor “tax”) and management (creating, storing and
transferring) can be high and, in some cases, they cannot
be accounted for easily [10]. In scenarios where OS-level
virtualization is a viable alternative, it can be used instead of
hardware-level virtualization [11].

Figure 2: A generic experimentation workflow typically
followed by researchers in projects with a computational
component. Some of the reasons to iterate (backwards-going
arrows) are: fixing a bug in the code of a system, changing a
parameter of an experiment or running the same experiment
on a new workload or compute platform. Although not usually
done, in some cases researchers keep a chronological record
on how experiments evolve over time (the analogy of the lab
notebook in experimental sciences).

5) Experiment Packing: Experiment packing entails tracing
an experiment at runtime to capture all its dependencies
and generating a package that can be shared with others
[12,13]. Experiment packing is an automated way of creating
a virtual machine or environment and thus suffers from the
same limitations: external dependencies such as large datasets
cannot be packaged; the experiment is a black-box without
contextual information (e.g. history of modifications) that is
hard to introspect, making difficult to build upon existing work;
and packaging does not explicitly capture validation criteria.

6) Data Analysis Ad-hoc Approaches: A common approach
to analyze data is to capture CSV files and manually paste
their contents into Excel or Google Spreadsheets. This manual
manipulation and plotting lacks the ability to record important
steps in the process of analyzing results, such as the series
of steps needed to go from a CSV to a figure. Even if the
associated spreadsheet is made available, it is not immediately
clear what a researcher did.

7) Eyeball Validation: Assuming the reader is able to recre-
ate the environment of an experiment, validating the outcome
requires domain-specific expertise in order to determine the
differences between original and recreated environments that
might be the root cause of any discrepancies in the results
[1,14]. Additionally, reproducing experimental results when
the underlying hardware environment changes is challenging
mainly due to the inability to predict the effects of such changes
in the outcome of an experiment [15]. In this case validation
is typically done by “eyeballing” figures and the description
of experiments in a paper, a subjective task, based entirely on
the intuition and expertise of domain-scientists.

B. Goals for a New Methodology

A diagram of a generic experimentation workflow is shown
in Fig. 2. The problem with current practices is that each



of them partially cover the workflow. For example, sharing
source code only covers the first task (source code); experiment
packing only covers the second one (packaging); and so on.
Based on this, we see the need for a new methodology that:

• Is reproducible without incurring any extra work for the
researcher. It should require the same or less effort than
current practices with the difference of doing things in a
systematic way.

• Improves the personal workflows of scientists by having a
common methodology that works for as many projects as
possible and that can be used as the basis of collaboration.

• Captures the end-to-end workflow in a modern way,
including the history of changes that are made to an
article throughout its lifecycle.

• Makes use of existing tools (do not reinvent the wheel!).
• Has the ability to handle large datasets.
• Captures validation criteria in an explicit manner so

that subjective evaluation of results of a re-execution is
minimized.

• Results in experiments that are amenable to improvement
and allows easy collaboration, as well as making it easier
to build upon existing work.

III. THE DEVOPS TOOLKIT

When we compare the generic experimentation workflow
shown in Fig. 2 against best-practices in the software engineer-
ing world, and in open source communities in particular, we
observe a very close correspondence (Tbl. I).

Table I: Comparison of practices in a scientific exploration
against those in software projects.

Scientific Exploration Software Project

Experiment code Source code
Input data Test examples
Analysis and Visualization Test analysis
Validation Regression testing
Manuscript / notebook Documentation / reports

In recent years, the term DevOps [7] has been used to
refer to these set of common practices, which have the goal
of expediting the delivery of a software project, allowing to
iterate as fast as possible on improvements and new features,
without undermining the quality of the product. In our work,
we make the case for achieving the same outcome by treating
an academic article as the “software product” being delivered.

DevOps puts an emphasis on versioning every dependency
of a software project, from infrastructure to any runtime
requirement, with the goal of executing pipelines by providing a
list of these versioned artifacts to DevOps tools. In the DevOps
world, this is referred to as having “infrastructure-as-code”
and basically “anything-as-code” [16]. In practice, this means
typing commands in a script file, instead of directly on the
CLI, and letting automation tools execute them. These scripts
are then version-controlled in order to keep track of changes
in a systematic way.

In this section we review and highlight salient features of
the DevOps toolkit that makes it amenable to organize all

artifacts associated with an academic article. To guide our
discussion, we refer to the generic experimentation workflow
viewed through a DevOps looking glass shown in Fig. 1 (the
same workflow as in Fig. 2 with DevOps tools overlayed on
top1). In Section IV we analyze more closely the composability
of these tools and describe general guidelines (the convention).

A. Version Control

Traditionally the content managed in a version-control sys-
tem (VCS) is the project’s source code; for an academic article
the equivalent is the article’s content: article text, experiments
(code and data) and figures. The idea of keeping an article’s
source in a VCS is not new and in fact many people follow
this practice [6]. However, this only considers automating the
generation of the article in its final format (usually PDF).
While this is useful, here we make the distinction between
changing the prose of the paper, changing the parameters of
the experiment (both its components and its configuration), as
well as storing the experiment results.

Ideally, one would like the entire end-to-end pipeline for
all the experiments contained in an article to be managed by
a VCS. With the advent of cloud-computing, this is possible
for most research articles2. In a sense, having all the article’s
dependencies in the same repository is analogous to how large
cloud companies maintain monolithic repositories to manage
their internal infrastructure [17,18] but at a lower scale.

Tools and services: Git, Svn and Mercurial are popular
VCS tools. GitHub, GitLab and BitBucket are web-based Git
repository hosting services. They offer all of the distributed
revision control and VCS functionality of Git as well as adding
their own features. The entire history of the project and its
artifacts of public repositories can be browsed online.

B. Package Management

Availability of code does not guarantee reproducibility of
results [3]. The second main component in the experimentation
pipeline is the packaging of applications so that users do not
have to do it themselves. Software containers (e.g. Docker,
OpenVZ or FreeBSD’s jails) complement package managers
by packaging all the dependencies of an application in an
entire file system snapshot that can be deployed in systems “as
is” without having to worry about problems such as package
dependencies or specific OS versions. From the point of view
of an academic article, these tools can be leveraged to package
the dependencies of an experiment. Software containers like

1Logos in Fig. 1 correspond to commonly used tools from the DevOps toolkit.
From left-to-right, top-to-bottom: Git, Mercurial, Subversion (code); Docker,
Vagrant, Spack, Nix (packaging); Git-LFS, Datapackages, Artifactory, Archiva
(input data); Bash, Ansible, Puppet, Slurm (execution); Git-LFS, Datapackages,
Icinga, Nagios (output data and runtime metrics); Jupyter, Zeppelin, Paraview,
Gephi (analysis and visualization); RestructuredText, LATeX, Asciidoc and
Markdown (manuscript); GitLab, Bitbucket and GitHub (experiment changes
and labnotebook functionality).

2For large-scale experiments or those that run on specialized platforms,
re-executing an experiment might be difficult. However, this does not exclude
such research projects from being able to keep the article’s associated assets
under version control.

http://git-scm.com
https://subversion.apache.org
https://www.mercurial-scm.org
http://github.com
http://gitlab.com
https://bitbucket.org
http://git-scm.com
http://mercurial-scm.org
http://subversion.apache.org
http://docker.com
http://vagrantup.com
https://github.com/LLNL/spack
https://nixos.org/nix/
http://git-lfs.github.com
http://frictionlessdata.io/data-packages/
https://www.jfrog.com/artifactory/
https://archiva.apache.org/index.cgi
https://www.gnu.org/software/bash/
http://ansible.com
https://puppet.com
https://slurm.schedmd.com/
https://www.icinga.com/
https://www.nagios.org/
http://jupyter.org
http://zeppelin.apache.org/
http://paraview.org
https://gephi.org/
http://docutils.sourceforge.net/rst.html
https://www.latex-project.org
http://asciidoctor.org
http://daringfireball.net/projects/markdown/
http://gitlab.com
http://bitbucket.org
http://github.com


Docker have the great potential for being of great use in
computational sciences [19].

Tools and services: Docker automates the deployment
of applications inside software containers by providing an
additional layer of abstraction and automation of operating-
system-level virtualization on Linux. Alternatives to Docker
are modern package managers such as Nix or Spack, or, in the
case of virtual machines, Vagrant.

C. Experiment Orchestration And Environment Capture

Experiments that require a set of machines to be orchestrated
can make use of a tool that automatically drives the end-
to-end execution of the experiment. This category of tools
can also serve for capturing the details about the runtime
environment (e.g. hardware and OS configuration, versions
of system libraries, etc.). Associating this information with
experiment results allows to make environmental comparisons
across multiple executions [20].

Tools and services: Ansible is a configuration management
utility for configuring and managing computers, as well as
deploying and orchestrating multi-node applications. Similar
tools include Puppet, Chef, Salt, among others.

D. Infrastructure Automation

When on-premises infrastructure is not available (e.g. when
executing on cloud platforms), a researcher has to deal with
requesting, configuring and provisioning infrastructure. In these
scenarios, tooling exists to automate these steps on remote
computational resources.

Tools and services: Cloudlab, Chameleon, PRObE and
XSEDE are NSF-sponsored infrastructures that allows users
to request computing resources to execute multi-node exper-
iments. Additionally, public cloud service providers such as
Amazon, Google, Packet and Rackspace allow users to deploy
applications on virtual and bare-metal instances. Terraform is a
tool that allows to automate the configuration and provisioning
of infrastructure in a platform-agnostic way. When a Terraform
provider for a particular infrastructure is not available, one can
resort to using platform-specific tools directly. For example
CloudLab [21], Grid500K [22], AWS CloudFormation and
OpenStack Heat provide CLI tools for this purpose.

E. Dataset Management

Some experiments involve the processing of large input,
intermediary or output datasets. While possible, traditional
VCS tools such as Git were not designed to store large binary
files. A proper artifact repository client or dataset management
tool can take care of handling data dependencies.

Tools and services: Examples are Apache Archiva, Git-LFS,
Datapackages or Artifactory.

F. Data Analysis and Visualization

Once an experiment runs, the next task is to analyze and
visualize results. Many tools can support this task, as long as
a user can script the analysis and automate its execution, any
tool can fit in this category.

Tools and services: Jupyter notebooks run as a web-based
application. It facilitates the sharing of documents containing
live code (in Julia, Python or R). Binder is service that allows
one to turn a GitHub repository into a collection of interactive
Jupyter notebooks so that readers do not need to deploy
web servers themselves. Alternatives to Jupyter are Gnuplot,
Zeppelin and Beaker. Other scientific visualization such as
Paraview and Gephi tools can also fit in this category.

G. Performance Monitoring

Prior to and during the execution of an experiment, capturing
performance metrics can be beneficial. In the case of systems
research articles, where performance is the main subject of
study, capturing performance metrics is fundamental. Instead
of creating ad-hoc tools to achieve this one can adopt and
extend existing tools. At the end of the execution, the captured
data can be analyzed and many of the graphs included in the
article can come directly from running analysis scripts on top
of this data.

Tools and services: Many mature monitoring tools exist
such as Nagios, Ganglia, StatD, CollectD, among many others.
For measuring single-machine baseline performance, tools like
Conceptual (network), stress-ng (CPU, memory), fio and many
others exist.

H. Continuous Integration

Continuous Integration (CI) is a development practice that
requires developers to integrate code into a shared repository
frequently with the purpose of catching errors as early as
possible. The experiments associated with an article can also
benefit from CI. If an experiment’s findings can be codified in
the form of a unit test, this can be verified on every change to
the article’s repository.

Tools and services: Travis CI is an open-source, hosted,
distributed continuous integration service used to build and test
software projects hosted at GitHub. Alternatives to Travis CI
are CircleCI and CodeShip. Other self-hosted solutions exist
such as Jenkins.

I. Automated Performance Regression Testing

Open source projects such as the Linux kernel go through
rigorous performance testing to ensure that newer versions do
not introduce any problems. Performance regression testing is
usually an ad-hoc activity but can be automated using high-level
languages [23] or statistical techniques [24].

Tools and services: Language-specific frameworks for
validating performance such as ScalaMeter exist. Aver is a
generic language and validation tool that allows users to express
and corroborate statements about runtime metrics gathered.

IV. THE POPPER CONVENTION: A DEVOPS APPROACH TO
PRODUCING ACADEMIC PAPERS

The goal for Popper is to give researchers a common
framework to reason, in a systematic way, about how to
structure all the dependencies and generated artifacts associated
with an experiment. The convention can be summarized in the

http://docker.com
https://nixos.org/nix/
https://github.com/LLNL/spack
http://vagrantup.com
http://ansible.com
https://puppet.com
https://www.chef.io
https://saltstack.com/salt-open-source
http://cloudlab.us
http://chamaleoncloud.org
https://www.nmc-probe.org
http://xsede.org
https://terraform.io
https://aws.amazon.com/cloudformation
https://wiki.openstack.org/wiki/Heat
https://archiva.apache.org
https://www.nmc-probe.org
http://frictionlessdata.io/data-packages/
https://www.jfrog.com/artifactory
http://jupyter.org
http://mybinder.org
http://gnuplot.sourceforge.net
http://zeppelin.apache.org
http://beakernotebook.com
http://paraview.org
https://gephi.org
https://www.nagios.org
http://ganglia.info
https://github.com/etsy/statsd
https://collectd.org
https://github.com/lanl/coNCePTuaL
http://kernel.ubuntu.com/~cking/stress-ng
https://github.com/axboe/fio
https://travis-ci.org/
https://circleci.com
https://codeship.com
http://jenkins-ci.org
https://scalameter.github.io
http://github.com/ivotron/aver


Listing 1 Sample contents of a Popper repository.

paper-repo
| README.md
| .popper.yml
| experiments
| |-- myexp
| | |-- datasets/
| | |-- input-data.csv
| | |-- figure.png
| | |-- process-result.py
| | |-- setup.yml
| | |-- results.csv
| | |-- run.sh
| | |-- validations.aver
| | -- vars.yml
| paper
| |-- build.sh
| |-- figures/
| |-- paper.tex
| -- references.bib

three high-level steps outlined in Section I. These guidelines
provide the following unique features:

1. Provides an experimentation protocol for generating self-
contained experiments.

2. Makes it easier for researchers to explicitly specify
validation criteria.

3. Abstracts domain-specific experimentation workflows and
toolchains.

4. Provides reusable experiment templates that provide
curated experiments commonly used by a research
community.

A. Self-containment

We say that an experiment is Popper-compliant (or that it has
been “Popperized”) if all of the following is available, either
directly or by reference, in one single source-code repository:
experiment code, experiment orchestration code, reference to
data dependencies, parametrization of experiment, validation
criteria and results. In other words, a Popper repository contains
all the dependencies for an article, including its manuscript.

An example paper project is shown in Lst. 1. A paper
repository is composed primarily of the article text and
experiment orchestration logic. The actual code that gets
executed by an experiment is not part of the repository. This,
as well as any large datasets that are used as input to an
experiment, resides in their own repositories and are stored in
the experiment folder of paper repository as references.

With all these artifacts available, the reader can easily deploy
an experiment or rebuild the article’s PDF that might include
new results. Fig. 3 shows our vision for the reader/reviewer
workflow when reading a Popper for a Popperized article. The
diagram uses tools we use in the use-case in Section 5.2, like
Ansible and Docker, but as mentioned earlier, these can be
swapped by equivalent tools. Using this workflow, the writer
is completely transparent and the article consumer is free to
explore results, re-run experiments, and contradict assetions in
the paper.

A paper is written in any desired markup language. In the
above listing we use LATeX as an example (paper.tex file).

Figure 3: A sample workflow a paper reviewer or reader would
use to read a Popperized article. (1) The PDF, Jupyter or
Binder are used to visualize and interact with the results post-
mortem on the reader’s local machine (2) If needed the reader
has the option of looking at the code and clone it locally
(GitHub); for single-node experiments, they can be deployed
locally too (Docker) (3) For multi-node experiments, Ansible
can then be used to deploy the experiment on a public or private
cloud (NSF’s CloudLab in this case) (4) Lastly, experiments
producing large data sets can make use of cloud storage.

There is a build.sh command that generates the output
format (e.g. PDF). For the experiment execution logic, each
experiment folder contains the necessary information such as
setup, output post-processing (data analysis) and scripts for
generating an image from the results. The execution of the
experiment will produce output that is either consumed by a
post-processing script, or directly by the scripts that generate
an image.

The output can be in any format (CSVs, HDF, NetCDF,
etc.), as long as it is versioned and referenced. An important
component of the experiment logic is that it should assert
the original assumptions made about the environment (a
setup.yml file in the example), for example, the operating
system version (if the experiment assumes one). Also, it
is important to parametrize the experiment explicitly (e.g.
vars.yml), so that readers can quickly get an idea of what is
the parameter space of the experiment and what they can modify
in order to obtain different results. One common practice we
follow is to place in the caption of every figure a [source]
link that points to the URL of the corresponding post-processing
script in the version control web interface (e.g. GitHub).

B. Automated Validation

Validation of experiments can be classified in two categories.
In the first one, the integrity of the experimentation logic is
checked using existing continuous-integration (CI) services
such as TravisCI, which expects a .travis.yml file in the
root folder. This file contains a specification that consists of
a list of tests that get executed every time a new commit is
added to the repository. These types of checks can verify that
the paper is always in a state that can be built (generate the
PDF correctly); that the syntax of orchestration files is correct



so that if changes occur, e.g., addition of a new variable, it
can be executed without any issues; or that the post-processing
routines can be executed without problems.

The second category of validations is related to the integrity
of the experimental results. These domain-specific tests ensure
that the claims made in the paper are valid for every re-
execution of the experiment, analogous to performance regres-
sion tests done in software projects that can be implemented
using the same class of tools. Alternatively, claims can
also be corroborated as part of the analysis code. When
experiments are not sensitive to the effects of virtualized
platforms, these assertions can be executed on public/free CI
platforms (e.g. TravisCI runs tests in VMs). However, when
results are sensitive to the underlying hardware, it is preferable
to leave this out of the CI pipeline and make them part of
the post-processing routines of the experiment. In the example
above, an assertions.aver file contains validations in
the Aver [23] language that check the integrity of runtime
performance metrics that claims make reference to. Examples
of these type of assertions are: “the runtime of our algorithm
is 10x better than the baseline when the level of parallelism
exceeds 4 concurrent threads”; or “for dataset A, our model
predicts the outcome with an error of 95%”.

When validating assertions that depend on the underlying
hardware, i.e. that come from capturing runtime performance
metrics, an important step is to corroborate that the baseline
performance of the experiment for a new environment can
be reproduced. While this is a similar test that can be
codified using performance regression testing as mentioned
in the above paragraph, we make the distinction since this
step can be executed before any experiment runs. If the
baseline performance cannot be reproduced, there is no point
in executing the experiment. Many of the commonly used
orchestration tools incorporate functionality for obtaining “facts”
about the environment, information that is useful to have when
corroborating assumptions; other monitoring tools such as
Nagios can capture raw system-level performance; and existing
frameworks such as baseliner are designed to obtain baseline
profiles that are associated to experimental results.

C. Toolchain Agnosticism

We conceived Popper as a general convention, applicable to a
wide variety of environments, from cloud to high-performance
computing (HPC). In general, Popper can be applied in
any scenario where a component (data, code, infrastructure,
hardware, etc.) can be referenced by an identifier, and where
there is an underlying tool that consumes these identifiers
so that they can be acted upon (install, run, store, visualize,
etc.). The core idea behind Popper is to borrow from the
DevOps movement [16] the idea of treating every component
as an immutable piece of information and provide references
to scripts and components for the creation, execution and
validation of experiments (in a systematic way) rather than
leaving to the reader the daunting task of inferring how binaries
and experiments were generated or configured.

Listing 2 Initialization of a Popper repo.

$ cd mypaper-repo
$ popper init
-- Initialized Popper repo

$ popper experiment list
-- available templates ---------------
ceph-rados proteustm mpi-comm-variability
cloverleaf gassyfs zlog
spark-standalone torpor malacology

$ popper add torpor myexp

We say that a tool is Popper-compliant if it has the following
two basic properties:

1. Assets can be be associated to unique identifiers. Code,
packages, configurations, data, results, etc. can all be
referenced and uniquely identified.

2. The tool is scriptable (e.g. can be invoked from the
command line) and can act upon given asset IDs.

In Section III we provided a list of tools for every category
of the generic experimentation workflow (Fig. 2) that comply
with the two properties given above. In general, tools that are
hard to script e.g. because they do not provide a command-
line interface (can only interact via GUI) or they only have a
programmatic API for a non-interpreted language, are beyond
the scope of Popper.

D. Experiment Templates

Researchers that decide to follow Popper are faced with
a steep learning curve, especially if they have only used a
couple of tools from the DevOps toolkit. To lower the entry
barrier, we have developed a command line interface (CLI)
tool to help bootstrap a paper repository that follows the
Popper convention. As part of our efforts, we maintain a list of
experiment templates that have been “Popperized”. These are
end-to-end experiments that use a particular toolchain and for
which execution, production of results and generation of figures
has been implemented (see Section V for examples; each use
case is available as an experiment in the templates repository).
The CLI tool can list and show information about available
experiments. Assuming a git repository has been initialized,
the tool allows to add experiments to the repository (Lst. 2).
Templates and CLI can be found at http://falsifiable.us.

V. USE CASE: QUANTIFYING THE SCALABILITY OF AN
IN-MEMORY FILE SYSTEM

We now show a use case that illustrates the usefulness of the
Popper convention. We refer the reader to the Popper website
to find other use cases and examples of articles following
the convention. Additionally, the Popper repository of this
article (https://github.com/systemslab/popper-paper) contains
more detailed information about the experimental setup.

GassyFS [25] is a new prototype file system that stores
files in distributed remote memory and provides support for
checkpointing file system state. The core of the file system is a
user-space library that implements a POSIX file interface. File

https://github.com/ivotron/aver
https://github.com/ivotron/baseliner
http://falsifiable.us


Figure 4: Popper workflow for the GassyFS experiment.

system metadata is managed locally in memory, and file data
is distributed across a pool of network-attached RAM managed
by worker nodes and accessible over RDMA or Ethernet.
Applications access GassyFS through a standard FUSE mount,
or may link directly to the library to avoid any overhead that
FUSE may introduce. By default all data in GassyFS is non-
persistent. That is, all metadata and file data is kept in memory,
and any node failure will result in data loss. In this mode
GassyFS can be thought of as a high-volume tmpfs that can
be instantiated and destroyed as needed, or kept mounted and
used by applications with multiple stages of execution. The
differences between GassyFS and tmpfs become apparent
when we consider how users deal with durability concerns.

A. Popperizing The Experiment

In this experiment we aim to evaluate the scalability of
GassyFS, i.e. how it performs when we increase the number
of nodes in the underlying GASNet-backed FUSE mount. For
this experiment, we select Docker for packaging the software
stack; Ansible for orchestrating the experiment; Geni-lib for
requesting infrastructure on CloudLab; Jupyter for visualizing
results; and Aver to validate results. The instantiation of the
generic experimentation workflow is shown in Fig. 4. The
contents of the folder are shown in Lst. 3. We have a subfolder
for each DevOps tool we use, and corresponding scripts in
them. The docker folder contains the files needed to recreate
the image for GassyFS. The repository that hosts the GassyFS
source code is a referenced via git submodule (not shown).
Other tools used in the experiment (Ansible, geni-lib, Aver,
Jupyter and Pandoc) are also containerized (not shown).

B. Codifying Expectations

In Fig. 5 we show results for the experiment. We note that
while the actual numbers obtained are relevant, they are not
our main focus. Instead, we put more emphasis on the goals
of the experiments, how we can reproduce results on multiple
platforms with minimal effort, and how we can ensure the
validity of the results. Fig. 5 shows the results of compiling
Git on GassyFS. We observe that once the cluster gets to
2 nodes, performance degrades sublinearly with the number

Listing 3 Contents of the GassyFS experiment.

paper-repo/experiments/gassyfs
| README.md
| ansible
| |-- ansible.cfg
| |-- machines
| |-- playbook.yml
| |-- workloads/
| | |-- compile.yml
| | |-- git.yml
| | |-- kernel.yml
| docker
| |-- gassyfs/
| | |-- Dockerfile
| | |-- entrypoint.sh
| geni
| |-- cloudlab_request.py
| results
| |-- output.csv
| |-- visualize.ipynb
| run.sh
| setup.sh
| validate.sh
| vars.yml

of nodes. This is expected for workloads such as the one
in question. The Aver assertion in Lst. 4 is used to check
the integrity of this result. This expresses our expectation of
GassyFS performing sublinearly with respect to the number of
nodes. After the experiment runs, Aver is invoked to test this
statement against the experiment results obtained.

Listing 4 Assertion to check the scalability of GassyFS.

when
workload=* and machine=*

expect
sublinear(nodes,time)

C. Re-executing The Experiment (The Value of Popper)

This experiment runs on remote infrastructure and is driven
from wherever the repository is checked out as shown in
Fig. 4 (e.g. a user’s laptop). The only dependency on local
and remote nodes is Bash and Docker. Re-executing this
experiment on any CloudLab site is trivial. The vars.yml
file contains parameters for specifying the site where the
experiment is deployed, as well as credentials needed by the
geni-lib CLI to authenticate with CloudLab. Supporting
other platforms can be achieved by using one of the tools
mentioned in Section III-D. For example, Terraform can be
used to request Docker/Linux nodes on public clouds. Lst. 5
shows a snippet for requesting a node on DigitalOcean. This file
would then reside in a terraform folder and would be passed
to the Terraform CLI tool. Besides including options related to
infrastructure, the vars.yml file also makes other experiment
variables available to the re-executioner. Parameters such as the
workloads executed, number of nodes in the GassyFS cluster
and GASNet/FUSE configuration can be modified in order to
observe the effect these have on the performance of the system.

Although GassyFS is simple in design, it is relatively
complex to setup. The combinatorial space of possible ways in



Listing 5 Terraform configuartion for requesting a Droplet.

resource "digitalocean_droplet" "web" {
image = "docker-ubuntu-16-04-x64"
name = "node1"
region = "sf2"
size = "16gb"

}

which the system can be compiled, packaged and configured
is large. For example, the version of GCC we use (4.9) has
approximately 108 possible ways of compiling a binary. In
GASNet 2.6, there are 64 flags for additional packages and
138 flags for additional features. To mount GassyFS, we use
FUSE, which can be given more than 30 different options,
many of them taking multiple values.

As shown in this use case, execution and validation of
results is fully automated. By contrasting this with the common
practice of providing source code and a README that a
reader has to go through, we can perceive the benefits of
Popperizing experiments. Additionally, having all dependencies
and parametrization explicitly available eases the “reverse
walking” of the experimentation workflow, starting with a
PDF, going back to a Jupyter notebook to see the analysis of
results, and possibly drilling down all the way to the source
code.

VI. DISCUSSION

A. Limitations

Traditional experimentation practices are deeply rooted in
the muscle memory of researchers, typing commands in “live”
systems and getting results as they go. The use case presented in
the previous section illustrates how Popper allows a researcher
to have a systematic approach to automating experiments. While
it might seem like a burden at the beginning of an experimental
exploration, following Popper quickly pays-off. Consider the
common situation of going back to an experiment after a short
amount of time and how we struggle when we try to remember
what was done, or why things were done in a particular way.

However, Popper is not perfect. Obvious issues such as the
lack of resources, either due to the use of special hardware
or the unavailability of extreme-scale allocations, have to
be resolved before a Popperized experiment is re-executed.
Additionally, in some cases, the choice of a tool might affect
the validation of results, for example such as in cases where
VMs introduce ineligible overheads.

B. DevOps Skills as Professional Development

While the learning curve for the DevOps toolkit is steep,
having these as part of the skillset of students or researchers-in-
training can only improve their curriculum. Since industry as
well as many industrial and national laboratories have embraced
the DevOps practice (or are in the process of embracing it),
making use of these tools improves their prospects of future
employment. In our view, the DevOps toolkit is analogous to
those employed by scientists in other domains (e.g. a bioscience

Figure 5: Scalability of GassyFS as the number of nodes in the
GASNet cluster increases. The workload in question compiles
Git. (source: goo.gl/gd15XN).

toolkit) and, as such, in order to be successful as a researcher,
one has to master their use.

C. Automated Reproducibility Validation

As mentioned earlier, continuous integration (CI) services
and tools can be used to ensure that the artifacts associated to
an article are in “good shape”, i.e. that the software can be built
successfully, experiments re-executed without errors and results
obtained corroborate original results [26]. Adapting existing
CI solutions to check the integrity of Popperized repositories
can be time-consuming. To avoid this, one can organize the
contents of the repository following the common structure
introduced in [27], which allows to automate the end-to-end
execution of Popperized experiments.

D. Popperized Experiments as Experiment Packages

Our vision is that, over time, as more experiments become
Popperized and aggregated in the form of Popper template
repositories, these can become analogous to software packages
that are currently used in the open source software community.
With such a list of experiments for a particular community,
these experiments then can be indexed so that when a student or
researcher looks for preliminary work, they can get to existing,
reproducible experiments that they can use as the basis of their
work.

E. Popper Complements Existing Efforts

There have been efforts to address reproducibility issues in
subdomains of the systems research community. We believe
Popper complements many of these since it encourages a
practice (i.e. to follow a protocol) that applies on top of tools
that researchers already know rather than requiring scientists
to learn a whole new suite of tools. The following are some
examples of community efforts and projects where Popper can
complement:



• Ctuning Foundation’s Extended Artifact Description
Guide3 is a set of high-level guidelines for authors on
how to prepare an “Artifact Evaluation” appendix for
academic articles. Conferences such as Supercomputing,
TRUST@PLDI, CGO/PPoP and others are currently
making use of it for their reproducibility initiatives. Popper
implements a similar pipeline as the one described in the
Artifact Description Guide. A Popper repository could
even be used instead of an “Artifact Evaluation” appendix.

• Elsevier’s 2011 Executable Paper Challenge4 gave the
first prize to the Collage Authoring Environment [28].
Popper is an alternative that makes use of the DevOps
toolkit, allowing researchers to keep using their tools but
to structure their explorations in a systematic way.

• Proxy applications (Mini-apps) in HPC [29] can be
accompanied with a Popper repository to make it easier to
validate performance results and facilitate the execution
of these on different platforms.

• The Open Encyclopedia of Parallel Algorithmic Features
[30] could have a set of Popper repositories, (one per
each article), making it easier for readers to reuse the
algorithms and their insights.

• The Journal of Information Systems has recently adopted a
new publication model that incentivizes reproducibility by
inviting original authors to collaborate with independent
reviewers and publish a subsequent paper on whether they
could reproduce the original work [31]. By following
Popper authors can reduce the amount of work that these
subsequent publications entail.

• ReScience5 is a peer-reviewed journal that targets compu-
tational research and encourages the explicit replication of
already published research. Popperizing these replications
can have the benefit of allowing others to easily re-execute
experiments.

VII. CONCLUSION AND FUTURE WORK

By following the Popper convention, researchers can reduce
significantly the time that others spend re-executing their
experiments, making it easier to share and collaborate with
others. We are currently working with researchers from
other domains such as numeric weather prediction [32] and
mathematical sciences [33] to automate experiments that follow
the Popper convention. While Popper facilitates the re-execution
of experiments, it cannot serve for identifying root causes of
irreproducibility. An open problem is to automatically identify
sources of irreproducibility, either from changes made to an
experiment or from changes in the environment
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