Single-View modeling of trees through the use of Lindenmayer Systems and Genetic Algorithms.

[image: image1.png]

Mike Schuresko

UC Santa Cruz

CMPS 260

Abstract

For this project, I used genetic algorithms to evolve Lindenmayer systems to evolve trees that matched a particular image. As this is a preliminary work, I used synthetic images of trees, also generated by Lindenmayer systems. I am hoping to extend it to images of real trees after working out some of the kinks on synthetic data.

Motivation

In urban modeling, and other applications for which a realistic 3d model must be generated to match a particular real-world scene, it is useful to be able to accurately model trees. In many computer graphics applications, this is done through extremely simple methods (Debevec just texture-mapped the trees onto the ground-plane for the Campanille project, other projects use screen-aligned billboards for trees, or texture-mapped polyhedra for forests). At the same time, within other portions of the graphics communities, models from computational biology have been adapted for rendering to produce shockingly photo-realistic trees. It is reasonable, then, to attempt to generate these models from the sort of data conventionally used in geo-spatially accurate graphics model generation.

As an additionally motivational aspect, single-view modeling (i.e. the user-guided generation of a 3d scene from a single photograph) has adequate solutions for buildings and simple curved surfaces, but not for items like trees which contain many discontinuities.

The author had hoped that the constraints introduced in the restriction of tree models to those conforming to the Lindenmayer systems borrowed from computational biology would help trees modeled from a single image to look real from multiple novel viewpoints.

Background

Lindenmayer Systems

Lindenmayer systems were originally developed by Aristid Lindenmayer as a tool for modeling cell growth. At one point it was realized that these models could be used to generate photo-realistic models of macro-scale biological objects from the plant kingdom. Trees are the easiest species to model in this manner, although it has been used to generate realistic plant leaves, shrubs, pinecones, flowers, etc.

A Lindenmayer system is essentially a grammar of replacement rules, each iteration of replacement representing division and growth.

A sample set of rules might be as follows

Segment (Segment {scale Segment} {scale right turn Segment} {scale left turn Segment}

Segment (Terminal (perhaps draw leaves here)

In their simplest form, Lindenmayer systems can be thought of as tree fractals. An algorithm for drawing such a tree might be as follows

Fun DrawTree()

{

foreach transform

PushMatrix()

Scale()

Translate(transform)

Rotate(transform)

DrawTree()

PopMatrix

}

In more complicated forms, Lindenmayer systems can represent the growth of a tree at all phases of life, and can be combined with probabilistic aspects to represent the affects of weather, branch breakage, etc.

[image: image2.png]

A forest filled with simple Lindenmayer tree models (modified from a product usage demo from Sense8 Corp)

Genetic Algorithms

Genetic algorithms are a biologically inspired, highly parallel technique for machine learning and search. The essential components of genetic algorithms are a language for expressing solutions to a problem, some operators for crossing parts of 2 solutions, an operator for randomly mutating a solution, and a “fitness function” to determine how well a proposed solution matches the problem.

In general, genetic algorithms work as follows. Randomly seed a population with potential solutions to a problem. Produce offspring through crossover and mutation operators. Sort the offspring according to the fitness function, and keep the best.

Variants to the standard genetic algorithm recipe include various choices for when to eliminate solution parents, additional operators other then mutation and crossover, and the introduction of “Lamarckian evolution” through incorporating results from another learning algorithm into offspring.

In particular, this application uses an operator called “creep” instead of mutation. Creep operates on floating-point values in potential solutions, and rather then changing such numbers to a random value, adjusts them by a small amount. Creep can be used to induce a genetic algorithm to produce behavior similar to simulated annealing, or other classical parallel gradient-descent algorithms.

Single View Modeling

Single-View modeling is the task of using user-interaction to supplement computer vision in the generation of 3d models from a single photograph.

Classic single-view modeling techniques involve having an artist sketch things like “surface discontinuities”, “lines of perspective”, “normal discontinuities” onto a picture.

Many single-view modeling techniques make assumptions about the scene being modeled (such as “largely planar” or “largely planar and rectilinear”). One notable exception is Steve Seitz’s single-view modeling paper, which only makes the assumption that the user will be able to sketch all major discontinuities. Note that for the case of modeling a tree from a single view, this is not always reasonable.

Methods

L-System Implementation

In order to make it easier to write a genetic algorithm to operate on Lindenmayer systems, I found it useful to constrain the L-system model I used to conform to a mostly flat data structure. I had a fixed number of production rules, each leading to a new branch at some distance up the old branch, and at some theta and phi angle. The scale was based on the width of the original branch at the point the new one came off (note: this is not entirely realistic for some of the finer structures on real trees, but appears to hold for the major branches on most of the real trees I looked at. California Redwoods are a notable exception, and any extension of this to handle real-world data must take this into account).

I also extended my Lindenmayer systems to be probabilistic Lindenmayer systems. For each branch I had extra parameters of “Probability of branch occurring” and “standard deviations for theta and phi”. Rather then evaluating the trees probabilistically, however, I supplied each candidate genetic algorithm solution with a vector of doubles, to serve as “answers” from a random number generator. These vectors evolved in parallel with the L-systems.

Genetic Algorithm Used

As mentioned earlier, my two GA operators were “Creep” and “Crossover”. Creep is a mutation-like operator that takes a floating point value, and adjusts it by a gaussian. Creep acts like mutation with low probability, and like a gradient descent adjustment with high probability.

Most Genetic Algorithms handle crossover by taking large contiguous sets of bits (or symbols) from one or the other parent solutions. I made the dubious decision to select each symbol randomly from the two parent solutions. Future work might entail figuring out whether conventional crossover works better. My solution was just simpler to implement.

Fitness Function

My fitness function operated as follows. Render the L-system and associated probability vector of a candidate solution. Grab the screen image. Take the sum of squared pixel errors between the screen image and the desired image. I was curious to try alternative metrics, but the ones I did try (L1 norm and L1 norm of differences of image gradient) didn’t work as well. I am curious to try a wavelet based approach to the image difference.

The way I used synthetic data in this task was to first grab a frame of an existing random L-system, and then use the (single) grabbed image for the fitness evaluation. The advantage of this approach was that I could then rotate the tree used to generate the fitness image and the learned tree in the same frame to visually inspect the learned solution from multiple viewpoints.

Relevant Numbers

I used a population size of 50 trees. Each generation I generated 150 crossover offspring and 25 creep offspring, then used the fitness function to cull the population down to the 50 best members. I ran for 50 generations, and took the best tree.

Results

Creep versus Crossover

In order to validate that the “genetic” part of the genetic algorithm was doing something better then just simulated annealing would’ve done, I tried the algorithm with just creep operators and not crossover. To make this experiment sound, I increased the number of mutants per generation to match the number of crossover offspring when running in normal mode. Here are the results.

Creep Alone (Source image on the left, learned model on the right)

[image: image3.png]

Crossover Alone (Source image on the left, learned model on the right)

[image: image4.png]

What surprised me about this was not only how well crossover did without a creep operator, but also the fact that crossover was able to roughly reverse-engineer the tree base width. I’m guessing that this was due to having a sufficiently large initial random population. In general crossover alone should not be guaranteed to do this.

Creep And Crossover (slightly different tree) (Source image on the left, learned model on the right)

[image: image5.png]

View from novel angles

Since part of my goal was to evaluate this method as a single-view modeling technique, I took the learned results from one viewpoint and grabbed screenshots from other viewpoints. Shown below is the same set of trees from the “Creep and Crossover” image above.

View from Above (original on left, learned on right)

[image: image6.png]

View from Side (original on left, learned on right)

[image: image7.png]

View From Behind (original on left, learned on right)

[image: image8.png]

Other Trees

To round out the demonstration section of this paper, I have demonstrated the algorithm on other trees.

[image: image9.png]

[image: image10.png]

Weaknesses

The tree below demonstrates that the algorithm is better and finding some components of tree structure then others. Note that the learned image on the right has far too many branches at the first branching steps.

[image: image11.png]

Conclusions

All in all, I am happy with this as an initial attempt at single-view modeling of trees, but several things need to be improved upon to get this technique to where I want it to be.

1. Must work on non-synthetic images

2. Must be better at resolving fine tree structure

a. This may simply require more generations of the GA

3. Must be able to handle redwood-style branches

4. Must be able to handle trees of different colors

5. Must be able to handle leaves

6. Must be able to handle trees with their base at different locations in the image

Bibliography

1. Prusinkiewicz, P. and Lindenmayer, A. The Algorithmic Beauty of Plants. New York: Springer-Verlag, 1990

2. Mitchell, Melanie An Introduction to Genetic Algorithms.Cambridge: The MIT Press, 1996

3. L. Zhang, G. Dugas-Phocion, J.-S. Samson, and S. M. Seitz, Single View Modeling of Free-Form Scenes, Proc. Computer Vision and Pattern Recognition, 2001

_1179786328

