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Abstract

A new framework for Bayesian analysis of dose-response studies through

dependent nonparametric modeling for categorical responses

by

Kassandra Marie Fronczyk

We develop a Bayesian nonparametric mixture modeling framework for replicated count

responses in dose-response settings. Data from dose-response experiments typically

involve features that can not be captured by standard parametric approaches. The

proposed mixture models are built from dependent Dirichlet process priors to provide

flexibility in the functional form of both the response distribution and the probability

of positive response. The dependence of the mixing distributions is governed by

the dose level. We explore this methodology with applications in developmental

toxicity studies and quantal bioassay settings. In particular, we propose a collection

of dependent Dirichlet process mixture models for developmental toxicology data, for

which the primary objective is to determine the relationship between the level of

exposure to a toxic chemical and the probability of a physiological or biochemical

response, or death. These models have increasing levels of complexity to account for

the different data structures encountered in developmental toxicity studies, including

multicategory discrete outcomes, clustered binary and continuous outcomes, and

responses from studies with pre-implantation exposure. For standard bioassay settings,

we formulate a more structured version of the dependent nonparametric mixture model

that incorporates monotonicity for the dose-response curve. Here, particular emphasis

is placed on the key risk assessment goal of inference for the dose level that corresponds



to a specified response, including an application to the area of cytogenetic dosimetry.

The proposed modeling framework yields highly flexible inference for the response

distribution, for the dose-response relationship, and thus for risk assessment. The

approach is extended to incorporate data with multiple, ordered classifications. The

methodology is illustrated with simulated and real data, and also compared with

parametric and semiparametric Bayesian approaches.
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Chapter 1

Introduction

1.1 Background and motivation

Dose-response studies consist of the exposure of humans or animals to a

substance which is thought to have some effect depending on the dose level. The response

of the individual is conventionally binary, either affected or not; although multicategory

classifications or continuous responses are also recorded in some experiments. A number

of individuals are exposed at several levels of the substance, giving a single, aggregate

count at each dose level.

A generalization of the standard bioassay setting is found in the area of

developmental toxicology, in which birth defects induced by toxic chemicals are

investigated. In the most common experiment, at each experimental dose level, a

number of pregnant laboratory animals (or dams) are exposed to the toxin after

implantation and the number of prenatal deaths, the number of live pups, and the

number of live malformed pups from each dam are typically recorded. Additional

outcomes measured on each of the live pups may include body weight and length. A more

general setting for developmental toxicity studies involves exposure before implantation
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in an effort to capture the potential early effects on reproduction and development which

are otherwise not manifested.

The main objective of developmental toxicity studies and bioassay studies is

to examine the relationship between the level of exposure to the toxin (dose level) and

the probability of response. The dose-response curve is defined by the probability of an

outcome across the dose levels. Many of the traditional dose-response analyses assume

that the probability of response increases as dose increases; that is, the dose-response

curve is a non-decreasing function. Other inferential objectives are “inversion”, where

interest lies in estimation of the dose level that corresponds to a specified response rate,

as well as the closely related “calibration” problem, where the aim is to infer about the

dose level associated with a specified response vector. Also of interest is quantitative

risk assessment, which evaluates the probability that adverse effects may occur as a

result of the exposure to the substance. There are a number of probabilities and/or

functions that are examined for risk assessment, including conditional probabilities of

an outcome given specific conditions.

While the objectives of the studies are clear, the resulting data are a veritable

gold mine of statistical challenges. The common assumption of a monotonically

increasing dose-response curve, specified without unreasonable restrictions, is one of

many hurdles in the bioassay setting. A further challenge in the context of developmental

toxicity experiments arises from the inability of simple parametric discrete distributions

to capture the non-standard features typically suggested by the data. This difficulty

mainly emanates from the inherent heterogeneity in the data due to the clustering of

individuals within a group and the variability of the reaction of the individuals to the

toxin. Another challenging feature of developmental toxicology data is associated with

the multiple related outcomes, both continuous (e.g., body weight) and discrete (e.g.,

2



number of malformations).

In the next section, we present data sets coinciding to the specific types of dose-

response studies considered in this dissertation. In the process, more details are provided

for these studies, and the proposed Bayesian nonparametric framework is motivated.

1.2 Data examples

In a Segment II developmental toxicity experiment, ni pregnant dams are

exposed to dose level, xi, i = 1, . . . , N . Dam j = 1, . . . , ni at dose xi has mij implants,

of which the number of resorptions and prenatal deaths, as well as the number of live

pups at birth with a certain defect are typically recorded. The prevailing data structure

found in the statistical literature appears to be of the first type, where the random

variables involved are the number of implants and the sum of all negative outcomes.

Under this setting, each triplet of data (m, y, x), comprising the number of implants,

number of negative outcomes, and dose level, defines a particular dam.

Two data sets commonly considered in the statistical literature for

developmental toxicity experiments are shown in Figure 1.1. The left panel plots

a data set from a toxicity study regarding the effects of the herbicide 2,4,5-

trichlorophenoxiacetic (2,4,5-T) acid (Holson et al., 1991). We work with the version of

the data given in Table 3 of Bowman and George (1995), where the number of combined

endpoints consists of the number of resorptions and prenatal deaths, and the number

of fetuses with cleft palate malformation. The experiment considers N = 6 doses, one

control and 5 active dose groups. The number of animals per dose level ranges from 25

to 97 dams. The number of implants ranges from 1 to 21 across all dams and all dose

levels, with 25th, 50th and 75th percentiles given by 10, 12 and 13, respectively. Based
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on exploratory analysis, the data suggest varying departures from the Binomial model

across the dose levels, indicating the need for a flexible model to capture the evolution

of the response distributions over the range of dose levels.
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73 87 97 76 44 25
dams
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Figure 1.1: Plots of the 2,4,5-T data (left panel) and the DEHP data (right panel).
Each circle corresponds to a particular dam, the size of the circle is proportional to
the number of implants, and the coordinates of the circle are the dose level and the
proportion of combined negative outcomes. Shown at the top of each panel is the
number of animals per dose level.

The second data set (Figure 1.1, right panel) is from an experiment that

explored the effects of diethylhexalphthalate (DEHP), a commonly used plasticizing

agent. It is known that these plasticizers may leak in small quantities from plastic

containers with various solvents such as food or milk. The possibility of toxic effects

from these agents have been recognized and tested in developmental toxicity studies,

such as the one described in Tyl et al. (1983). The DEHP study is also discussed by

Molenberghs and Ryan (1999), although they consider a different version of the data set

than the one available from the database of the National Toxicology Program (which is

the version we work with). Here, the combined endpoints include resorption, prenatal

death, and malformation of a live fetus (external, visceral, or skeletal malformation).
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The number of dams per dose level is about a third of those found in the 2,4,5-T data;

the number of implants across all dams and dose levels ranges from 4 to 18, with 25th,

50th, and 75th percentiles equal to 11, 13, and 14, respectively.
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0.0
0.2

0.4
0.6

0.8
1.0

R/m

dose mg/kg x 1000

0 50 100 150

0.0
0.2

0.4
0.6

0.8
1.0

y/(m-R)

dose mg/kg x 1000

Figure 1.2: DEHP data expanded to investigate multiple endpoints. In the left panel,
the proportion of non-viable fetuses of the implants for each dam at each dose level,
and, on the right, the proportion of malformed pups of the viable fetuses for each dam
at each dose level.

Particularly noteworthy in the DEHP data is the drop in the proportions of

combined negative outcomes from dose 0 to 25 mg/kg ×1000, which may indicate a

hormetic dose-response relationship. Hormesis refers to a dose-response phenomenon

characterized by favorable biological responses to low exposures to toxins, and thus

by opposite effects in small and large doses. For endpoints involving disease incidence

(e.g., mutation, birth defects, cancer), hormesis results in a J-shaped dose-response

curve. Although the possibility of different low dose effects is accepted, the suggestion

of positive low dose effect is debated, hence, hormesis is a controversial concept in the

toxicological sciences (e.g., Calabrese, 2005). Notwithstanding the ultimate scientific

conclusions, to be able to uncover non-standard dose-response relationships, we seek a
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modeling framework for the dose-dependent response distributions which enables flexible

inference for the implied, possibly non-monotonic, dose-response curve.

One extension of this data structure to be explored is the expansion of the

collapsed category of “negative outcomes,” i.e., the practically important setting with

multicategory responses. Figure 1.2 gives for the DEHP data, the proportions of the

implants which are considered non-viable (left panel), and among the viable fetuses, the

proportion of malformed pups (right panel). Note the proportion of prenatal deaths (a

dose-response curve of interest) suggests an increasing trend, while the proportion of

malformed, viable pups (another dose-response curve) has a non-monotonic structure

at the smaller dose levels.
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Figure 1.3: EG data. In the left panel, the proportion of non-viable fetuses of the
implants for each dam at each dose level, in the middle the proportion of malformed
pups of the viable fetuses for each dam at each dose level, and on the right the birth
weights of the viable pups at each dose level.

Another scientifically relevant extension includes a continuous outcome for each

of the viable pups, such as birth weight. In a study found at the National Toxicology

Program database, ethylene glycol (EG), a widely used industrial chemical, is evaluated
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for toxic effects in pregnant mice (Price et al., 1985). Recorded from each dam are

the number of implants, the number of prenatal deaths, the number of live, malformed

pups, and the birth weight of the viable pups (see Figure 1.3). There are four dose

levels, three active (750, 1500, and 3000 mg/kg) and one control, with approximately

the same number of animals exposed at each level of the toxin, ranging from 22 to 25.

The number of implants across all dams and dose levels spans from 3 to 19, with 25th,

50th, and 75th percentiles of 11, 13, and 15, respectively.

We also investigate modeling for studies in which the dams are exposed to the

toxin before implantation, and therefore, the early reproductive processes are expected

to be interrupted. In particular, we explore a dominant lethal assay experiment (Lüning

et al., 1966) where the number of dose levels is three (the control and two active dose

levels). The dose levels are evenly spaced (0, 300, and 600 Rads) and there are about

six times the number of animals at each dose level compared to the previous studies,

ranging from 486 to 683 dams.

Turning to the bioassay setting, ni subjects are exposed to dose level xi, i =

1, . . . , N , and yi subjects respond in some fashion. These observations may be reported

as quantal, as ordinal, or as continuous data, describing some response of the subject

such as enzyme activity, heart rate, or death. We will mainly focus on quantal data,

illustrating the methods through examples found in the literature. For instance, an

interesting example is the trypanosome data (Ashford and Walker, 1972); see the left

panel of Figure 1.4. The plot suggests skewness and multiple modes in the tolerance

distribution, where traditional parametric models will fail.

This setting also lends itself to cytogenetic dosimetry, the particular area of

dose-response modeling concerned with the relationship between exposure to radiation

and some measure of genetic aberration. For example, in an experiment, a portion

7



of the full set found in Madruga et al. (1996), blood samples from individuals were

exposed in vitro to 60Co radiation with doses of 0, 20, 50, 100, 200, 300, 400, and 500

cGy (centograms). The cultures were analyzed for the presence of binucleated cells with

none, one, or two or more micronuclei (MN). For the purposes of this illustration, we

collapse these groups to none or one or more MN. The right panel of Figure 1.4 gives the

proportions of one or more micronuclei from those blood samples from the older healthy

subjects, though further illustration with the trinary responses on the ordinal scale is

provided in Chapter 4. As seen in Figure 1.4, an important distinction of cytogenetic

dosimetry data is that only a portion of the dose-response curve is observed, rendering

extrapolation beyond observed dose levels a primary inferential target. Also essential is

calibration, inference for unknown exposures given observed responses.
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Figure 1.4: Quantal response setting: Trypanosome bioassay data (left) and the
cytogenetic dosimetry data (right). Each data point represents the proportion of
responses at each dose level.
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1.3 Objectives and contributions

Experiments falling under developmental toxicology and the bioassay setting

contain intricate processes for which parametric models may be too restrictive and

will likely provide unreasonable inferences. Regarding modeling for the dose-dependent

response distributions, most commonly found in the toxicology literature is the beta-

binomial model, used to compensate for the extra variability in the data. With

the continuous nature of the mixture model, each animal has its own probability of

response, which requires immense variation to counteract the restriction of the binomial

response distribution. This, in turn, produces a dose-response curve which has very

wide uncertainty bands and renders the inference virtually untenable (see Section 3.1.3

for more details and an illustration).

In lieu of the insufficiency of standard parametric models, the statistics

literature is riddled with approaches to flexibly model, specifically, the dose-response

curve. In terms of developmental toxicity studies, many authors assume a parametric

response distribution and focus on innovative determination of the dose-response curve.

However, due to the various sources of heterogeneity, data from many studies indicate

vast departures from parametric models. A different line of research has focused on

classical semiparametric or likelihood estimation for the joint distribution of the vector

of binary responses associated with each dam under the assumption of exchangeability.

Although such approaches provide more general modeling for the response distribution

than traditional parametric models, dose-response relationships are still introduced

through parametric forms. Moreover, inferential challenges include interpolation at

unobserved dose levels (a key objective for risk assessment) as well as uncertainty

quantification for point estimates.
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By comparison to likelihood and classical semiparametric approaches, Bayesian

methods have not been widely used for the analysis of developmental toxicity studies.

Examples of parametric Bayesian hierarchical models, generally comprising joint

discrete-continuous outcomes, are found sparingly throughout the literature. In terms of

semiparametric approaches for developmental toxicity studies, the only model available

is presented in Dominici and Parmigiani (2001) (to be discussed in Section 3.1.4).

The approach does attempt to capture the complexity in the response distributions,

however the induced dose-response curve produces arguably unreasonable uncertainty

quantification. Bayesian nonparametric methods have been applied extensively to the

quantal bioassay setting. In fact, many of the pioneering works in the area were driven

by experiments of this type. As motivated by the data examples and the discussion

thereafter, we espouse the use of Bayesian nonparametric methods, to be elucidated in

Chapter 2.

For developmental toxicity studies, we introduce a new approach to inference

and risk assessment based on nonparametric modeling for collections of dose-dependent

response distributions, which allows functionals of interest to inherit the flexibility of

the distributions. We provide a comprehensive framework built upon nonparametric

mixture models, resulting in flexibility in both the collection of response distributions

as well as the probability of response at any given dose level. The dependence of the

distributions is governed by the dose level, implying that distributions corresponding to

nearby dose levels are more closely related than those far apart. The mixture models

provide a means to appropriately quantify the uncertainty and variability in the response

distributions, which carries over to the dose-response curve. The assumptions of the

mixture models bestow a foundation for interpolation and extrapolation of the dose-

response curve at unobserved dose levels. Note also that the dams are labeled and
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recorded in ascending numerical order across dose levels; that is, the smallest ID number

corresponds to data from the first dam at the first dose level, the first dam at the second

dose level has the next ID number, and so on. Therefore, the animals can be linked

as a response vector across the dose levels, and the replicated response vectors are

considered to be exchangeable. Presented in Chapter 3 are the proposed models for the

different types of developmental toxicology data structures, including methodological

details, posterior inference techniques, simulation studies, comparison, and illustrative

data examples.

The approach to the analysis of the bioassay setting is also built upon modeling

dose-dependent response distributions. However, because of the simplified structure

of the data, this is equivalent to modeling the dose-response curve with a mixture

model. Contrary to the models for developmental toxicity studies, we adopt a more

structured version of the prior mixture model, which begets a monotonicity restriction

for the dose-response curve. Another advantage of the restricted mixture model is

the facilitation of full exchangeability for the binary responses. That is, each binary

response, an expansion of the aggregated count, is regarded as exchangeable both across

and within each dose level. Also of interest is a framework for experiments with a single

response from each subject measured on an ordinal scale, as in the cytogenetic dosimetry

application. Modeling details, discussion, and examples are found in Chapter 4.
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Chapter 2

Bayesian nonparametric mixture models

Nonparametric Bayesian mixture priors offer more flexible modeling tools that

can capture complexity inherent in data. These models can be viewed as extensions of

finite mixture or continuous mixture models, where the random mixing distribution is

not defined with a particular parametric family of distributions. Countable mixture

models built from Dirichlet process (DP) priors (Ferguson, 1973) for the mixing

distribution are the most widely used alternative to finite mixture models.

2.1 Dirichlet process mixture models

The DP is a random probability measure which defines a prior for random

distributions, or equivalently, random distribution functions. We will use DP(α,G0) to

denote the DP prior for random mixing distribution G, defined in terms of a parametric

centering (base) distribution G0 (thus, E(G) = G0), and precision parameter α >

0, which controls the variability of G about G0 with larger values of α resulting in

realizations G that are closer to G0. Using its constructive definition (Sethuraman,

1994), the DP prior generates countable mixtures of point masses with locations drawn
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from the base distribution and weights defined by a stick-breaking process. Specifically,

a random distribution, G, drawn from DP(α,G0) has an almost sure representation as

G(·) =
∞∑
l=1

ωlδηl
(·), (2.1)

where δa denotes a point mass at a, the ηl are i.i.d. from G0, and ω1 = ζ1, ωl =

ζl
∏l−1
r=1(1− ζr) for l ≥ 2, with ζl i.i.d. from a Beta(1,α) distribution (independently of

the ηl).

The DP generates flexible, albeit discrete distributions. While it can be useful

in categorical data modeling (e.g., Cifarelli and Regazzini, 1978; Carota and Parmigiani,

2002) or specialized modeling of cumulative distribution functions as in dose response

modeling (e.g., Antoniak, 1974; Bhattacharya, 1981; Disch, 1981; Kuo, 1983, 1988;

Gelfand and Kuo, 1991; Mukhopadhyay, 2000; Kottas et al., 2002), it shines as a prior

in mixture models.

Mixture models are robust alternatives to standard parametric models.

Continuous mixtures, like the beta-binomial or poisson-gamma models, increase

heterogeneity but are generally limited to symmetry and unimodal distributions. While

finite mixtures are more flexible, intuitive, and, feasible to implement, they include large

numbers of parameters and require prior specification of the number of components.

Assuming a random mixing distribution with, say, a DP prior, the model is not restricted

to a specific parametric family, and therefore symmetric, unimodal distributions, and

the number of components that are necessary for a given data set are decided in a more

automatic fashion.

The Dirichlet process mixture density or probability mass function is given

as f(·;G) =
∫
k(·;θ)dG(θ), where k(·;θ) is a parametric family of density (probability
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mass) functions indexed by parameters θ. The mixture density f(·;G) is random, due to

the fact that G is random, and can be discrete or continuous, univariate or multivariate,

depending on k(·;θ). The discreteness of G, implied by its DP prior, is a key feature as,

given the data, it enables flexible shapes for the mixture density f(·;G) through data-

driven clustering of the mixing parameters associated with each observation. These

mixtures are valuable not only for density estimation, but in inference for regression

through DP mixture modeling for the joint-response-covariate distribution (e.g., Müller

et al., 1996; Rodriguez et al., 2009; Taddy and Kottas, 2010; Fronczyk et al., 2011),

as well as in more general nonparametric models for collections of distributions related

through covariates, time, or space.

2.2 Dependent Dirichlet process priors

Consider data indexed by a continuous covariate, x ∈ X , which is represented

by the dose level in the models developed in this dissertation. This situation gives rise

to the need to extend the DP prior to a prior which relates distributions across dose

level to varying degrees. Many models restrict the collection of distributions to either

be independent realizations of the DP or equal to a single realization of the DP, possibly

with some hyperparameters that change across the covariate space, e.g., X ⊆ R+ or R

for dose-response settings. The idea is to model dependent, but not identical groups of

distributions. One solution to this modeling problem is the dependent Dirichlet process

(DDP) prior. Reported in MacEachern (1999, 2000), the DDP prior is built upon the

constructive definition of the DP in (2.1), where the locations of the DP are replaced

by a sample path from a stochastic process, denoted by ηlX = {ηl(x) : x ∈ X}, and

the underlying beta draws driving the weights are also replaced by a process, ζlX . We
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assume ηlX = h(θlX ) with θlX a realization from a Gaussian process (GP) and h(·)

an appropriate transformation, and that the ζlX are defined by a realization from an

independent GP with an inverse Beta(1, αx) CDF transform. That is, the DDP(α,G0X )

is a prior given by GX (·) =
∑∞

l=1 ωlX δηlX (·), where the ωlX arise from the stick-breaking

process using the ζlX and the atoms are realizations from a possibly transformed GP.

Shown in MacEachern (2000), the DDP prior has full support and a useful

continuity property which allows smooth evolution of the distributions Gx across the

covariate space. This property is explored in Chapter 3 in the context of the specific

models. Also found within the DDP manuscript are various properties assuming the

weights do not change across the covariate, a version of the DDP prior to be discussed

in further detail below.

We turn to the most natural simplification of the DDP construction, where

only the atoms vary across the dose levels with common weights at all covariate levels.

That is, the constructive definition becomes

GX (·) =
∞∑
l=1

ωlδηlX (·), (2.2)

where the wl arise from the standard DP stick-breaking process and the ηlX are sample

paths from a (transformed) GP. The restriction implies the model can be viewed

as a countable mixture of stochastic processes, with weights matching those from a

single DP model. This structure allows the application of computational strategies for

Dirichlet process mixture models, while preserving the great flexibility of the DDP.

A key feature of this DDP prior is that for any finite collection of covariate levels

(x1, ..., xk) it induces a multivariate DP prior for the corresponding collection of mixing

distributions (Gx1 , ..., Gxk
). This prior structure is referred to as the “single-p” DDP
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prior (MacEachern, 2000; DeIorio et al., 2004; Gelfand et al., 2005; Rodriguez and ter

Horst, 2008; Kottas and Krnjajić, 2009).

Contrarily, we may choose to simplify the DDP prior by allowing only the

weights to evolve with x and assume constant atoms. In the general definition, the

stick-breaking weights are driven by a Gaussian process with the Beta inverse transform.

This can be difficult to implement, and therefore authors have resorted to defining the

weights by retaining the stick-breaking weights and multiplying by some function of the

covariate to create changes across the space (see Reich and Fuentes, 2007; Dunson and

Park, 2008). Several other constructions have been proposed in the recent literature,

including Fuentes-Garćıa et al. (2009), Taddy (2010), and Rodriguez and Dunson (2011).

In these constructions, the marginal DP property is lost. Also, for kernel stick-breaking

priors, the weights depend heavily on the assumed function of the covariate and the

specific choice is not always apparent.

When the collections of random distributions are constructed with weights

that change across the covariate and the atoms are common to all covariate levels, we

call this the “single-θ” DDP; that is, GX =
∑∞

l=1wlX δθl
. This formulation presents

a formidable complication with regard to the main inferential objectives for dose-

response experiments. The dose-response relationship is an important goal and, in

general, it is assumed that the probability of a response increases as the dose level

increases. As discussed in Chapter 3, the proposed DDP mixture models may not force

a monotonically increasing relationship, however, we can incorporate monotonicity in

prior expectation. This is imperative in terms of prediction at unobserved dose levels

to anchor the inference with an increasing trend. In the case of the single-θ DDP prior,

there is no means to force such a trend across the dose levels for any functional. As

the weights and atoms are independent of each other, the expectation of a functional of
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the mixture becomes the infinite sum of the expectation of the dose-dependent weights

multiplied by the functional evaluated at each atom. By definition, the sum of the

expectation of the weights is equal to one. What remains is the sum of the functional

evaluated at the atoms, and therefore the expectation of the functional is free of the

dose level.

While the DDP prior in full generality can be applied in models for a vast

array of experimental designs and has desirable properties, it can be complicated to

implement and may require large data sets to sufficiently learn about parameters. In

our nonparametric mixture model formulations, the choice of the single-p version of

the DDP prior strikes a good balance between model flexibility and computational

feasibility. Data from the experiments of interest have on the order of 5-10 dose levels

and are not likely to indicate drastic changes in distributional shapes between nearby

dose levels. The small number of dose levels may be problematic for learning about

the parameters in more general models where the DDP prior weights are also dose

dependent.

Ergo, the general DDP prior, including covariate dependent weights and atoms,

may struggle in these settings due to the generally limited data. The inability to

induce a trend a priori in the dose-response curve terminates the single-θ version.

As the methodological details and data examples will demonstrate, the single-p DDP

prior mixture model is sufficiently flexible to capture the dependence structure of

the distributions across dose levels, while remaining interpretable and manageable to

implement.

In fact, the single-p DDP mixture framework can be simplified even further

to accommodate special requirements for experimental data. This is fitting for the

types of bioassay experiments studied in Chapter 4, where monotonicity for the dose-
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response curves is a standard assumption. Under particular choices for the mixture

kernel, we may choose to reduce the centering GP of the prior to a linear function of

the dose levels and mix over the regression coefficients. Specifically, setting ηl(x) =

γ0l + γ1lx in (2.2) yields the linear DDP prior (e.g., DeIorio et al., 2009). Here, the

(γ0l, γ1l) are i.i.d. from a centering distribution given hyperparameters, typically, with

independent components. The lessening of the link between the mixing distributions

supports implementation details which are straightforward. With respect to inference

for bioassay studies, provided a restriction on the γ1l, the linear-DDP models presented

in Chapter 4 imbue, with probability 1, a non-decreasing characteristic on the dose-

response curves.

The following section showcases the practicality of the single-p DDP prior

in a generic mixture model setting. Specifically, the details within the section build

the foundation for the Markov chain Monte Carlo (MCMC) framework utilized for the

models in Chapter 3.

2.3 Implementation for single-p DDP mixture models

For demonstration of the implementation details, consider estimation of a

collection of densities indexed by a single covariate, x. For all the models disclosed

in this dissertation, the covariate is dose level. Given response y, we assume a prior

model of

f(y | GX ) =
∫
k(y; θ))dGX (θ), GX ∼ DDP(α,G0X ).

The base stochastic process, G0X , is a univariate Gaussian process for illustrative

purposes. To model more complex data structures, we may need multiple mixing

parameters and, consequently, G0X will increase in dimension accordingly.
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There are multiple avenues to traverse by way of implementation of DP mixture

models. One popular route, especially in the early literature, takes advantage of the DP

Pólya urn representation (e.g., Escobar and West, 1995; Bush and MacEachern, 1996;

MacEachern and Müller, 1998; Neal, 2000). Alternatively, we choose to truncate the

infinite dimensional DP from the outset and use the blocked Gibbs sampler (Ishwaran

and Zarepour, 2000; Ishwaran and James, 2001) to exploit the ready implementation

and the ease with which it can handle unbalanced replicates.

The responses, y, are observed at N distinct levels of the covariate with ni

replicates at each level. To connect with the data structures considered in Chapter 3,

we assume these response replicates arise as vectors across the range of observed x.

That is, let yj = (y1j , . . . , yNj) be the j-th response vector, for j = 1, . . . , n. To account

for possible unbalanced designs, we introduce missing value indicators, sij , such that

sij = 1 if the jth replicate at dose level i is present and sij = 0 otherwise. We denote

the mixing parameters for the jth replicate as θj = (θj(x1), . . . , θj(xN )). Hence, the

first stage of the hierarchical model for data can be expressed as

{yij} | {θj} ∼
n∏
j=1

N∏
i=1

{k (yij ; θj(xi)))}sij ,

where the θj , given Gx, are i.i.d. Gx for j = 1, . . . , n, and Gx has a DP(α,G0x) prior

induced by the DDP prior for GX . Resultantly, G0x is the N -variate normal distribution

implied by the GP, with mean µ and covariance matrix Σ. We will use ψ to denote the

vector of G0X hyperparameters.

Note that the hierarchical model for the data is a DP mixture model induced

by the DDP mixture prior. For MCMC posterior simulation, we will use blocked

Gibbs sampling which is based on truncation of Gx, induced by a finite truncation

19



approximation to GX . Truncating GX at a sufficiently large level L, the model includes

GLX =
∑L

l=1 plδZlX , where the ZlX = {Zl(x) : x ∈ X} are independent realizations, given

ψ, from G0X , and the weights pl arise from a truncated version of the stick-breaking

construction: p1 = V1, pl = Vl
∏l−1
r=1(1 − Vr), l = 2, . . . , L − 1, and pL = 1 −

∑L−1
l=1 pl,

with the Vl independent, given α, from Beta(1, α). The joint distribution for the set

of L random weights is given by a special case of the generalized Dirichlet distribution

(Connor and Mosimann, 1969),

f(p | α) = αL−1pα−1
L (1− p1)−1(1− (p1 + p2))−1 × · · · × (1−

L−2∑
l=1

pl)−1.

Moreover, Zl(x) = (Zl(x1), . . . , Zl(xN )) ≡ Zl, with the Zl i.i.d., given ψ, from G0x,

for l = 1, ..., L. Introducing configuration variables w = (w1, . . . , wn), where each wj

takes a value in {1, . . . , L}, we have wj = l if and only if θj = Zl, for j = 1, . . . , n and

l = 1, . . . , L. Therefore, the hierarchical model is given as follows

{yij} | {Zl},w ∼
n∏
j=1

N∏
i=1

{k(yij ;Zwj (xi))}sij

{wj} | p ∼
n∏
j=1

L∑
l=1

plδl(wj)

p | α ∼ f(p | α)

{Zl} | ψ ∼
L∏
l=1

G0x(Zl;ψ) (2.3)

and is completed with hyperpriors for α and ψ.
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2.3.1 Prior specification

While prior specification is model specific, there are some commonalities;

namely, the approach for the prior given to α and the value of the truncation level

are related and discussed here. The DDP prior precision parameter, α, controls the

number, n∗ ≤ n, of distinct mixture components (e.g., Antoniak, 1974; Escobar and

West, 1995). In particular, for moderate to large sample sizes, a useful approximation

to the prior expectation E(n∗ | α) is given by α log{(α+ n)/α}. This expression can be

averaged over the gamma(aα, bα) prior to be placed on α to obtain E(n∗), thus selecting

aα and bα to agree with a prior guess at the expected number of distinct mixture

components.

Additionally, the truncation level L for the DDP prior approximation can be

chosen using standard distributional properties for the weights arising from the stick-

breaking structure. For instance, E(
∑L

l=1 ωl | α) = 1 − {α/(α + 1)}L, which can be

averaged over the prior for α to estimate E(
∑L

l=1 ωl). Given a specified tolerance level

for the approximation, this expression is solved numerically to obtain the corresponding

value L.

2.3.2 Implementation and posterior inference

Next, we provide an outline of the methods for MCMC posterior simulation

and predictive inference. For notational purposes, we denote the n∗ distinct values of

vector w by w∗1, . . . , w
∗
n∗ , M

∗
k = |{j : wj = w∗k}|, k = 1, . . . , n∗, and Ml = |{wj : wj = l}|,

l = 1, . . . , L.

Updating the mixing parameters, {Zl}, depends on the value of l. If l /∈ {w∗k :

k = 1, . . . , n∗}, then Zl arises from the prior multivariate normal distribution induced
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by the GP, G0x = NN (µ,Σ). If l ∈ {w∗k : k = 1, . . . , n∗}, then Zl is drawn from

Zw∗k | ψ,data ∝ NN (Zw∗k ;µ,Σ))
∏

{j:wj=w∗k}

N∏
i=1

{k(yij ;Zw∗k(xi))}sij .

This requires a Metropolis-Hastings step for updating, unless k(·) is the normal

distribution and the data have balanced replicates. Further attention is given to these

updates in Chapter 3, where the proposed mixture models are built from discrete or

combined discrete-continuous kernel distributions.

The new draws for wj come from a discrete distribution given by
∑L

l=1 p̃ljδl(·),

where p̃lj is proportional to pl
∏N
i=1{k(yij ;Zl(xi))}sij .

The conditional posterior of p is given by a generalized Dirichlet distribution

with parameters (M1 + 1, . . . ,ML−1 + 1) and (α +
∑L

k=2Mk, . . . , α + ML) (Ishwaran

and James, 2001). This distribution is not easy to work with directly, but vector p

can be generated through latent V ∗1 , . . . , V
∗
L−1 by setting p1 = V ∗1 , pl = V ∗l

∏l−1
r=1(1 −

V ∗r ), l = 2, . . . , L − 1, and pL = 1 −
∑L−1

l=1 pl, where the V ∗l are independent from

Beta(Ml + 1, α+
∑L

k=l+1Mk). The full conditional for α is a gamma distribution with

shape parameter L+ aα − 1 and rate parameter bα − log pL = bα −
∑L−1

l=1 log(1− V ∗l ).

Finally, the GP mean and covariance function drive the updates for ψ. Specific details

are provided in the context of the models of Chapter 3.

Regarding posterior predictive inference and inference for functionals of the

mixture, consider new responses y0 corresponding to a generic x0. The approach to

estimating predictive densities or mixture functionals depends on whether x0 is among

the observed covariate levels or a new level. Inference for observed x0 uses the samples

of Z and p, which define the mixing distribution at all the observed x values. To
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interpolate and extrapolate at unobserved covariate levels, x̃0 = (x̃01, . . . , x̃0M ), we need

the predicted sample paths of the Gaussian process realizations. The mixing parameter

vector is extended to (Zl, Z̃l), for l = 1, . . . , L, where given model parameters and

the Zl, the new Z̃l are obtained through standard conditioning under multivariate

normal distributions. Again, the form of the mean and covariance matrix of the

conditional normal distributions relies on the assumptions of the Gaussian process mean

and covariance function.

We have described the main details of the MCMC algorithm to obtain samples

from the posterior distribution of a single-p DDP mixture model. Each specific model

in Chapter 3 and 4 describes briefly the distinguishing updates, as well as the inference

methods for key risk assessment functionals of the mixture models.

2.4 Discussion

Bayesian nonparametrics and the Dirichlet process provide flexible priors for

mixture models. The resulting models can capture both standard and non-standard

densities and functionals, while remaining easy to implement and interpret. Based on

these attributes, we move forward with the development of the modeling frameworks

for the various types of dose-response data studied in this dissertation.
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Chapter 3

Bayesian nonparametric framework for

developmental toxicity studies

This chapter provides details for the different developmental toxicology

settings: the Segment II studies in Section 3.1 for combined negative outcomes and

the multicategory responses in Section 3.2; studies including a continuous response for

the live pups in Section 3.3; experiments where the animals are exposed to the toxin

prior to implantation in Section 3.4.

3.1 Segment II studies: combined negative outcomes

A variety of approaches for the analysis of Segment II developmental toxicity

studies have been suggested in the statistical literature. Modeling approaches based

on standard parametric response distributions and/or customary parametric forms for

dose-response curves include Chen et al. (1991), Catalano and Ryan (1992), Ryan

(1992), Zhu et al. (1994), and Regan and Catalano (1999). However, due to the

various sources of heterogeneity, data from many studies indicate vast departures from
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parametric models. A different line of research has focused on classical semiparametric

or likelihood estimation for the joint distribution of the vector of binary responses

associated with each dam under the assumption of exchangeability (e.g., Bowman and

George, 1995; George and Bowman, 1995; Kuk, 2004; Pang and Kuk, 2005). Although

such approaches provide more general modeling for the response distribution than

traditional parametric models, dose-response relationships are still introduced through

parametric forms. Moreover, inferential challenges include interpolation at unobserved

dose levels (a key objective for risk assessment) as well as uncertainty quantification for

point estimates.

By comparison to likelihood and classical semiparametric approaches, Bayesian

methods have not been widely used for the analysis of developmental toxicity studies.

To our knowledge, the only Bayesian semiparametric model is presented by Dominici

and Parmigiani (2001), using a product of mixtures of Dirichlet process prior structure.

To overcome the limitations of parametric approaches, and at the same time

retain a fully inferential framework, we develop a Bayesian nonparametric mixture

model that provides flexibility in both the response distribution and the dose-response

relationship. We seek mixture modeling for response distributions that are related

across doses with the level of dependence driven by the distance between the dose

values. To this end, we consider a dependent Dirichlet process (DDP) prior for the

dose-dependent mixing distributions, in particular, the single-p DDP prior structure,

as introduced and motivated in Chapter 2. Inference and prediction under DDP priors

require replication, which arises through the number of dams observed at each dose

level. The replicated count responses in conjunction with a nonparametric mixture

of Binomial distributions, induced at each dose value by the DDP mixture model,

enable flexible inference for the response distribution at any observed dose level. And,
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importantly, the dependence of the DDP prior across dose levels allows data-driven

prediction for collections of response distributions, as well as inference for the implied

dose-response relationship, through interpolation (and extrapolation) over any range of

dose values of interest. We develop properties of the DDP model that are key for the

application to developmental toxicity studies. We discuss various forms of inference

that are available under the model, as well as the MCMC details that deviate from

those presented in Chapter 2. Traditional parametric dose-response models are shown

to be special (limiting) cases of the nonparametric DDP mixture model, which, using

simulated data sets, is also compared with simpler semiparametric Bayesian methods.

In particular, in the context of the simulation study, we provide comparison of the

semiparametric model from Dominici and Parmigiani (2001) with the proposed DDP

model.

As exhibited in Section 1.2, models for the combined negative outcomes are the

prevalent structure found in the statistical literature. We focus on this case inasmuch

as it provides a conveniently simple setting for notation, model details, and comparison

with other models. More general models which are applicable to more biologically

realistic settings are established in later sections.

3.1.1 Methods

Under the Segment II toxicity study design, exposure occurs after

implantation. Thus, following standard arguments from the literature (e.g., Zhu et al.,

1994), we treat the number of implants, m, as a random quantity containing no

information about the dose-response relationship. That is, we assume m | κ ∼ f(m;κ),

where κ are parameters of the implant distribution which do not depend on x. Here,

we take f(m;κ) = Pois(m;λ), where we have shifted the Poisson distribution to
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have support m ≥ 1; however, more flexible distributions can be readily utilized.

We focus on the data structure that involves the number of implants, mij , and the

corresponding number of combined negative outcomes, yij , for dam j = 1, . . . , ni at

dose level xi, i = 1, . . . , N. With the assumption of an implant distribution that does

not depend on dose level, the modeling for the number of implants and the number of

negative outcomes is decomposed to f(m, y) = f(m)f(y | m). Therefore, inference for

the parameters of the implant distribution is carried out separately from inference for

the parameters of the model for f(y | m).

To relax the potentially restrictive assumptions imposed by standard

parametric models, we propose a nonparametric mixture modeling framework for the

dose-dependent conditional distribution of the number of negative outcomes given the

number of implants. In other words, we seek modeling for the response distribution that

allows nonparametric dependence structure across dose levels. We achieve such modeling

by representing f(y | m) as a mixture of Binomial distributions with dose-dependent

mixing distribution. Placing a DDP prior on the collection of mixing distributions

indexed by dose level yields the desired nonparametric prior model for the collection of

dose-dependent response distributions.

More formally, we propose the following DDP prior mixture model

f(y | m;GX ) =
∫

Bin
(
y;m,

exp(θ)
1 + exp(θ)

)
dGX (θ), GX | α,ψ ∼ DDP(α,G0X )

(3.1)

where DDP(α,G0X ) denotes the single-pDDP prior forGX =
∑∞

l=1 ωlδηlX with precision

parameter α and base stochastic process G0X that depends on parameters ψ; the model

is implemented with hyperpriors on α and ψ. We take G0X to be a GP with a

linear mean function, constant variance, and isotropic power exponential correlation
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function. Hence, for all l, E(ηl(x) | β0, β1) = β0 + β1x, Var(ηl(x) | σ2) = σ2, and

Corr(ηl(x), ηl(x′) | φ) = exp(−φ|x − x′|d), with φ > 0 and (fixed) d ∈ [1, 2] (and thus

ψ = (β0, β1, σ
2, φ)). The DDP Binomial mixture model is completed with (independent)

priors for the DDP hyperparameters, in particular, we place a gamma prior on the

precision parameter α, normal prior on β0, an inverse gamma prior on σ2, and a uniform

prior on φ over (0, bφ). Moreover, a gamma prior is taken for β1 to incorporate a

non-decreasing trend in prior expectation for the dose-response curve, which is a key

consideration for the modeling approach. The linear mean function enables connections

with standard parametric dose-response models, which arise as limiting cases of the

DDP mixture model, as discussed in the next section which also includes development

of further properties of the DDP Binomial mixture model.

Model properties

Hereinafter, π(u) = exp(u)/(1 + exp(u)), u ∈ R, will be used to denote the

logistic function.

The DDP Binomial mixture model in (3.1) includes both the hierarchical

Binomial-logistic-normal model and the standard Binomial-logit model as special

(limiting) cases. As α → ∞, each response replicate has a distinct mixing

parameter. If we also assume the GP for G0X is a white noise process, (i.e., φ

→ ∞) we obtain the hierarchical Binomial-logistic-normal model, yij | mij , θij
ind.∼∏N

i=1

∏ni
j=1 Bin(yij ;mij , π(θij)), with θij | β0, β1, σ

2 ind.∼ N(β0 + β1xi, σ
2). If we let

σ2 → 0+, we arrive at the standard Binomial-logit model as a further special limiting

case. In the other extreme, as α → 0+, all the response replicates are assigned to a

single mixture component. This, along with the white noise process assumption, yields

a Binomial-logistic normal model with a common mean for each animal within a dose
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level. In other words, as α → 0+, yij | mij , θi
ind.∼

∏N
i=1

∏ni
j=1 Bin(yij ;mij , π(θi)), with

θi | β0, β1, σ
2 ind.∼ N(β0 + β1xi, σ

2). Again, with the additional restriction of σ2 → 0+,

we obtain the standard Binomial-logit model.

The DDP prior for GX =
∑∞

l=1 ωlδηlX allows for a flexible response distribution

at each fixed level of x through a DP mixture model. Consider a realization θX = {θ(x) :

x ∈ X}, which, given GX , arises from GX . Then, for any x, x′ ∈ X , Cov(θ(x), θ(x′) |

GX ) =
∑
ωlηl(x)ηl(x′)− {

∑
ωlηl(x)}{

∑
ωlηl(x′)}. Therefore, although GX is centered

around a stationary GP, it generates nonstationary realizations with non-Gaussian finite

dimensional distributions. Moreover, if Gx and Gx′ denote the marginal distributions

of θ(x) and θ(x′) under GX , then the continuity of the ηlX implies that, as the distance

between x and x′ gets smaller, the difference between Gx and Gx′ gets smaller; formally,

for any ε > 0, lim|x−x′|→0 Pr(L(Gx, Gx′) < ε) = 1, where L is the Lévy distance

(MacEachern, 2000). Hence, the level of dependence between Gx and Gx′ , and thus

between f(y | m;Gx) and f(y | m;Gx′), is driven by the distance of the dose levels. The

practical implication is that in prediction for the inferential objectives, we learn more

from covariate levels x′ nearby x than from more distant levels, a desirable property for

distributions that are expected to evolve relatively smoothly with the dose level.

Next, we discuss a useful connection of the DDP mixture model in (3.1), which

is built from the Binomial kernel for the number of combined negative outcomes within

a dam, with a DDP mixture model based on a product of Bernoullis kernel for the

set of binary responses for all implants corresponding to that dam. This connection

is requisite for the study of risk assessment quantities such as the dose-response curve

and intra-cluster correlations. The mixture model using the underlying vector of binary

responses (denoted by y∗ = (y∗1, . . . , y
∗
m)) for a generic dam with number of implants m
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at dose level x is given by

f∗(y∗ | m;GX ) =
∫ m∏

k=1

Bern(y∗k;π(θ))dGX (θ), (3.2)

where the same DDP prior as before would be assigned to GX . Note that the model

formulation involves a common mixing parameter for all binary outcomes associated

with the same dam. Below, we show that mixture models (3.1) and (3.2) are equivalent

in the sense that the moment generating function for the number of negative outcomes

under (3.1) is equal to the moment generating function for the sum of binary responses

under (3.2).

Connection between the DDP Binomial and DDP product of Bernoullis

mixture models: The moment generating function for the number of negative

outcomes under model (3.1) is given by

E(ety | m;GX ) =
∫ m∑

y=0

ety Bin(y;m,π(θ)) dGX (θ) =
∫ (

1 + exp(θ + t)
1 + exp(θ)

)m

dGX (θ)

=
∫ m∏

k=1

(
1 + exp(θ + t)

1 + exp(θ)

)
dGX (θ) =

∫ m∏
k=1

∑
y∗k=0,1

ety∗k Bern(y∗k;π(θ)) dGX (θ)

=
∑

y∗1=0,1

· · ·
∑

y∗m=0,1

et
Pm

k=1 y∗k

∫ m∏
k=1

Bern(y∗k;π(θ))dGX (θ) = E(et
Pm

k=1 y∗k | m;GX )

i.e., the moment generating function for the sum of binary responses under model (3.2).

Under the truncated mixing distributions, GLx =
∑L

l=1 plδZl(x), we can also

determine the correlation between two binary responses within the same dam at a

generic dose level x, i.e., Corr(y∗k, y
∗
k′ ;G

L
x ); we will refer to this as the intracluster

correlation (where the dam serves as the cluster). The expectations needed to
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obtain the intracluster correlation are E(y∗k;G
L
x ) = E(y∗k′ ;G

L
x ) =

∑L
l=1 plπ(Zl(x)),

and E(y∗ky
∗
k′ ;G

L
x ) =

∑L
l=1 pl(π(Zl(x)))2. Therefore, Var(y∗k;G

L
x ) = Var(y∗k′ ;G

L
x ) =

{
∑L

l=1 plπ(Zl(x))}− {
∑L

l=1 plπ(Zl(x))}2, and

Corr(y∗k, y
∗
k′ ;G

L
x ) =

{
∑L

l=1 pl(π(Zl(x)))2} − {
∑L

l=1 plπ(Zl(x))}2

{Var(y∗k;G
L
x )Var(y∗k′ ;G

L
x )}1/2

. (3.3)

Developmental toxicity studies typically give rise to overdispersed binary responses, that

is, Corr(y∗k, y
∗
k′ ;G

L
x ) > 0. Capitalizing on results for mixtures from exponential families,

it can be shown that the DDP mixture model supports positive intracluster correlations.

Positive intracluster correlation result: Consider the vector of binary responses,

y∗ = (y∗1, . . . , y
∗
m), for a generic dam with m (≥ 2) implants at dose level x. Denote by

π∗ = Pr(y∗k = 1;Gx) =
∫
π(θ)dGx(θ), k = 1, ...,m, the probability of a negative outcome,

and by γ = Corr(y∗k, y
∗
k′ ;Gx), the correlation between any pair of binary outcomes within

the same dam; γ is given by (3.3) under the DDP truncation approximation.

Under the implicit assumption of common π∗ and γ for all binary responses

within the same dam, the variance for the number of combined negative outcomes,

y =
∑m

k=1 y
∗
k, is given by Var(y | m;Gx) = mπ∗(1 − π∗){1 + (m − 1)γ}. (Note that

this result does not rely on the specific form of the mixture model for y in (3.1) or

the equivalent model for y∗ in (3.2).) Now, consider a random variable u, which

has a Binomial distribution with the same mean as y arising from f(y | m;Gx) =∫
Bin(y;m,π(θ))dGx(θ), that is, u ∼ Bin(m,π∗). Then, using overdispersion results

for mixtures from exponential families (e.g., Shaked, 1980), we have Var(y | m;Gx) ≥

Var(u) = mπ∗(1 − π∗), which yields γ ≥ 0. The case of γ = 0 arises only under the

limiting case of the mixture model, α→ 0+, where the mixture reduces to the Binomial
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kernel with a GP driving the probability of response.

Using four different combinations of fixed values for the DDP prior

hyperparameters, Figure 3.1 gives the resulting correlation structures across dose levels.

While always positive, the smooth evolution of correlations across dose level can have

parabolic, oscillatory, or linear patterns.
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Figure 3.1: Boxplots of prior realizations for the intracluster correlation across
dose levels under four different combinations of fixed values for the DDP prior
hyperparameters.

Dose-response relationship

Using the mixture formulation in (3.2) for the underlying binary outcomes,

we define the dose-response curve through the probability of a negative outcome for

a generic implant expressed as a function of dose level. Therefore, under the DDP
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truncation approximation, the dose-response curve is given by

Pr(y∗ = 1;GLX ) =
∫
π(θ)dGLX (θ) =

L∑
l=1

plπ(ZlX ). (3.4)

Note that, although this is a conditional probability (given m = 1), we suppress this

implicit conditioning in the notation.

Smoothness properties of prior realizations for the dose-response function

emerge directly from properties of prior realizations ZlX under the centering GP G0X .

In particular, for choices of d ∈ [1, 2) (d = 2) for the GP correlation function, the

continuity (differentiability) of the ZlX yields continuous (differentiable) dose-response

curves under the DDP Bernoulli mixture model.

A key aspect of the model is that it does not force a monotonicity restriction

to the dose-response function, which is an assumption for standard parametric dose-

response models. However, the prior expectation E(Pr(y∗ = 1;GLX )) is non-decreasing

in x provided β1 > 0, as shown next.

Monotonicity of the prior expectation for the dose-response curve: Denote

by D(x), x ∈ X , the prior expectation for the dose-response curve.

Under the DDP truncation approximation, D(x) = E(Pr(y∗ = 1;GLx )) =∑L
l=1 E(pl)E(π(Zl(x))), since {Zl(x) : l = 1, ..., L} is independent of {Vl : l =

1, ..., L−1}, which is the collection of i.i.d. Beta(1, α) variables that define the pl through

stick-breaking. Therefore, for any x < x′, D(x) − D(x′) =
∑L

l=1 E(pl){E(π(Zl(x))) −

E(π(Zl(x′)))}. Now, for any l = 1, ..., L, random variables Zl(x) and Zl(x′) follow

N(β0 + β1x, σ
2) and N(β0 + β1x

′, σ2) distributions, respectively. Hence, if β1 > 0,

Zl(x) is stochastically smaller than Zl(x′), for each l = 1, ..., L. This in turn implies
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E(π(Zl(x))) ≤ E(π(Zl(x′))), for all l = 1, ..., L (since π(u) is an increasing function),

and thus D(x) ≤ D(x′).

The above argument establishes the result for the form in (3.4), which is the

one we work with to obtain inference for the dose-response relationship. The result can

also be obtained without the truncation approximation. In this case, we have D(x) =

E(Pr(y∗ = 1;Gx)) = E{
∫
π(θ)dGx(θ)} =

∫
π(θ)dG0x(θ), where G0x = N(β0 + β1x, σ

2).

Therefore, D(x) is the expectation of the (increasing) logistic function with respect

to G0x, which is stochastically ordered in x provided β1 > 0, and thus D(x) is a

non-decreasing function of x.
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Figure 3.2: Prior realizations with mean (blue) and 90% probability bands (red) for the
dose-response curve given β1 > 0 (top row) and β1 = 0 (bottom row). The remaining
hyperparameters are fixed to values that increase the variability of the realizations
moving from the left to the right column.

Including an increasing trend in prior expectation is crucial for practicable

posterior inference. In particular, if the model is applied using a constant mean function

for the DDP prior centering GP (i.e., setting β1 = 0), there is little hope to obtain
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meaningful interpolation and extrapolation results for the dose-response curve. Figure

3.2 shows prior realizations of the dose-response curve, evaluated using (3.4) over a grid

of dose values, along with the mean and 90% interval bands. The top row has β1 fixed

at 0.12, whereas in the bottom row β1 is fixed at zero. In the far left column, the

hyperparameters are chosen such that the error bands are narrow and the individual

draws are relatively smooth. Moving to the right, the hyperparameters are designated

such that the variability of the realizations increases. In all cases, the top row depicts the

increasing trend in prior expectation, though not necessarily for any given realization,

whereas the bottom row does not show this trend.

Even though we insist on the non-decreasing trend in prior expectation,

prior (and thus posterior) realizations for the dose-response curve are not structurally

restricted to be non-decreasing. An illustration of this model feature is provided in

Section 3.1.3, where the shape of the estimated dose-response curve for the DEHP data

is indicative of a possible hormetic relationship (see discussion in Chapter 1). The fact

that the DDP mixture model allows non-monotonic dose-response relationships to be

uncovered is an asset of the proposed modeling approach, and, arguably, a practical

advance relative to existing methods.

Prior specification

Regarding the choice of d, we have experimented with both exponential and

Gaussian correlation functions (d = 1 and d = 2, respectively). For all data examples

of Sections 3.1.3 and 3.1.4, inferences were largely unaffected by the particular choice.

However, as numerical instabilities may arise assuming a Gaussian correlation function,

we take the exponential for this analysis and the remaining analyses within the chapter.

To specify bφ, we consider the limiting case of the DDP mixture model with α →
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0+, which corresponds to a Binomial response distribution with a GP prior for the

dose-response function on the logistic scale. Then, under the exponential correlation

function, 3/φ is the range of dependence, i.e., the distance between dose levels that

yields correlation 0.05. The range is usually assumed to be a fraction of the maximum

interpoint distance over the index space. Let Dmax be the maximum distance between

observed doses. Since 3/bφ < 3/φ, we specify bφ such that 3/bφ = rDmax for a small

r. This approach to prior specification for φ is noninformative, in particular, for all

data analyses considered, the posterior distribution for φ is concentrated on values

substantially smaller than bφ.

We set the means of the normal priors for the centering GP linear mean

parameter, β0, to 0, β1 to 1/bφ, and the shape parameter of the inverse gamma prior for

the GP variance, σ2, to 2 (implying infinite prior variance). The prior variances for β0

and β1 and the prior mean for σ2 are chosen by studying the induced prior distribution

for the dose-response curve for which prior realizations can be readily sampled using

the definition in (3.4). Specifically, under the prior choice discussed below, the prior

mean for Pr(y∗ = 1;GLX ) begins around 0.5 with a slight increasing trend, and the

corresponding 95% interval bands are essentially spanning the (0, 1) interval.

Note that this prior specification approach is fairly automatic as it only requires

a range of dose values along with a reasonable prior for α (chose as discussed in Chapter

2). In particular, since the range is comparable for all data examples in Sections 3.1.3

and 3.1.4, we used the same prior setting for all analyses: a normal prior for β0 with

mean 0 and variance 10; an exponential prior with mean 0.1 for β1; an inverse gamma

prior for σ2 with shape parameter 2 and mean 25; a uniform prior for φ over (0, 10); and

a gamma(2, 1) prior for α. Prior sensitivity analysis revealed robust posterior inference

under less and more dispersed priors. Finally, we set the truncation level to L = 50,
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which results in E(
∑L

l=1wl) ≈ 0.9999593 averaging over the given prior on α.

3.1.2 Posterior inference

MCMC simulation

As noted in Chapter 1, we observe that for the DEHP data, discussed in

Section 1.2, the dams are labeled and recorded in ascending numerical order across

dose levels. (This is also the case for other data sets available from the database of

the National Toxicology Program.) Therefore, the animals can be linked as a response

vector across the dose levels with the conditional independence assumption built for the

replicated response vectors. Hence, the data structure and corresponding hierarchical

model is along the lines of the spatial DP (Gelfand et al., 2005) rather than, for instance,

the ANOVA DDP (DeIorio et al., 2004). The latter would be appropriate for more

traditional quantal response bioassay settings where exchangeability both across and

within dose levels is the more natural assumption.

More specifically, let yj = (y1j , . . . , yNj) be the jth response replicate with

number of implants vector mj = (m1j , . . . ,mNj), for j = 1, . . . , n, and θj ≡ θj(x) =

(θj(x1), . . . , θj(xN )) be the latent mixing vector for yj and x = (x1, . . . , xN ). Then, the

first stage of the hierarchical model for the data is written as

({mij}, {yij}) | {θj} ∼
n∏
j=1

N∏
i=1

{Bin (yij ;mij , π(θj(xi)))}sij

N∏
i=1

ni∏
j=1

Pois(mij ;λ)

where G0x = NN (β0jN +β1x,Σ), where jN is an N × 1 vector of ones and Σ is induced

by the GP covariance function, that is, Σ = σ2H(φ) with Hij(φ) = exp(−φ|xi − xj |d).

Note that inference for the implant distribution, using a gamma prior for λ,

is implemented independent of the DDP mixture, and is not discussed further except
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with regard to posterior predictive calculations.

Given the truncation approximation and configuration variables as discussed

in Chapter 2 (see model (2.3)), we can write the hierarchical model for the yij as

{yij} | {mij},w,Z ∼
n∏
j=1

N∏
i=1

{
Bin

(
yij ;mij , π(Zwj (xi))

)}sij

wj | p
i.i.d.∼

L∑
l=1

plδl(wj), j = 1, . . . , n

(p,Z) | α,ψ ∼ f(p | α)×
L∏
l=1

G0x(Zl | ψ) (3.5)

with priors on α and ψ. Prior specification is discussed in the section following the

dose-response inferences.

Under model (3.5), updating the mixing parameters Zl efficiently is vital. In

light of this, we discuss here options for these Metropolis-Hastings steps. Specifically,

the full conditional for Zl depends on whether l corresponds to one of the distinct

components. If l /∈ {w∗k : k = 1, . . . , n∗}, then Zl is drawn from the NN (β0jN + β1x,Σ)

distribution. For l ∈ {w∗k : k = 1, . . . , n∗},

Zw∗k | w, ψ,data ∝ NN (Zw∗k ;β0jN+β1x,Σ)
∏

{j:wj=w∗k}

N∏
i=1

{
Bin

(
yij ;mij , π(Zw∗k(xi))

)}sij

which is sampled with a Metropolis-Hastings step. This step was approached in

many ways including slice sampling and random-walk updates with various covariance

matrices. One course included scaled identity covariance matrices, another used the

output from the previous model to dynamically estimate the proposal covariance

matrix. Furthermore, component-specific covariance matrices were estimated from

initial runs. Mixing and acceptance rates were optimal given a covariance matrix for
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the proposal distribution that is of the same form as the GP prior, with (i, j)-th element

a exp(−b|xi − xj |), where a and b are tuning parameters. For instance the 2,4,5-T data

set (Section 3.1.3), a = 1.12 and b = 0.1 provided acceptance rates between 0.15 and

0.20.

The conditional posterior for each wj , j = 1, ..., n, is a discrete distribution,∑L
l=1 p̃ljδl(wj), where p̃lj ∝ pl

∏N
i=1 {Bin (yij ;mij , π(Zl(xi)))}sij , for l = 1, ..., L.

Given the GP assumptions, the joint full conditional for the hyperparameters

of G0X is shown by

p(β0, β1, σ
2, φ | Z,w, data) ∝ p(β0)p(β1)p(σ2)p(φ)

n∗∏
k=1

dG0x(Zw∗k | β0, β1, σ
2, φ),

where p(·) denotes the respective priors. Specifically, β0 is given a normal

prior, N(m0, s
2
0), β1 has an exponential prior, and σ2 is assigned an

inverse-gamma prior with shape parameter aσ > 1 and mean bσ/(aσ − 1).

Then, β0 has a normal posterior full conditional distribution with mean(
m0s

−2
0 + j′NΣ−1

∑n∗

k=1(Zw∗k − β1x)
)
/
(
s−2
0 + n∗j′NΣ−1jN

)
and variance(

s−2
0 + n∗j′NΣ−1jN

)−1. We sample β1 through a random-walk Metropolis-Hastings

step with a normal proposal on the log scale. Moreover, σ2 has an inverse gamma

full conditional with shape parameter aσ + 0.5n∗N and rate parameter bσ+

0.5
∑n∗

k=1(Zw∗k − β0jN − β1x)′H−1(φ)(Zw∗k − β0jN − β1x). Under the Unif(0,bφ) prior

for φ, its full conditional is proportional to

|H(φ)|−n∗/2 exp
(
−0.5σ−2

∑n∗

k=1
(Zw∗k − β0jN − β1x)′H−1(φ)(Zw∗k − β0jN − β1x)

)
,

for 0 < φ < bφ. While this distribution is not available in closed form, it can be sampled
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using a Metropolis-Hastings step or by discretizing its support.

Inference for the dose-response relationship and risk assessment

Consider new responses (m0, y0) corresponding to a generic dose level

x0. Under the assumed formulation for the joint distribution, f(m, y;λ,GX ) =

Pois(m;λ)f(y | m;GX ), the posterior predictive distribution for (m0, y0) can be

separated into the conditional predictive for y0 and the marginal predictive for m0.

That is, p(m0, y0 | x0, data) =
∫

Pois(m0;λ)p(λ | data)dλ× p(y0 | m0, x0,data). The

expression for p(y0 | m0, x0,data) depends on whether x0 is among the observed doses

or a new dose level, and can be obtained as a special case of the general form below.

Therefore, to obtain inference for the joint posterior predictive distribution, at each

iteration of the MCMC algorithm, we draw m0 from a shifted Poisson with mean λ,

then given m0 and the current values of the DDP parameters, obtain a predictive draw

for y0.

Moreover, each posterior sample for (p,Z) provides a posterior realization for

GLx directly through its definition,
∑L

l=1 plδZl(x). Next, given the predictive draw for

the number of implants m0, for any vector y0 = (y10, . . . , yN0), f(y0 | m0;GLx) =∑L
l=1 pl

∏N
i=1 Bin (yi0;m0, π(Zl(xi))) is a posterior realization from the conditional

response distribution at the observed doses.

To extend the inference beyond the N observed dose levels, we predict across

M new doses, x̃ = (x̃1, . . . , x̃M ), which may include values outside the range of the

observed doses. To predict a new vector of responses at all dose levels, (y0, ỹ0) =

(y10, . . . , yN0, ỹ10, . . . , ỹM0), given the corresponding number of implants m0, the mixing

parameter vector is extended to (Zl, Z̃l), for l = 1, . . . , L, as described in Chapter 2.

Denoting Z̃ = {Z̃l : l = 1, ..., L}, the conditional posterior predictive distribution for
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(y0, ỹ0) given m0 is given by

p((y0, ỹ0) | m0, x̃,data) =
∫ ∫ L∑

l=1

pl


N∏

i=1

Bin(yi0;m0, π(Zl(xi)))
M∏

j=1

Bin(ỹj0;m0, π(Z̃l(x̃j)))

×(
L∏

l=1

NM (Z̃l(x̃); µ̃l, Σ̃)

)
dZ̃dp(p,Z, α, ψ | data).

Here, µ̃l = (β0jM + β1x̃) + HMN (φ)H−1(φ)(Zl(x) − (β0jN + β1x)), where jK

denotes a vector of dimension K with all elements equal to 1, and HMN (φ) is the

M × N matrix with HMN
ij (φ) = exp(−φ|x̃i − xj |d). Moreover, Σ̃ = σ2{HMM (φ) −

HMN (φ)H−1(φ)(HMN (φ))T }, where HMM (φ) is the M ×M matrix with HMM
ij (φ) =

exp(−φ|x̃i − x̃j |d).

Using the posterior draws for the parameters at any set of dose levels, we

evaluate expression (3.3) to develop inference for the intracluster correlation as a

function of dose level. Standard hierarchical extensions of the Binomial model are

limited with regard to such inference, e.g., the Beta-binomial model involves the same

(positive) correlation for all dose levels. The data of Section 3.1.3 illustrate the practical

utility of the DDP mixture model in recovering dose-dependent intracluster correlation

patterns with appropriate uncertainty quantification.

Key to quantitative risk assessment is inference for the dose-response

relationship. Using the posterior samples for (p,Z, Z̃), we obtain the posterior

distribution of

Pr(y∗ = 1;GLx0
) =

L∑
l=1

plπ(Zl(x0))

arising from (3.4) for each x0 ∈ (x, x̃). These distributions can be summarized with

posterior means and two percentiles to provide point and interval estimates for the dose-

response curve Pr(y∗ = 1;GLX ) (as in Figures 3.6 and 3.7). It can be readily shown that
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the posterior expectation of Pr(y∗ = 1;GLx0
) is equal to the expectation of y0/m0 from

the joint posterior predictive distribution p(m0, y0 | x0,data), that is, E(y0/m0 | data) =

E(Pr(y∗ = 1;GLx0
) | data). As shown in Figure 3.12, the posterior predictive samples

for y0/m0 obtained across a range of dose levels also provide useful inference for the

dose-response relationship.

Finally, risk assessment can be based on estimation of the dose level xq that

corresponds to a specified probability, q, of a negative outcome, that is, q = Pr(y∗ =

1;GLxq
). For any set of probabilities q, each posterior realization for Pr(y∗ = 1;GLX )

can be (numerically) inverted to obtain the posterior distribution for the corresponding

inverted dose levels xq.

3.1.3 Data illustrations

We illustrate the nonparametric modeling approach with two data sets. We

first study a range of inferences under the DDP Binomial mixture model for a data set

commonly considered in the literature. The second data example is included to highlight

the feature of the DDP modeling framework with regard to recovering non-monotonic

dose-response relationships. Chapter 1 presents the two data sets in more detail.

Application to 2,4,5-T data

We first explore posterior inference for the DDP precision parameter, α, and

the corresponding number of distinct components, n∗. We also investigate the GP

hyperparameters, namely β0, β1, σ2, and φ. Under the prior specifications provided in

Section 3.1.1, the posterior densities peak significantly from the prior densities. Figure

3.3 includes histograms of the posterior distributions of the hyperparameters with the

prior density given in blue. In all cases, there is moderate to substantial learning for the
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Figure 3.3: 2,4,5-T data. Posterior densities of the precision parameter, α (top left),
n∗ (top middle), and the four GP hyperparameters: β0 (top right), β1 (bottom left), σ2

(bottom middle), and φ (bottom right). Prior densities are provided in blue.

parameters. We observe similar phenomena for the simulated and experimental data

sets explored through the rest of the dissertation.

Focusing on inference for conditional response distributions, Figure 3.4 plots

the posterior mean and 90% uncertainty bands for f(y | m = 12;GLxi
) at all observed

dose levels, and for f(y | m = 12;GLx̃0
) at two new doses, one (x̃0 = 50 mg/kg) within

the observed range, and one extrapolated at x̃0 = 100 mg/kg. The probability mass

functions corresponding to low and high dose levels depict shapes that could be captured

by traditional parametric models. However, in the mid-range of dose values, the DDP

mixture model uncovers non-standard probability mass function shapes, which suggest

bimodality. The estimated mass functions at the new dose levels have larger probability

bands, and their shape highlights the smooth evolution of the DDP-based response

distributions across dose levels.
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Figure 3.4: 2,4,5-T data. For the 6 observed dose levels and 2 new dose levels, the
posterior mean probability mass functions (denoted by “o”) and 90% probability bands
for the number of negative outcomes conditional on m = 12 implants.

The posterior densities for the intracluster correlations at the observed dose

levels are given in the left panel of Figure 3.5. The correlations depict an increasing

trend up to dose levels 60–75 mg/kg, with increasing uncertainty beyond dose 75 mg/kg

consistent with the smaller number of dams at the two higher dose levels. Using for

illustration four probabilities, q = 0.1, 0.25, 0.40, and 0.50, the right panel of Figure 3.5

shows the posterior densities of the corresponding calibrated dose level xq, obtained as

discussed in Section 3.1.2.

While results for response distributions are not shown here, we also fit the

Binomial-logit and Beta-Binomial models to the 2,4,5-T data. The Binomial-logit model

is not flexible enough to capture the non-standard distributions and estimates little

variation. The Beta-Binomial model also cannot deviate from unimodal probability
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Figure 3.5: 2,4,5-T data. The left panel plots the posterior densities for the intracluster
correlations at each of the six observed dose levels. The posterior densities for the
calibrated dose level corresponding to four probability thresholds are given in the right
panel.

mass functions, but attempts to compensate for the data heterogeneity by increasing

the variability in the probability of response, thereby producing large uncertainty bands.

This overcompensation is manifested in the overly wide probability bands

for the estimated dose-response curve under the Beta-Binomial model (Figure 3.6,

middle panel). On the other extreme, the Binomial-logit model underestimates the

uncertainty in the curve, and is also restricted to the logistic function shape (Figure

3.6, left panel). The posterior mean estimate from the DDP mixture model (Figure

3.6, right panel) supports a non-decreasing dose-response relationship with curvature

that deviates at smaller doses from the logistic shape, and with larger uncertainty

at the interpolated values. The inference results for the dose-response curve provide

an interesting illustration of a nonparametric Bayesian model producing more realistic

uncertainty quantification for posterior estimates relative to simpler parametric models.

In particular, in contrast to continuous mixing that defines the Beta-Binomial model,

the discrete nature of the DDP prior enables clustering of the Binomial kernel latent
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mixing parameters, thus, controlling more effectively the variability of the estimated

conditional response distributions.
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Figure 3.6: 2,4,5-T data. The posterior mean estimate (solid line) and 90% probability
bands (dashed lines) for the dose-response curve, using the Binomial-logit model (left
panel), the Beta-Binomial model (middle panel), and the DDP Binomial mixture model
(right panel).

Application to DEHP data

Here, we present a brief analysis of the DEHP data, mainly to highlight the

feature of the DDP modeling framework with regard to recovering non-monotonic dose-

response relationships. A more substantial analysis of this data is found in Section 3.2,

given a more biologically relevant treatment of the multicategory classification.

First, we note that the data (Figure 3.7, left panel) appear to suggest a drop in

the probability of a negative outcome from the control level to level 25 mg/kg × 1000.

In addition to the graphical indication, the drop is suggested by an (admittedly crude)

“data-based” analysis, using independent Binomials with common probability for all

dams at each dose. The resulting (maximum likelihood) estimates of the probability
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of a negative outcome at doses 0 and 25mg/kg × 1000 are equal to 0.200 and 0.116,

with respective standard errors 0.0209 and 0.0179. As discussed in Section 1.2, such

a dose-response pattern may be associated with hormesis, and thus, it is practically

important to be able to quantify how well it is supported by the data.
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Figure 3.7: DEHP data. The left panel shows the data, where each circle corresponds
to a particular dam, the size of the circle is proportional to the number of implants, and
the coordinates of the circle are the dose level and the proportion of negative outcomes.
The right panel includes the posterior mean estimate (solid line) and 90% probability
bands (dashed lines) for the dose-response curve.

Indeed, this particular non-monotonic dose-response shape is apparent in the

posterior mean estimate and corresponding uncertainty bands for Pr(y∗ = 1;GLX )

(Figure 3.7, right panel). Under essentially all standard models for developmental

toxicology data, this dip in the dose-response curve would not be captured. Moreover,

the DDP Binomial mixture model is again able to recover varying shapes for conditional

response distributions across dose levels. In particular, point and interval estimates for

f(y | m = 12;GLx ) (not shown) support shapes that evolve with increasing dose from

right to left skewness, with bimodal probability mass functions uncovered for values of

x around observed dose 100 mg/kg × 1000.
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3.1.4 Comparison study

Here, we consider two synthetic data sets to check the performance of our model

and to compare with simpler semiparametric and nonparametric Bayesian models.

Simulated data

We work with simulated data sets generated under three distinct settings. The

first case includes a standard Binomial response distribution and a linear dose response

function, π(−4 + 0.12x). The second is based on a Binomial response distribution with

a non-standard non-linear function for the dose-response curve. In particular, we define

the probability of a negative outcome at dose x by π(h(x)), where h(x) = −2 + 0.04x−

0.25 sin(2.7x) − 1.1/(1 + x2). The third simulation example is built from a mixture

of three Binomial-logit distributions,
∑3

i=1 piBin(y;m,π(qi(x))), where (p1, p2, p3) =

(0.1, 0.4, 0.5), q1(x) = −2 + 0.02x, q2(x) = −10 + 0.20x, and q3(x) = −4 + 0.15x. For all

simulations, we use the values of the dose levels, number of dams, and implant vectors

from the 2,4,5-T data (see Section 1.2 and 3.1.3). Figure 3.8 plots the simulated data

sets, including the true dose-response curve.

Comparison models

For comparison, consider the semiparametric product of mixtures of Dirichlet

process (PMDP) model from Dominici and Parmigiani (2001), the only approach from

the Bayesian nonparametrics literature for analysis of developmental toxicology data.

The PMDP approach involves a different modeling structure than the DDP Binomial

mixture. We also consider comparison with two models that can be viewed as special

cases of the model developed in Section 3.1.1, a GP Binomial regression model, and a

more structured DDP mixture model which ensures monotonicity for the dose-response
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Figure 3.8: Simulation study. Each circle corresponds to a particular dam, the size of
the circle is proportional to the number of implants, and the coordinates of the circle
are the dose level and the proportion of negative outcomes. The left panel corresponds
to the first simulation setting (Binomial with standard logistic dose-response curve),
the middle panel to the second setting (Binomial with non-linear dose-response curve),
and the right panel to the third setting (three-component mixture of Binomial-logit
distributions). In each panel, the solid line denotes the true dose-response curve.

curve.

PMDP model: We implement the PMDP model as in Dominici and Parmigiani (2001)

with dose-specific precision parameters and a Binomial-logit centering distribution for

the number of negative outcomes given a fixed number of implants. Under the PMDP

model,

yij | Fij
ind.∼ Fij , j = 1, . . . , ni, i = 1, . . . , N (3.6)

Fij | {Ai}, (η0, η1) ind.∼ DP (Ai,Bin (mij , π(η0 + η1xi))) , j = 1, . . . , ni, i = 1, . . . , N.

By integrating out the infinite dimensional parameters, Fij , MCMC posterior sampling

involves an N + 2 dimensional Metropolis-Hastings step for the regression coefficients

and the N dose-specific precision parameters. Conditional on the Ai and (η0, η1),

the posterior distribution of Fij is a DP with updated parameters, and inference can
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be obtained using its definition. Following Dominici and Parmigiani (2001), we use

independent normal priors for η0 and η1 with mean 0 and variance 3, and independent

priors for the Ai arising from uniform distributions for the Ai/(10+Ai). For all simulated

data sets, there is significant learning for the Ai and, especially, for η0 and η1, under

this prior choice.

The PMDP model appears restrictive for inference outside the observed dose

levels as the distributions are dependent in a weak fashion being linked only through

the common regression coefficients. In particular, the probability of a negative outcome

at a new dose is problematic to define under the version of the PMDP model in (3.6).

Taking the precision parameter to be a function of dose, this probability can be shown to

follow a Beta(A(x)π(η0 +η1x), A(x)(1−π(η0 +η1x))) distribution obtaining a result for

the PMDP prior on a connection analogous to the one between DDP models (3.1) and

(3.2). This connection is established through working with the PMDP model centered

on a product of Bernoullis distribution. Through induction, starting with the cases of

m = 1 and m = 2, we find the probability of response for the individual pups, profiting

from the properties of the Dirichlet distribution. Evidently, effective interpolation

(or extrapolation) at new dose levels requires an appropriate dose-dependent prior

model for the DP precision parameter. In general, such a specification does not seem

straightforward, for instance, simple choices such as log(A(x)) = γ0 + γ1x (Carota and

Parmigiani, 2002) may not be sufficiently flexible to capture the degree to which the

data deviate from the centering Binomial distribution.

GP Binomial regression model: This model retains the restrictive Binomial

response distribution, but is more flexible than the Binomial-logit model in inference for

the dose-response curve. The GP model is a limiting case of the DDP mixture model

(as α→ 0+), in particular, it is based on a GP prior for the dose-response curve on the
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logistic scale,

yij | mij , {θ(xi)}
ind.∼ Bin (yij ;mij , π(θ(xi))) , j = 1, . . . , ni, i = 1, . . . , N

where (θ(x1), ..., θ(xN )) has a NN (ξ0jN + ξ1x,Λ) prior given hyperparameters

(ξ0, ξ1, τ2, ρ). Here, Λ = τ2H(ρ), and Hij(ρ) = exp(−ρ|xi − xj |d), with fixed

d ∈ [1, 2]. We used the exponential correlation function (d = 1) for both GP and

DDP mixture models. (The inference results discussed below were similar under the

Gaussian correlation function, although predictive inference under the GP model was

less numerically stable for d = 2.) The GP hyperparameters (ξ0, ξ1, τ2, ρ) are assigned

the same priors with the DDP hyperparameters (β0, β1, σ
2, φ) given in Section 3.1.1.

Linear-DDP mixture model: A distinguishing feature of the DDP mixture model

is that it supports non-monotonic dose-response relationships. We argue that this is

practically relevant in the analysis of developmental toxicology data.

However, if one wishes to enforce monotonicity for the dose-response curve

(with prior probability 1 rather than only in prior expectation), this can be accomplished

within the DDP mixture framework using a simplified version of the DDP prior.

Specifically, setting ηl(x) = γ0l + γ1lx in (2.2) yields the linear DDP prior as discussed

in Chapter 2. Here, the (γ0l, γ1l) are i.i.d., given hyperparameters, from a centering

distribution, typically, with independent components. Now, with the DP truncation

approximation, the linear-DDP Binomial mixture is given by

f(y | m;GLx ) =
L∑
l=1

plBin(y;m,π(γ0l + γ1lx)).

It is straightforward to verify that, if γ1l > 0 for all l, then the corresponding dose-
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response curve is non-decreasing in x. We implement this model assuming γ0l | δ0, σ2
0

i.i.d. N(δ0, σ2
0), and, independently, γ1l | ϕ i.i.d. gamma(c, ϕ). We fix c = 1 and assign

hyperpriors to δ0, σ2
0 and ϕ, specifically, we place a zero mean normal prior on δ0 with

variance 20, an inverse-gamma(2, 25) on σ2
0, and a gamma(10, 1) on ϕ for the simulated

data sets.

Results

The first simulation case is the simplest case. Figure 3.9 gives the posterior

mean and 90% probability bands for the probability mass function of the number of

negative outcomes given m = 12 implants for three dose levels. The GP, linear-DDP,

and DDP models approximate the truth relatively well, with only a few areas that have

slightly larger probability bands under the general DDP mixture model. The PMDP

model roughly follows the true values, however it is greatly influenced by the data at

the given dose levels and thereby generates large uncertainty bands.

Under the second simulation case, Figure 3.10 gives the posterior mean and

90% uncertainty bands for the probability mass function of the number of negative

outcomes given m = 12 implants for three dose levels. The GP and DDP mixture

models provide similar inference, with slightly larger uncertainty bands arising from the

DDP model. The linear-DDP model produces somewhat less accurate point estimates

with narrow interval estimates. While the PMDP model captures the general shape of

the mass function, there is substantial uncertainty in its interval estimates.

The mixture of Binomials simulation setting provides more striking differences

between the performance of the models, as seen in Figure 3.11. The GP model relies

on a Binomial response distribution and therefore can not pick up the bimodality at

dose levels 30 and 45, and also misses the larger true probability mass function values
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Figure 3.9: Simulation case 1. Posterior mean (denoted by “o”) and 90% uncertainty
bands for the probability mass function of the number of negative outcomes, given
m = 12 implants, at three dose levels, using the PMDP, GP, Linear-DDP, and DDP
models (first, second, third and fourth row, respectively). In each panel, the values of
the true probability mass function are denoted by “x”.

at dose 75. The linear-DDP model attempts to capture the essence of the bimodal

shapes of the probability mass functions at doses 30 and 45; however its restrictive

dependence structure limits the posterior accuracy. Inference at dose level 75 resembles

the actual probability mass function, yet fails to include the true values within its

narrow uncertainty bands. The PMDP model generally includes the true probabilities

within the large uncertainty bands it produces for all three dose levels. However, the

changes in the estimates across and within dose levels are quite drastic. In the case

of dose level 75, there are 8 data points associated with m = 12 implants (compared
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Figure 3.10: Simulation case 2. Posterior mean (denoted by “o”) and 90% probability
bands for the probability mass function of the number of negative outcomes, given
m = 12 implants, at three dose levels, using the PMDP, GP, Linear-DDP, and DDP
models (first, second, third and fourth row, respectively). In each panel, the values of
the true probability mass function are denoted by “x”.

to 15-20 observations for doses 30 and 45). Of these 8 observations, two animals had

5 negative outcomes, which is apparent in the PMDP model results. Owing to the

smoother evolution of DDP realizations and to its mixture structure, the DDP model

has the capacity to avoid such sudden changes in the estimated probabilities. Moreover,

the DDP model recovers the true probability mass function shapes with notably tighter

uncertainty bands than the PMDP model.

Contrasting the results from Figures 3.9, 3.10, and 3.11 reveals an appealing

feature of the proposed modeling framework: the DDP mixture model can uncover non-
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Figure 3.11: Simulation case 3. Posterior mean (denoted by “o”) and 90% probability
bands for the probability mass function of the number of negative outcomes, given
m = 12 implants, at three dose levels, using the PMDP, GP, Linear-DDP, and DDP
models (first, second, third and fourth row, respectively). In each panel, the values of
the true probability mass function are denoted by “x”.

standard distributional shapes at different dose levels when such shapes are suggested

by the data (Figure 3.11), but at the same time, will recover simpler probability mass

functions with a relatively small amount of additional uncertainty relative to parametric

models (Figure 3.9).

Because inference for the entire dose-response curve is not readily available

under the PMDP model, we focus this aspect of the comparison on the GP, linear-DDP,

and DDP mixture models, and looking mainly at the second simulation setting involving

the nonstandard dose-response curve. Here, the DDP model represents more accurately
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Figure 3.12: Simulation case 2. Boxplots of the posterior predictive samples of y0/m0

at the observed and new dose levels, using the GP model (top), Linear-DDP (middle),
and DDP mixture model (bottom). In each panel, the posterior mean estimate for
the dose-response curve and the true curve are denoted by the dashed and solid line,
respectively.

the dose-response curve across dose levels (Figure 3.12). While the GP model performs

well at the observed dose levels, it fares worse at the interpolated doses as indicated by
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the jumps at the observed doses in the posterior mean dose-response curve. Under the

linear-DDP model, dependence across dose x is built solely through the linear functions

γ0l+γ1lx, and we thus expect roughly uniform uncertainty in posterior inference results

for the dose-response curve (and conditional probability mass functions across dose

levels). This is reflected in Figure 3.12, where we also note that the linear-DDP posterior

mean estimate tends to smooth out the probability of response. This smoothing results

in biased probability mass function estimates. For the third simulation example, the

DDP model again produced a more accurate estimate for the dose-response function

(results not shown), although in this case with larger posterior predictive uncertainty

compared to the GP and linear DDP models.

Finally, we compare the four models with regard to inference for the probability

of a negative outcome at the six observed dose levels xi. Denoting as before by

y∗ a generic binary outcome at xi, this probability is given by
∑L

l=1 plπ(Zl(xi))

under the DDP model,
∑L

l=1 plπ(γ0l + γ1lxi) under the linear-DDP model, and

π(θ(xi)) under the GP model; moreover, under the PMDP model, it arises from a

Beta(Aiπ(η0 + η1xi), Ai(1−π(η0 + η1xi))) distribution. Table 1 includes point and 90%

interval estimates based on the corresponding posterior distributions for the second

and third simulation setting. Noteworthy here are the results under the PMDP model,

which produces interval estimates that are too wide to be practical. This level of

posterior uncertainty is consistent with the results in Figures 3.10 and 3.11. For the

2,4,5-T data considered in Section 3.1.3 (where results are reported only under the

DDP model), we also obtained overly wide 90% interval estimates from the PMDP

model (with equivalent interquartile ranges in Table 1 of Dominici and Parmigiani,

2001). Contrarily, for the second simulation case, the linear-DDP model moderates the

irregularities of the actual dose-response function into a smooth curve (see Figure 3.12),
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resulting in underestimation of the variability in the negative outcome probability. The

model produces more realistic interval estimates in the third case, though it generally

overestimates the probabilities. As suggested by the posterior predictive results for

y0/m0, the GP and DDP mixture models result in relatively similar inference for the

dose-response curve at the observed dose levels. The DDP model produces wider interval

estimates, especially under the setting with the mixture of Binomials true distribution,

which are more effective in capturing the true values at the largest dose.

Table 3.1: Simulation study (cases 2 and 3). Posterior mean and 0.05 and 0.95
percentiles (in parentheses) for the probability of a negative outcome at the 6 observed
dose levels, using the GP, Linear-DDP, DDP mixture, and PMDP models. The true
values of the dose-response curve are given in bold.

Simulation case 2
Dose GP Linear-DDP DDP PMDP
0 (0.04) 0.04 (0.03,0.05) 0.08 (0.07,0.09) 0.04 (0.03,0.06) 0.09 (0.00,0.06)
30 (0.34) 0.35 (0.32,0.38) 0.28 (0.27,0.29) 0.36 (0.33,0.39) 0.30 (0.03,0.72)
45 (0.39) 0.41 (0.38,0.43) 0.45 (0.44,0.46) 0.40 (0.37, 0.43) 0.47 (0.08,0.89)
60 (0.66) 0.67 (0.63,0.70) 0.63 (0.62,0.64) 0.67 (0.62,0.70) 0.64 (0.24,0.95)
75 (0.68) 0.73 (0.69,0.76) 0.78 (0.77,0.79) 0.73 (0.69,0.76) 0.79 (0.34,0.99)
90 (0.86) 0.89 (0.86,0.92) 0.88 (0.87,0.89) 0.88 (0.83,0.91) 0.88 (0.45,1.00)

Simulation case 3
Dose GP Linear-DDP DDP PMDP
0 (0.02) 0.03 (0.02,0.04) 0.04 (0.03,0.06) 0.03 (0.02,0.05) 0.09 (0.00,0.07)
30 (0.34) 0.34 (0.31,0.36) 0.27 (0.23,0.32) 0.33 (0.28,0.39) 0.34 (0.01,0.89)
45 (0.60) 0.61 (0.59,0.63) 0.65 (0.62,0.69) 0.60 (0.55,0.66) 0.58 (0.06,0.98)
60 (0.88) 0.87 (0.86,0.89) 0.87 (0.85,0.90) 0.87 (0.83,0.91) 0.79 (0.09,1.00)
75 (0.94) 0.93 (0.91,0.95) 0.94 (0.92,0.95) 0.92 (0.88,0.96) 0.89 (0.28,1.00)
90 (0.95) 0.97 (0.96,0.98) 0.97 (0.95,0.98) 0.96 (0.92,0.99) 0.97 (0.85,1.00)

3.1.5 Discussion

We have developed a Bayesian nonparametric mixture framework for modeling

and risk assessment in developmental toxicity studies where combined negative outcomes
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is the endpoint of interest. The impetus for the proposed modeling approach is that

for such studies it is critical to model flexibly both the dam specific distributions

and the probability of response to accurately account for the multiple sources of data

heterogeneity. The methodology is built from Binomial mixtures with a dependent

Dirichlet process prior for the dose-dependent mixing distributions. The resulting

nonparametric mixture model provides rich inference for the response distribution as

well as for the dose-response curve. Data from two toxicity studies were used to illustrate

the variety of inferences that can be obtained from the DDP mixture model, including its

practical utility with regard to estimation of non-monotonic dose-response relationships.

Finally, using a simulation study, we have shown that, relative to simpler semiparametric

Bayesian approaches, the DDP mixture model is the only one that accomplishes both

of the inferential goals above.

3.2 Multicategory responses

Although the statistical literature typically considers the form of the data

where the response is combined negative outcomes, this is not as informative from a

biological point of view. In Section 3.1, we developed the DDP mixture model for this

simplified version of the data to set the stage for the more general setting. Here, we

consider the first practically important extension which involves modeling developmental

toxicology data with responses that include a multicategory classification, for instance,

outcomes (“dead”, “normal”, “malformed”). To our knowledge, the literature does not

include any Bayesian nonparametric approaches to modeling developmental toxicology

data with a multicategory response classification. Examples of parametric Bayesian

hierarchical models for toxicology data, comprising joint discrete-continuous outcomes,
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include Dunson et al. (2003) and Faes et al. (2006). Regarding the classical literature, a

Dirichlet-trinomial model is presented in Chen et al. (1991); Zhu et al. (1994) develop an

extended Dirichlet-multinomial model with Weibull dose-response functions; and Ryan

(1992) and Krewski and Zhu (1994) use quasi-likelihood and generalized estimating

equations, respectively, to fit multinomial models which incorporate overdispersion.

3.2.1 Modeling approach

For notational purposes, we consider again the Segment II developmental

toxicity setting where ni pregnant dams are exposed to dose level, xi, i = 1, . . . , N .

Dam j = 1, . . . , ni at dose xi has mij implants, of which the number of resorptions (rij)

and prenatal deaths (dij) are typically recorded as Rij = rij+dij , and the number of live

pups at birth with a certain defect are recorded as yij . Consequently, the litter size (the

number of viable fetuses) for dam j at dose xi is mij −Rij . The outcomes from the jth

dam at dose level xi are now recorded as {(mij , Rij , yij) : i = 1, . . . , N, j = 1, . . . , ni}.

Note that the experiment provides information on both embryolethality (non-viable

fetuses) and fetal malformation, and therefore we seek to jointly model the correlated

endpoints.

Given the triplet (m,R, y), we could assume a trinomial kernel for modeling

non-viable fetuses, malformation, and normalcy simultaneously, i.e., the trinomial

distribution in its original parameterization. While this approach incorporates the

correlation between endpoints, it does not highlight nested nature of the data. That is,

an implant must be not be either a resorption or a prenatal death before it can be a

viable fetus, malformed or not. Therefore, the mixture model for a generic dam with

m implants at dose level x can be built more directly from the decomposition of the

trinomial kernel into Bin(R;m,π(γ))Bin(y;m−R, π(θ)), where π(γ) is the probability
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of a non-viable fetus and π(θ) the conditional probability of a malformation for a viable

pup. Hence, the DDP mixture model for the joint distribution of embryolethality and

fetal malformation is formulated as follows

f(R, y | m;GX ) =
∫

Bin (R;m,π(γ)) Bin (y;m−R, π(θ)) dGX (γ, θ),

with GX | α,ψ ∼ DDP(α,G0X ). In this case, G0X is a product of independent GPs,

one driving each probability of response, each with linear mean functions (ξ0 + ξ1x and

β0 +β1x for γ and θ, respectively) and exponential correlation functions, with variances

τ2 and σ2, and correlation functions exp{−ρ|x−x′|} and exp{−φ|x−x′|}. For simplicity,

we denote by ψ = (ξ0, ξ1, τ2, ρ, β0, β1, σ
2, φ) the GP hyperparameters. Here, we have

DDP mixing on both γ and θ, where R is the number of non-viable fetuses (including

resorptions and prenatal deaths) and y is the number of malformations. A marginal

model for m, say a shifted Poisson distribution, can again be added to complete the

joint distribution of (m,R, y).

Model properties

Under this modeling approach, of interest will be inference for risk assessment

associated with both the probability of “death” and the probability of “malformation”

given the fetus is alive. To develop the corresponding dose-response curves, we establish

a connection of the mixture model with the clustered Binomial kernels with the

model based on products of Bernoullis kernel. Specifically, consider the model for the

underlying binary responses. That is, for a generic dam at dose level x with m implants,

let R∗ = {R∗k : k = 1, . . . ,m} be the individual non-viable fetus indicators and denote

by y∗ = {y∗s : s = 1, . . . ,m −
∑m

k=1R
∗
k} the malformation indicators for the viable
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fetuses. Therefore, R =
∑m

k=1R
∗
k and y =

∑m−
P

k R
∗
k

s=1 y∗s . Then, the DDP mixture

model for the clustered binary responses can be formulated as

f∗ (R∗,y∗ | m;GX ) =
∫ m∏

k=1

Bern (R∗k;π(γ))
m−

P
k R
∗
k∏

s=1

Bern (y∗s ;π(θ)) dGX (γ, θ),

where GX | α,ψ ∼DDP(α,G0X ) as above. Starting with the model for the binary

responses given above, we obtain for the moment generating function:

Ef∗(e
t1

P
R∗k+t2

P
y∗s | m;GX ) =

Z mY
k=1

X
R∗

k
=0,1

et1R∗kBern(R∗k;π(γ))

m−
P

R∗kY
s=1

X
y∗s =0,1

et2y∗s Bern(y∗s ;π(θ))dGX (γ, θ)

=

Z 8<:
mY

k=1

X
R∗

k
=0,1

et1R∗kBern(R∗k;π(γ))

9=; {1 + π(θ)(et2 − 1)}m−
P

R∗kdGX (γ, θ)

=

Z mY
k=1

X
R∗

k
=0,1

et1R∗kBern(R∗k;π(γ)){1 + π(θ)(et2 − 1)}1−R∗kdGX (γ, θ)

=

Z ˆ
(1− π(γ)){1 + π(θ)(et2 − 1)}+ et1π(γ)

˜m
dGX (γ, θ)

=

Z mX
R=0

 
m

R

!`
π(γ)et1

´R ˆ
(1− π(γ)){1 + π(θ)(et2 − 1)}

˜m−R
dGX (γ, θ)

=

Z mX
R=0

et1RBin(R;m,π(γ))
ˆ
π(θ)et2 + (1− π(θ))

˜m−R
dGX (γ, θ)

=

Z mX
R=0

et1RBin(R;m,π(γ))

m−RX
y=0

et2yBin(y;m−R, π(θ))dGX (γ, θ)

≡ Ef (et1R+t2y | m;GX ).

Hence, as in Section 3.1, we can define dose-response curves working with probabilities

of the endpoints (“death” or “malformation”) for a generic implant (thus involving

implicit conditioning on m = 1).

In terms of studying certain properties of the DDP mixture model, we apply

finite approximation to GX (which will also provide a basis for MCMC posterior

simulation). Specifically, we work with GLX =
∑L

l=1 plδ(UlX ,ZlX ), where the (UlX , ZlX )

are i.i.d. realizations from G0X given ψ, and the weights pl arise from the truncated
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version of the stick-breaking process found in Chapter 2.

Dose-response curves and risk assessment

The first risk assessment quantity of interest is the probability of

embryolethality across effective dose levels, which is defined by

D(x) ≡ Pr(R∗ = 1;GLx ) =
∫
π(γ)dGLx (γ, θ) =

L∑
l=1

plπ(Ul(x)), x ∈ X .

Risk assessment for the malformation endpoint is based on the conditional probability

that a generic pup has a malformation given that it is a viable fetus, i.e.,

M(x) ≡ Pr(y∗ = 1 | R∗ = 0;GLx ) =
Pr(R∗ = 0, y∗ = 1;GLx )

Pr(R∗ = 0;GLx )
, x ∈ X .

Here, Pr(R∗ = 0, y∗ = 1;GLx ) =
∑L

l=1 pl(1 − π(Ul(x)))π(Zl(x)). Moreover, a full

risk function at any given dose level can be defined through the combination of the

probability of a non-viable fetus and the probability of a live, malformed pup; that is,

the combined risk at dose level x is given by

r(x) ≡ Pr(R∗ = 1 or y∗ = 1;GLx ) = Pr(R∗ = 0, y∗ = 1;GLx ) + Pr(R∗ = 1;GLx )

=
∫

(1− π(γ))π(θ) dGx(γ, θ) +
∫
π(γ) dGx(γ, θ)

= 1−
L∑
l=1

pl{(1− π(Ul(x)))(1− π(Zl(x))), x ∈ X .

With ξ1 > 0 and β1 > 0 prior restrictions, we can build to both the probability of a

non-viable fetus and to the combined risk function the non-decreasing trend in prior

expectation.
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Monotonicity of the dose-response curves: For x < x′, if ξ1 > 0, then 0 ≤

E(π(Ul(x))) ≤ E(π(Ul(x′))) ≤ 1, following the result in Section 3.1. Similarly, if β1 > 0,

then 0 ≤ E(1 − π(Zl(x′))) ≤ E(1 − π(Zl(x))) ≤ 1. Therefore,for any l = 1, . . . , L,

Ul(x) and Ul(x′) follow N(ξ0 + ξ1x, τ
2) and N(ξ0 + ξ1x

′, τ2) distributions, respectively,

and correspondingly, Zl(x) and Zl(x′) follow N(β0 + β1x, σ
2) and N(β0 + β1x

′, σ2)

distributions. When ξ1, β1 > 0, then Ul(x) is stochastically smaller than Ul(x′) and

Zl(x) is stochastically smaller than Zl(x′), independently across l and between U and

Z. This implies that E(Pr(R∗ = 1;GLx )) ≤ E(Pr(R∗ = 1;GLx′)), and

L∑
l=1

E(pl)E(1− π(Zl(x′)))E(1− π(Ul(x′))) ≤
L∑
l=1

E(pl)E(1− π(Zl(x)))E(1− π(Ul(x))),

and therefore, E(r(x)) ≤ E(r(x′)).

Although the same argument does not extend to the conditional probability

of malformation, M(x), the restriction ξ1 > 0 and β1 > 0 appears sufficient to provide

the prior expectation non-decreasing trend for all three dose-response curves. In this

respect, it is useful to note that, even though we develop inference about three dose-

response relationships, there are only two endpoints and, consequently, the model is

driven at any specific dose level by a bivariate random mixing distribution.

Indeed, the linear mean functions are crucial for practicable posterior inference.

As suggested by Figure 3.13, if the model is applied using constant mean functions for

the DDP prior centering GPs (i.e., setting ξ1 = β1 = 0), we should not expect practically

useful results outside the observed dose levels. For illustration, Figure 3.13 plots results

from prior simulation for the embryolethality and malformation dose-response curves,
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Figure 3.13: Prior mean and 90% interval estimates, along with 5 individual prior
realizations, for the three dose-response curves.

and for the combined risk function, using fixed values for α (= 1) and ψ. In particular,

(ξ1 = 0.0085, β1 = 0.12) and (ξ1 = 0.12, β1 = 0.01) in the top and middle row,

respectively. Although the relative magnitude of ξ1 and β1 affects the rate of increase

for the different curves, in all cases with ξ1 > 0 and β1 > 0, the non-decreasing trend

in prior expectation is preserved. As discussed previously, we argue this is an asset of

the modeling approach; the analysis of the expanded version of the DEHP data set (see

Section 3.2.4) highlights the practical utility of this model feature.
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3.2.2 Posterior simulation and inference

Here, we consider the details for implementation and inference. Let yij

be the number of malformed fetuses out of the mij − Rij viable fetuses. Now,

under the truncated version of the mixing distributions, the model includes GLx =∑L
l=1 plδ(Ul(x),Zl(x)), with γj = Ul and θj = Zl with probability pl, given Ul = Ul(x)

and Zl = Zl(x) in the same fashion as Chapter 2. Introducing configuration variables,

wj , the first stage of the hierarchical model is

{Rj ,yj} | {mj},w, {Ul}, {Zl} ∼
n∏

j=1

N∏
i=1

{
Bin(Rij ;mij , π(Uwj (xi)))Bin(yij ;mij −Rij , π(Zwj (xi)))

}sij
,

(3.7)

with p | α ∼ f(p | α) and (Ul(x), Zl(x)) are i.i.d. from G0x for l = 1, . . . , L. Here,

we place normal priors on ξ0 and β0, exponential priors to promote an increasing trend

in the dose-response functions on ξ1 and β1, conjugate inverse-gamma priors on the

variance terms τ2 and σ2, and uniform priors on the range parameters ρ and φ.

The change in the MCMC details from the DDP Binomial mixture to

the multicategory model is that there are two, independent Gaussian processes to

learn about. Therefore, the updates are the same as above, but doubled. The

parameters sampled differently are the {wj}, which come from a discrete distribution

given by
L∑
l=1

p̃ljδl(·), where p̃lj ∝ pl
∏N
i=1{Bin(Rij ;mij , π(Ul(xi)))Bin(yij ;mij −

Rij , π(Zl(xi)))}sij .

To augment theN known dose levels, we want to interpolate acrossM new dose

levels, x̃ = (x̃1, . . . , x̃M ). Now, each Ul(x) = (Ul(x), Ũl(x̃)) and Zl(x) = (Zl(x), Z̃l(x̃)),

for l = 1, . . . , L, where the (Ũl(x̃), Z̃l(x̃)) arise from the standard GP regression

conditional normal distributions, discussed in Section 3.1.2.

Inference for the risk assessment quantities are estimated through the
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evaluation of the dose-response curves discussed in the previous section. The curves

are assessed at the observed doses as well as the unobserved dose levels through the full

sample paths.

Prior specification

Prior specification for the centering GP parameters is done under the same

process as in the combined negative outcomes. We set the prior means for ξ0 and β0 to

0, and the shape parameters of the inverse gamma priors for τ2 and σ2 to 2 (implying

infinite prior variance). The prior variances for ξ0 and β0, and the prior means for ξ1, β1,

τ2 and σ2 are chosen by studying the induced prior distribution for the dose-response

curves. For the simulation study and the analysis of the DEHP data, we placed a

N(0, 10) prior on ξ0 and β0, an exponential prior with mean b−1
ξ = b−1

β = 0.1 on ξ1 and

β1, and an inv-gamma(2, 10) on τ2 and σ2. Under this prior choice, the prior means for

functions D(x) and M(x) have a relatively weak increasing trend starting around 0.5,

with 90% uncertainty bands that cover almost the entire unit interval.

3.2.3 Simulation study

We work with two simulated data sets to study the performance of the model.

In both cases, we use the dose levels, animals per dose level, and the number of implants

from each dam from the DEHP data. For the first, simple simulation setting, we draw

R | m ∼ Bin(R;m,π(−3 + 0.001x)) and y | m,R ∼ Bin(y;m−R, π(−3 + 0.004x)). The

second setting involves a mixture of three binomials for the number of malformations.

The number of non-viable fetuses are drawn from a binomial given the number of

implants with probability of success π(−3+0.08x); then, the number of malformations is

drawn from a mixture of three binomials 0.1Bin(y;m−R, π(−2+0.02x))+0.4Bin(y;m−
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Figure 3.14: Simulation data. For the first simulation setting (top row) and second
setting (bottom row), the left column gives the proportions of non-viable fetuses for
each dam and the right column gives the conditional proportions of the number of
malformations given the pups are viable for each dam. The size of the circle is
proportional to the number of implants.

R, π(−10+0.11x))+0.5Bin(y;m−R, π(−4+0.07x)). The data from the two simulations

are found in Figure 3.14.

Using the product of binomials DDP model and the priors found in 3.2.2, we

obtain inference for the conditional probability mass functions and the risk assessment

quantities discussed above. For the first simulation setting, the top row of Figure 3.15

gives the posterior mean (solid) and 90% intervals for the risk assessment quantities;

Pr(R∗ = 1;GLx ) in the left panel, Pr(y∗ = 1 | R∗ = 0;GLx ) in the middle panel, and

the combined risk, r(x), in the right panel. The probability of a non-viable fetus has a

weak signal and therefore includes larger uncertainty. However, the true curves (given

in green) are contained within the 90% intervals for all three quantities. Figure 3.16
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Figure 3.15: Simulation data. For the first simulation setting (top row) and second
setting (bottom row), the posterior mean (solid line) and 90% interval bands (dashed
lines) for the risk assessment quantities: the probability of a non-viable fetus in the
left column, the conditional probability of malformation in the middle column, and the
combined risk in the right column. The green lines represent the true curves.

includes the posterior mean (“o”) and 90% uncertainty bands (dashed lines) for the

probability mass functions of the number of non-viable fetuses given m = 12, with the

truth shown as black “x”. As expected, the shapes are unimodal and roughly follow

the underlying distributional shapes. Finally, we plot the conditional probability mass

functions for the number of malformations given m = 12 and R = 4 in Figure 3.17.

Again, the DDP model captures the unimodal shapes with relatively small uncertainty.

The second simulation setting is more interesting because of the mixture for

the conditional probability of malformation. The risk assessment quantities are picked

up by the model, with larger probability bands in the malformation dose response curve

to handle the mixture. The true curves, given in green, are basically enclosed by the 90%

probability intervals (see bottom row of Figure 3.15). The probability mass functions
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Figure 3.16: Simulation 1. The posterior mean (“o”) and 90% probability bands
(dashed lines) of the probability mass functions for the number of non-viable fetuses
given m = 12 implants. The true values are given as “x”.
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Figure 3.17: Simulation 1. The posterior mean (“o”) and 90% probability bands
(dashed lines) of the probability mass functions for the number of malformations given
m = 12 implants and R = 4 non-viable fetuses. The true values are given as “x”.

for the number of non-viable fetuses are plotted in Figure 3.18 are again unimodal

across the range of dose levels, and lie within the 90% uncertainty bands. Finally, the

estimated conditional probability mass functions for the number of malformations given

m = 12 and R = 3 are plotted in Figure 3.19. The high and low dose levels have shapes
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Figure 3.18: Simulation 2. The posterior mean (“o”) and 90% probability bands
(dashed lines) of the probability mass functions for the number of non-viable fetuses
given m = 12 implants. The true values are given as “x”.

that would be picked up by a simple parametric model, but there are bimodalities in the

midrange that would be ignored. The DDP model adapts to appropriately model both

the unimodal and multimodal distributions, with increasing variability in the estimated

mass functions where needed.
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Figure 3.19: Simulation 2:. The posterior mean (“o”) and 90% probability bands
(dashed lines) of the probability mass functions for the number of malformations given
m = 12 implants and R = 3 non-viable fetuses. The true values are given as “x”.

71



3.2.4 DEHP data revisited

We revisit the analysis of the DEHP data with the expansion of the combined

negative outcomes category to the two endpoints “non-viable fetus” (resorption or actual

prenatal death) and “malformation” (external, visceral or skeletal malformation of a

live fetus). Figure 3.20 gives the posterior mean and 90% interval estimates for the

dose-response curves for the risk assessment. In the left panel, the probability of a

non-viable fetus across the dose levels is a monotonically increasing function. The

conditional probability of malformation, however, retains the non-monotonic behavior

at the low dose levels, and this shape carries over to the combined risk which also

exhibits the dip in the probability from the control through dose 25 mg/kg × 1000. The

inference for the combined risk function agrees with the estimated dose-response curve

for the combined negative outcomes version of the DEHP data, as obtained in Section

3.1.3. The modelling approach is key to uncovering the malformation endpoint as the

one that contributes to the non-monotonic, possibly hormetic, combined dose-response

relationship.

Inference for response distributions is illustrated with posterior mean and 90%

interval estimates for the probability mass function of the number of non-viable fetuses

given m = 12 implants (Figure 3.21) and the number of malformations given m = 12

implants and R = 3 non-viable fetuses (Figure 3.22). Results are reported for the

control group, the four effective dose levels, and a new dose at x = 75 mg/kg × 1000.

As expected, there is more uncertainty in the estimation of the conditional response

distributions for malformation. The interpolation at the new dose level appears to be

influenced more by the distribution at dose 50, which can be attributed to the larger

sample size relative to dose 100. The estimated distributions for the number of non-
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Figure 3.20: Expanded DEHP data. The top row includes the data as in Figure 1.2.
The bottom row plots the posterior mean (solid lines) and 90% interval bands (dashed
lines) for the risk assessment functions: probability of a non-viable fetus (left panel);
conditional probability of malformation (middle panel); combined risk (right panel).

viable fetuses have relatively standard shapes, whereas there is some evidence of a

bimodal shape (at dose 100) and skewness in the estimated malformation distributions.

3.2.5 Discussion

We have extended the DDP Binomial mixture model to take into account

the expansion of the combined negative outcomes, a scientifically relevant, yet

underdeveloped, extension for developmental toxicity studies. The model highlights
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Figure 3.21: Expanded DEHP data. The posterior mean (“o”) and 90% probability
bands (dashed lines) of the probability mass functions for the number of non-viable
fetuses given m = 12 implants.
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Figure 3.22: Expanded DEHP data. The posterior mean (“o”) and 90% probability
bands (dashed lines) of the probability mass functions for the number of malformations
given m = 12 implants and R = 3 non-viable fetuses.

the nested structure of the data, and yields rich inference for the response distributions

and the different dose-response relationships for different endpoints. A data example

previously analyzed under the combined endpoints model expounds the practical utility
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of the modeling approach with regard to capturing non-standard, “J”-shaped dose-

response curves when applicable.

3.3 Joint continuous-discrete outcomes

Including a continuous outcome, such as fetal weight, for each of the live pups

to the DDP mixture model setting for multicategory responses presents a challenge in

that there are now clustered outcomes that include discrete and continuous responses.

There is a plethora of likelihood based models (e.g., Catalano and Ryan, 1992; Regan

and Catalano, 1999; Gueorguieva and Agresti, 2001); however, these models require

parametric assumptions that are arguably restrictive and can be limited with regard to

uncertainty quantification for risk assessment. Regarding Bayesian work, we are aware

of only two parametric approaches. Dunson et al. (2003) propose a joint model for the

number of viable fetuses and multiple discrete-continuous outcomes. A continuation-

ratio ordinal response model is used for the number of viable fetuses and the multiple

outcomes are assigned an underlying normal model with shared latent variables within

outcome-specific regression models. In Faes et al. (2006), the proposed model is

expressed in two stages; the first to assess the probability that a fetus is non-viable and

the second determines the probability that a viable fetus has a malformation and/or

suffers from low birth weight as function of the number of viable fetuses while also

accounting for intralitter correlation.

3.3.1 The probability model

To incorporate a continuous response, say, fetal weight u∗ = {u∗k : k =

1, . . . ,m−R}, for each live pup from a generic dam with m implants and R non-viable
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fetuses at dose x, we must consider the corresponding vector of binary malformation

responses, denoted by y∗ = {y∗k : k = 1, . . . ,m − R}. Then, a possible DDP mixture

model for such clustered binary and continuous outcomes is:

f(R,y∗,u∗ | m;GX ) =
∫

Bin (R;m,π(γ))
m−R∏
k=1

Bern (y∗k;π(θ)) N (u∗k;µ, ϕ) dGX (γ, θ, µ),

(3.8)

with GX | α,ψ ∼ DDP(α,G0X ), where G0X is a product of three Gaussian processes,

one for each mixing parameter. Specifically, the GP prior associated with γ has a

linear mean function, ξ0 + ξ1x, variance τ2, and correlation function exp{−ρ|x − x′|};

the linear mean function for θ is β0 + β1x, the variance σ2, and correlation function

exp{−φ|x − x′|}; and the GP prior on µ includes a mean function η0 + η1x, variance

ν2, and covariance function exp{−κ|x − x′|}. Thereby, the GP hyperparameters are

denoted by ψ = (β0, β1, σ
2, φ, ξ0, ξ1, τ

2, ρ, η0, η1, ν
2, κ).

Note that the proposed model for f(R,y∗,u∗ | m;GX ) provides the most

natural extension of the models from sections 3.2 and 3.1. Without the continuous

response and aggregating the binary malformation responses, y =
∑m−R

k=1 y∗k, the

moment generating argument in Section 3.3 essentially yields the multicategory model,

f(R, y | m;GX ). Further collapsing by combining the number of non-viable fetuses and

the number of malformations, we arrive at the model for combined negative outcomes

in Section 3.1.

We could, in principal, mix on the variance of the fetal weight kernel, ϕ,

as well. This approach sacrifices the ability to promote an increasing trend in the full,

combined risk function and involves more complex model fitting as we require a third GP

centering process for the DDP prior. Therefore, to strike a balance between flexibility
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and feasibility, we adopt the more pragmatic location normal mixture component for

the continuous endpoint.

Functionals for risk assessment

Of key importance is study of the various dose-response relationships for risk

assessment. We use the truncation approximation found in Chapter 2, such that for

any dose level x, γj(x) = Vl(x), θj(x) = Zl(x), and µj(x) = Tl(x) with probability pl.

Again, the following functions are in terms of a generic implant, thereby inducing an

implicit conditioning on m = 1 (though it is excluded from the expressions).

The first dose-response curve is the probability of a non-viable fetus across

effective dose levels,

D(x) ≡ Pr(R∗ = 1;GLx ) =
L∑
l=1

plπ(Vl(x)), x ∈ X .

As in the multicategory model of Section 3.2, provided ξ1 > 0, D(x) is increasing in

prior expectation.

We also have the probability that a generic pup has a malformation given

that it is a viable fetus, i.e., M(x) ≡ Pr(y∗ = 1 | R∗ = 0;GLx ) = Pr(y∗ = 1, R∗ =

0;GLx )/Pr(R∗ = 0;GLx ), where Pr(y∗ = 1, R∗ = 0;GLx ) =
∑L

l=1 pl(1− π(Vl(x)))π(Zl(x)).

Thus, the second dose-response curve for malformation is

M(x) =
∑L

l=1 pl(1− π(Vl(x)))π(Zl(x))∑L
l=1 pl(1− π(Vl(x)))

, x ∈ X .

For the continuous outcome, we may look at the conditional expectation of

weight, E(u∗ | R∗ = 0;GLx ) =
∫
u∗f(u∗ | R∗ = 0;GLx )du∗. Therefore, evaluating

the integral based on the mixture representation for f(R∗ = 0, u∗;GLx ), the third risk
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assessment quantity of interest for x ∈ X can be expressed as

E(u∗ | R∗ = 0;GLx ) =
∑L

l=1 plTl(x)(1− π(Vl(x)))∑L
l=1 pl(1− π(Vl(x)))

.

Alternatively, we can look at the probability of the pup being of low birth

weight. We follow Regan and Catalano (1999) such that for a pup to be considered of

“low fetal weight,” we define the cutoff, U , to be two standard deviations below the

average birth weight at the control level. This probability is defined as Pr(u∗ < U |

R∗ = 0;GLx ) =
∫ U

f(u∗ | R∗ = 0;GLx )du∗. The curve for all x ∈ X is then evaluated

through ∑L
l=1 pl(1− π(Vl(x)))Φ((U − Tl(x))/ϕ1/2)∑L

l=1 pl(1− π(Vl(x)))
.

We can also study the combined risk of the discrete outcomes; that is, we look

at the probability of embryolethality or malformation across the dose levels:

rd(x) = Pr(R∗ = 1 or y∗ = 1;GLx ) = 1−
L∑
l=1

pl(1− π(Vl(x)))(1− π(Zl(x))).

This is equivalent to the combined risk function in the multicategory response DDP

mixture model (Section 3.2), and therefore the prior expectation E(rd(x)) is increasing

if both ξ > 0 and β1 > 0.

In terms of the full risk function, rf (x), we combine the probability of

embryolethality and the probability a pup is adversely affected (malformed and/or low

birth weight) by the toxin at dose x. We first separate the negative outcomes for

the discrete and continuous outcomes, where the first probability is then equivalent to

rd(x) and the second integrates f(R∗ = 0, y∗ = 0, u∗;GLx ) with respect to u∗ up to U .
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Therefore, the expression at any dose level x ∈ X becomes

rf (x) = Pr(R∗ = 1 or y∗ = 1 or u∗ < U ;GLx )

= Pr(R∗ = 1 or y∗ = 1;GLx ) + Pr(R∗ = 0, y∗ = 0, u∗k < U ;GLx )

= 1−
L∑
l=1

pl{1− π(Vl(x))}{1− π(Zl(x))}{1− Φ((U − Tl(x))/ϕ1/2)}.

Given this expression for the combined risk, we consider the prior expectation

E(rf (x)) = 1−
L∑
l=1

E(pl)
{

EN(ξ0+ξ1x,τ2)(1− π(Vl(x)))EN(β0+β1x,σ2)(1− π(Zl(x)))

EN(η0+η1x,ν2)(1− Φ((U − Tl(x))/ϕ1/2))
}
.

Provided ξ1 > 0, β1 > 0, and η1 < 0, the three normal distributions are stochastically

ordered in x and it follows that E(1 − π(Vl(x))), E(1 − π(Zl(x))), and E(1 − Φ((U −

Tl(x))/ϕ1/2)) are decreasing functions of x (with values in the unit interval). Thus,

E{rf (x)} is monotonically increasing in x under the given restrictions for ξ1, β1, and

η1.

Thus, we can promote increasing trends in the probability of embryolethality

and both combined risk functions. As in the multicategory setting, this argument does

not hold in the conditional probabilities and expectation, M(x), E(u∗ | R∗ = 0;GLx ), and

Pr(u∗ < U | R∗ = 0;GLx ). However, empirical evidence suggests that the ξ1 > 0, β1 > 0,

and η1 < 0 restrictions induce non-decreasing prior expectations for all dose-response

curves (see Figure 3.23).

Finally, we investigate the correlation between the discrete malformation

endpoints for two viable pups, Corr(y∗k, y
∗
k′ | R∗k = 0, R∗k′ = 0;GLx ), between the

continuous endpoints of two viable pups, Corr(u∗k, u
∗
k′ | R∗k = 0, R∗k′ = 0;GLx ), and
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Figure 3.23: Prior mean (blue) and 90% interval bands (red dashed) for the six dose-
response relationships with hyperparameters fixed such that ξ1 > 0, β1 > 0 and η1 < 0:
D(x) top left panel, M(x) top middle, E(u∗ | R∗ = 0;GLx ) top right, Pr(u∗k < U | R∗ =
0;GLx ) bottom left, rd(x) bottom middle, and rf (x) bottom right.

between the discrete and continuous endpoints within one viable fetus at a given dose

level x, Corr(y∗, u∗ | R∗ = 0;GLx ).

We begin with the correlation between the two endpoints within a generic

pup, where we have implicit conditioning on m = 1. Thus, we have already developed

expressions for E(y∗ | R∗ = 0;GLx ) (which is equivalent to Pr(y∗ = 1 | R∗ = 0;GLx ),

or M(x)), E(y∗2 | R∗ = 0;GLx ) (also equal to M(x)), and E(u∗ | R∗ = 0;GLx ). For

E(u∗2 | R∗ = 0;GLx ), we follow the derivations found above and obtain {
∑L

l=1 pl(1 −

π(Vl(x)))[T 2
l (x) + ϕ]}/

∑L
l=1 pl(1 − π(Vl(x))). The final component is E(y∗u∗ | R∗ =

0;GLx ), a double integral over f(y∗, u∗ | R∗ = 0;GLx ), which is given by

[
∑L

l=1 pl(1 − π(Vl(x)))π(Zl(x))Tl(x)]/
∑L

l=1 pl(1 − π(Vl(x))). Through the definition of

covariance and variance, we construct the correlation with the above expressions.

The correlations of the different endpoints between two pups have an implicit

conditioning on m = 2. Therefore, we have generic responses (R∗k, R
∗
k′), (y∗k, y

∗
k′), and
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(u∗k, u
∗
k′). Expressions have already been derived for E(y∗k | R∗k = 0;GLx ) =

E(y∗k′ | R∗k′ = 0;GLx ) and E(u∗k | R∗k = 0;GLx ) = E(u∗k′ | R∗k′ = 0;GLx ), as well as

E(u∗2k | R∗k = 0;GLx ) and E(y∗2k | R∗k = 0;GLx ). To build the final two correlations, we

need two additional expectations: E(y∗ky
∗
k′ | R∗k = 0, R∗k′ = 0;GLx ) and E(u∗ku

∗
k′ | R∗k =

0, R∗k′ = 0;GLx ). The expectations are {
∑L

l=1 pl(1 − π(Vl(x)))2π2(Zl(x))}/[
∑L

l=1 pl(1 −

π(Vl(x)))2] and {
∑L

l=1 pl(1 − π(Vl(x)))2T 2
l (x)}/[

∑L
l=1 pl(1 − π(Vl(x)))2], respectively.

Again, we calculate the dose-dependent correlations through the definition of variance

and covariance.

3.3.2 Posterior simulation and inference

Turning to implementation of the model, let mj = {m1j , . . . ,mNj} denote the

number of implants for the jth dam at dose xi, i = 1, . . . , N , and Rj = (R1j , . . . , RNj)

be the number of prenatal deaths in the jth replicate, for j = 1, . . . , n. We also let y∗ij

and u∗ij be (mij−Rij)× 1 vectors of viable pup specific binary and continuous responses,

respectively. Following the discussion in Chapter 2 and the previous section, we can

write the first stage of the model for the (Rj ,y
∗
j ,u

∗
j ) as

{Rj ,y
∗
j ,u

∗
j} |m, wj , V (x), Z(x), Tl(x), ϕ ∼

n∏
j=1

N∏
i=1

{
Bin(Rij ;mij , π(Vwj (xi)))

}sij ×

mij−Rij∏
k=1

(
Bern(y∗ijk;π(Zwj

(xi)))N(u∗ijk, Twj
(xi), ϕ)

)sij

where G0x(Vl(x), Zl(x), Tl(x) | ψ) comprises three independent N -variate normal

distributions induced by the corresponding GPs used to define G0X . We complete the

model with normal priors on the intercepts of the GP linear mean functions, gamma

priors on ξ1 and β1, a truncated normal for η1, inverse-gamma priors on the variance

terms, and uniform priors on the parameters associated with the range of dependence.
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In terms of MCMC posterior simulation, the updates for the GP corresponding

to the non-viable fetus and malformation endpoints are similar to those for the

multicategory model. The GP hyperparameters of the fetal weight endpoint are the

same as in the other GPs, the points of contrast are in the sample paths, Tl(x), ϕ, and

the {wj}.

The full conditional for Tl depends on whether l corresponds to one of the

distinct components. If l /∈ {w∗k : k = 1, . . . , n∗}, then Tl is drawn from its prior

distribution, NN (η0jN + η1x,Ω). For l ∈ {w∗k : k = 1, . . . , n∗},

Tw∗k | w, ψ, data ∝ NN (Tw∗k ; η0jN + η1x,Ω)
∏

{j:wj=w∗k}

N∏
i=1

mij−Rij∏
k=1

{
N
(
u∗ij ;Tw∗k(xi), ϕ

)}sij

For the wj , the updates come from a discrete distribution given by
L∑
l=1

p̃ljδl(·), where

p̃lj ∝ pl
∏N
i=1{Bin(Rij ;mij , π(Vl(xi)))

∏mij−Rij

k=1 Bern(y∗ijk;π(Zl(xi)))N(u∗ijk;Tl(xi), ϕ)}sij .

Parameter ϕ is the variance of the normal kernel of the weights. Therefore, given an

inverse-gamma prior, with shape parameter aϕ > 1 and mean bϕ/(aϕ − 1), ϕ has an

inverse-gamma full conditional with parameters aϕ + 0.5
∑N

i=1

∑ni
j=1(mij − Rij) and

bϕ + 0.5
∑

i

∑
j

∑
k(Twj (xi)− u∗ijk)2.

Given the MCMC posterior samples, we obtain inference by evaluating the

expressions above for risk assessment quantities. Also of interest are the various

predictive probability mass functions and density functions at any given dose level, x.

For the unobserved dose levels, we use the same procedure as in the previous sections

for interpolation of the GP sample paths, including the conditional normal draws for

the (Ṽl, Z̃l, T̃l).
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3.3.3 EG data

In a study found at the National Toxicology Program database, ethylene glycol,

a widely used industrial chemical, is evaluated for toxic effects in pregnant mice (Price

et al., 1985). See Section 1.2 for a more detailed summary of the data set.
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Figure 3.24: EG data. The posterior mean (solid) and 90% uncertainty bands (dashed
lines) of the probability of a non-viable fetus (top left), the conditional probability of
malformation (top middle), the risk of combined discrete endpoints (top right), expected
birth weight (bottom left), the conditional probability of low birth weight (bottom
middle), and the full combined risk (bottom right).

Figure 3.24 gives the posterior mean and probability bands of the dose-response

relationships. The probability of embryolethality has a moderate increasing trend and

is approximately linear. The conditional probability of malformation has a roughly
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exponential curve at the lower dose levels, then becomes more linear after dose 1500

mg/kg. The extrapolated values after 3000 mg/kg are linear with a stronger slope.

Thus, we have a dose-response relationship with structural changes at multiple points

throughout the dose range, a phenomenon not possible under many models. The

combined risk function for the discrete outcomes is similar to the M(x) function, though

shifted up slightly. The combined risk for the discrete outcomes is mainly controlled by

the conditional probability of malformation, which reflects the modest increasing trend

in D(x).

The expected weight of a generic pup has a decreasing trend which follows the

data, including linear patterns with varying slopes between the observed dose levels. For

the EG data set, the cutoff representing low fetal weight is 0.771g. For the probability of

low fetal weight, we see roughly increasing, linear forms between the observed dose levels

which coincide with the structures found in the expected fetal weight. Moreover, the

uncertainty estimates become wider as the dose level increases. The full risk function

combines the risk of the discrete outcomes (top right panel) with the probability of

low fetal weight, and therefore is always greater than rd(x). The probability of low

fetal weight dominates rf (x) at the lower dose levels and is tempered by the risk of

embryolethality or malformation as dose increases.

By evaluating the expressions involved in the correlations with the posterior

samples from the MCMC algorithm, we obtain the posterior densities for the three

correlations. The left panel of Figure 3.25 depicts the posterior densities of the

correlation between the discrete (malformation) and continuous (fetal weight) outcomes.

The densities change across dose levels, with a decreasing mean. At the control level,

the correlation is centered about zero with relatively narrow spread. Moving towards

the larger doses, the densities shift to the left and the spread gets larger. Hence, at
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Figure 3.25: EG data. Posterior densities of the correlation between the discrete
and continuous outcomes of a generic pup at the observed dose levels (right), the
malformation responses of two pups within a litter (middle), and the fetal weight
endpoints of two pups within a litter (right).

the high dose levels, a decrease in fetal weight generally corresponds to an increase in

the malformation response. The correlation between the malformation responses of two

pups within a litter at the four observed dose levels is found in the middle panel of

Figure 3.25. While always positive, the center and spread of the correlations increase

as the dose level increases. The correlation between the fetal weight endpoints of two

pups within a litter do not change drastically at the different dose levels. The breadth

of the distributions widens slightly as dose level increases, but the centers are roughly

equivalent around 0.4 (see the right panel of 3.25). Traditional parametric models yield

a constant correlation for all dose levels, whereas the DDP model allows both evolving

and relatively consistent correlations across dose levels.

Also of interest are the predictive response distributions. Similar to the

multicategory inferences, there are the posterior probability mass functions for the

number of non-viable fetuses given a number of implants (see Figure 3.26) and the

number of malformations given a number of implants and the number of non-viable
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Figure 3.26: EG data. The posterior mean (“o”) and 90% uncertainty bands (dashed
lines) of the probability mass functions for the number of non-viable fetuses givenm = 12
implants.
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Figure 3.27: EG data. The posterior mean (“o”) and 90% probability bands (dashed
lines) of the probability density functions for the number of malformations given m = 12
implants and R = 3 non-viable fetuses.

fetuses (in Figure 3.27). While the data include a lot of variation, the DDP model

finds simple, underlying probability mass functions that coincide with the dose-response

curves displayed above. With the extra continuous response, we may look at the

distribution of fetal weights at each dose level. As seen in Figure 3.28, the spread
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Figure 3.28: EG data: The posterior mean (solid) and 90% uncertainty bands (dashed
lines) of the probability mass functions for fetal weight.

of the distributions is the same across the dose levels but the center shifts toward zero.

3.3.4 Discussion

The approach developed within this section is applicable to the extension of

the multicategory setting by the inclusion of a continuous response on each of the viable

pups. The framework provides flexibility in the multiple response distributions as well

as the various risk assessment quantities. Demonstration of the model capabilities is

found through data from an experiment investigating the toxic effects of ethelyne glycol.

The model developed in this section involves DDP mixing with respect to

three parameters. This results in a relatively complex setting for prior specification

as well as posterior simulation. Although the study of model properties along with

the data analysis clearly demonstrate it is a feasible model given sufficient amounts of

data, it may be useful to entertain simpler versions for some applications. A possible

“semiparametric” version of the model leaves the distribution of prenatal deaths outside

the DDP mixing; that is, we could build the joint response distribution through f(y∗, u∗ |
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R,m;Gx)fx(R | m)f(m), where fx(R | m) is a parametric distribution, such as a

Binomial or Beta-Binomial with a logistic form for the probability of embryolethality.

Now, the DDP mixture would be reserved for the pup-specific response distribution,

f(y∗, u∗ | R,m;GX ) =
∫ m−R∏

k=1

Bern(y∗k;π(θ))N(u∗k;µ, ϕ)dGX (θ, µ),

with a DDP prior on GX , where the base stochastic process, G0X , would be defined by

two independent GPs.

This model has a few practical benefits. There are only two mixing parameters

and, consequently, we must only learn about the parameters of two GPs. Also, under this

formulation, the conditional probabilities of malformation and being of low birth weight

can be shown to be monotonically increasing in prior expectation as the conditional

distribution cancels out. The downside is that, as suggested by the EG data, the

binomial assumption for the prenatal death distribution may not be sufficiently flexible.

However, if the main risk assessment concerns are with respect to the malformation

and fetal weight endpoints, this model may be worth exploring. Another advantage to

this model lies in the possibility of using latent variables for the binary malformation

responses in conjunction with imputing missing values to warrant Gibbs updates for the

mixing parameters. We may also consider a more general version of the pup-specific

responses, where we introduce a bivariate normal kernel for the latent malformation and

fetal weight responses. If the data warrant a model such that the correlation between

the two endpoints is expected to be very strong, we can incorporate mixing on this

parameter in a structured manner.
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3.4 Pre-implantation exposure

3.4.1 Motivation and background

In the previous sections, the experimental setting of the developmental toxicity

studies is such that animals are exposed to varying levels of a toxin after implantation.

Due to the fact that implantation occurs before exposure, the number of observed

implants is assumed to contain no information about the dose-response relationship.

However, there is evidence to support that pre-implantation exposure affects the early

reproductive process and can cause birth defects or embryolethality. In studies with

pre-implantation exposure, the number of observed implants should be dose dependent

and, consequently, there is an added risk associated with an unsuccessful implantation.

To handle this type of data, Rai and Ryzin (1985) introduce a parametric dose-

response model where the probability of response varies with random, dose-dependent

litter size. In particular, a conditional Binomial distribution is used for the number of

affected pups with probability that depends on litter size and dose level, along with

a Poisson litter size distribution with dose-dependent mean. Dunson (1998) uses a

multiple imputation approach to estimate the number of missing fetuses. Allen and

Barnhart (2002) model both the number of implants and the outcome of each implant

with separate generalized linear models, a multinomial distribution parameterized by the

cumulative logit with proportional odds for the number of implantations and a binary

response with a logit link for the negative outcomes. Kuk (2003) develops a model

that expresses the probability of a successful implant in terms of the parameters of the

dose-dependent litter size distribution, including a logit link to model the probability

that an implanted pup is adversely affected by the toxin.

While not proposed in terms of pre-implantation studies, there are methods of
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analyzing the more common Segment II developmental toxicity studies which treat the

number of implants or the litter size as a random variable that depends on the dose level.

Ten Have and Chinchilli (1998) propose two-stage negative binomial and overdispersed

Poisson models with a log-linear function of dose driving both the probability of success

and the mean of the random litter size distribution. Ma et al. (2009) model the number

of successes and the number of failures with dual Poisson models including functions of

a mixed model on the dose level in the mean.

We propose a Bayesian nonparametric mixture model built from a dependent

Dirichlet process prior to provide rich inference for the response distributions and the

dose-response relationships. The approach is developed for the distribution of the

triplet of the number of potential implants, the number of observed implants, and

the number of malformations, with implementation requiring imputing the missing,

potential implants. Alternatively, integrating out the unobserved variables generates a

nonparametric mixture with structured kernel components for the observed number of

implants and the number of malformations. We focus on flexible probabilistic modeling

for the set of related distributions of the triplet across the dose levels, which results in

general inference for the risk assessment quantities; importantly, such inference captures

the inherent complexity of the data while appropriately accounting for uncertainty. To

our knowledge, the proposed framework provides the first model-based nonparametric

approach to the analysis of pre-implantation studies.

3.4.2 Methods

We begin with a generic dam at a given dose level x. Let m∗ denote the

number of potential implants for the dam, and y be the response with observed number

of implants m. Note that y ≤ m ≤ m∗, where m∗ is not observed other than at dose
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x0 = 0, that is, we presume m0 = m∗0. We take a Pois(λ) distribution for the number

of potential implants, though this can be extended to a general mixture of negative-

binomial distributions. Here, we use the simpler case for more clear exposition of the

main component of the modeling approach.

Notwithstanding, both the observed m and y to depend on the dose level. To

relax the potentially restrictive assumptions imposed by standard parametric models,

we propose a nonparametric mixture modeling framework for the joint distribution of

the number of observed implants and negative outcomes. The mixture model for f(y,m)

is induced by a model for f(m∗,m, y), which is built from f(m∗) and a nonparametric

mixture model for f(m, y | m∗) with dose-dependent mixing distributions. The resulting

marginal distribution for the number of observed implants, f(m), and conditional

distribution for the number of negative outcomes given the number of implants, f(y | m),

depend on dose level in a fully nonparametric, model-based fashion.

The assumptions regarding m∗ induce different models for x0 = 0 and x > 0.

First focusing on the active dose levels, x > 0, we propose the following prior mixture

model for the triplet (m∗,m, y),

f(m∗,m, y;GX ) = Pois(m∗;λ)f(m, y | m∗;GX )

= Pois(m∗;λ)
∫

Bin(m;m∗, π(γ))Bin(y;m,π(θ)) dGX (γ, θ), (3.9)

where GX | α,ψ ∼ DDP(α,G0X ). In the mixture model for f(m, y | m∗;GX ), the

parameter of the first Binomial in the kernel, π(γ), is the probability of successful

implantation, whereas the parameter of the second Binomial kernel, π(θ), is the

probability of a negative outcome after implantation. Here, G0X is defined through

two independent GPs each with a linear mean function and exponential correlation
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function. Specifically, we use a GP prior with mean function β0 +β1x, variance σ2, and

covariance function exp(−φ|x− x′|) for the component θ, and an independent GP with

mean ξ0 +ξ1x, variance τ2, and covariance function exp(−ρ|x−x′|) for the γ component

of G0X . The model is completed with priors on the GP hyperparameters and for α.

In particular, we place normal priors on the intercept terms, exponential priors on the

slope coefficients, inverse gamma priors on the GP variance terms, and uniform priors

on the range parameters.

The marginal model for the number of potential implants has support over

m∗ = 0, 1, . . . . The event m∗ = 0 is trivial, however, it is necessary such that if we

marginalize over the unobserved m∗, the model reduces to a proper probability model.

Specifically, using the result
∑∞

m∗=m Pois(m∗;λ)Bin(m;m∗, π(γ)) = Pois(m;λπ(γ)), and

marginalizing over m∗ in 3.9, the model for the effective dose levels becomes

f(y,m;GX ) =
∫

Pois(m;λπ(γ))Bin(y;m,π(θ)) dGX (γ, θ), m = 0, 1, ...; y ≤ m.

Therefore, the marginal mixture model for the number of observed implants becomes

f(m;GX ) =
∫

Pois(m;λπ(γ)) dGX (γ). The joint mixture model provides directly the

conditional model for the distribution of the number of malformations given the number

of observed implants, that is, f(y | m;GX ) = f(y,m;GX )/f(m;GX ).

For the control group (dose x0 = 0), we have assumed m∗0 = m0. Thus,

the model at the control level is given by the marginal Pois(m0;λ) distribution for

m0, not included in the nonparametric mixture, and the conditional for y0 given

m0, defined by the DDP mixture of Binomial distributions, f(y0 | m0;GX ) =∫
Bin(y0;m0, π(θ)) dGX (θ).
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Model properties

The DDP mixture structure provides the joint hierarchical model for the data

at the effective doses and at the control group, which is used for posterior simulation.

For predictive inference for risk assessment, it is useful to establish an equivalent mixture

model formulation in terms of the underlying binary implantation responses for a generic

dam at dose level x, m′k, k = 1, 2, . . . ,m∗, and the product of the underlying binary

malformation responses, y∗k, k = 1, . . . ,m. We show that the DDP mixture model in

3.9 is equivalent to

f∗(m∗, {m′k}, {y∗k};GX ) = Pois(m∗;λ)
∫ m∗∏

k=1

Bern(m′k;π(γ))

Pm∗
k=1 m′k∏
k=1

Bern(y∗k;π(θ))dGX (γ, θ),

where the same mixing parameters are used for all binary responses corresponding to

the same dam.

Equivalence of the model with the underlying binary responses: To show

the equivalence of the DDP model with the Poisson-Binomial-Binomial kernel (M1 =

Pois(m∗;λ)
∫

Bin(m;m∗, π(γ))Bin(y;m,π(θ))dGX (γ, θ)) and the Poisson-product of

Bernoullis-product of Bernoullis kernel

(M2 = Pois(m∗;λ)
∫ ∏m∗

k=1 Bern(m′k;π(γ))
∏Pm∗

k=1m
′
k

k=1 Bern(y∗k;π(θ))dGX (γ, θ)), we first
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find the joint MGF of (m, y).

EM1(et1m+t2y;GX ) =
∞∑

m∗=0

m∗∑
m=0

m∑
y=0

et1m+t2yf(m∗,m, y;GX )

=
∫ ∞∑

m=0

m∑
y=0

et1m+t2yPois(m;λπ(γ))Bin(y;m,π(θ))dGX (γ, θ)

=
∫ ∞∑

m=0

et1mPois(m;λπ(γ))(1 + π(θ)(et2 − 1))mdGX (γ, θ)

=
∫

exp{λπ(γ)(et1(1 + π(θ)(et2 − 1))− 1)}dGX (γ, θ)

Now, the joint MGF of the (
∑m∗

k=1m
′
k,
∑Pm∗

k=1m
′
k

k=1 y∗k) is as follows.

EM2(et1
Pm∗

k=1 m′k+t2
PPm∗

k=1 m′k
k=1 y∗k ;GX ) =

∞∑
m∗=0

m∗∑
P

m′k=0

P
m′k∑

y=0

et1
Pm∗

k=1 m′k+t2
PPm∗

k=1 m′k
k=1 y∗kf∗(m∗, {m′k}, {y∗k};GX )

=
∫ ∞∑

m∗=0

Pois(m∗;λ)
m∗∑

P
m′k=0

P
m′k∑

y=0

et1
Pm∗

k=1 m′k+t2
PPm∗

k=1 m′k
k=1 y∗k×

m∗∏
k=1

Bern(m′k;π(γ))

Pm∗
k=1 m′k∏
k=1

Bern(y∗k;π(θ))dGX (γ, θ)

=
∫ ∞∑

m∗=0

Pois(m∗;λ)
m∗∏
k=1

1∑
m′k=0

Bern(m′k;π(γ))(1 + π(θ)(et2 − 1))m′kdGX (γ, θ)

=
∫ ∞∑

m∗=0

Pois(m∗;λ){1 + π(γ)(et1 + et1π(θ)(et2 − 1)− 1)}m
∗
dGX (γ, θ)

=
∫

exp{λπ(γ)(et1(1 + π(θ)(et2 − 1))− 1)}dGX (γ, θ)

≡ EM1(et1m+t2y;GX )

This alternative model formulation gives a basis for risk assessment based on

the probability a generic pup at dose level x will not be successfully implanted, the

conditional probability that the pup will have a malformation given it is successfully
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implanted, and a combined risk of unsuccessful implantation and malformation.

Risk assessment

For risk assessment, we have an implicit conditioning on m∗ = 1. The first

dose-response curve of interest is the probability of an unsuccessful implant across

effective dose levels,

Pr(m′ = 0 | m∗ = 1;GLx ) =
L∑
l=1

pl[1− π(Ul(x))], x ∈ X .

Following the procedures in the previous sections, this curve is increasing in prior

expectation given a restriction on the slope coefficient in the underlying GP linear

mean, namely ξ1 < 0.

We are also interested in the probability that a generic pup has a malformation

(in general, negative outcome) given that it is successfully implanted. This probability

is naturally defined through conditional probability given a successful implant for all

x ∈ X :

Pr(y∗ = 1 | m′ = 1,m∗ = 1;GLx ) = Pr(m′ = 1, y∗ = 1 | m∗;GLx )/Pr(m′ = 1 | m∗ = 1;GLx ),

which is written as
∑L

l=1 ql(x)π(Zl(x)) where ql(x) = {plπ(Ul(x))}/(
∑L

m=1 pmπ(Ul(x))).

For full risk assessment at any active dose level, x > 0, we want to combine

the probability of a live, malformed pup and the probability of an unsuccessful implant.
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Hence, the combined risk, r(x), at dose level x ∈ X is given by

r(x) = Pr(y∗ = 1 or m′ = 0 | m∗ = 1;GLx )

= Pr(m′ = 1, y∗ = 1 | m∗ = 1;GLx ) + Pr(m′ = 0 | m∗ = 1;GLx )

=
L∑
l=1

plπ(Zl(x))π(Ul(x)) +
L∑
l=1

pl(1− π(Ul(x)))

= 1−
L∑
l=1

plπ(Ul(x)){1− π(Zl(x))}.

Therefore, through investigation of the prior expectation, the full risk function is

monotonically increasing provided both ξ1 < 0 and β1 > 0. Prior simulation suggests

that these restrictions also promote an increasing trend in prior expectation for the

conditional risk of malformation.

Prior specification

We set the means of the normal prior for the centering Gaussian process linear

mean parameters, ξ0 and β0 to 0, and the shape parameter of the inverse gamma priors

for the Gaussian process variance, τ2 and σ2, to 2 (implying infinite prior variance).

The prior variances for ξ0 and β0, the prior mean for the exponential priors on ξ0 and

β0, and the means for the inverse-gamma priors on τ2 and σ2 are chosen by studying the

induced prior distribution for the dose-response curve for malformations and successful

implants, for which prior realizations can be readily sampled. Specifically, under the

prior choice, the prior mean for both Pr(y∗ = 1;GLX ) and Pr(m′ = 1;GLX ) have a slight

increasing trend beginning around 0.5 and the corresponding 95% interval bands are

essentially spanning the (0, 1) interval.
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3.4.3 Posterior inference

Let m∗j = {m∗0j ,m∗1j , . . . ,m∗Nj} denote the number of potential implants

for the jth dam at dose xi, i = 0, 1, . . . , N , and yj = (y0j , y1j , . . . , yNj) be the jth

response replicate with observed number of implants vector mj = (m0j ,m1j , . . . ,mNj),

for j = 1, . . . , n. Now, let θj ≡ θj(xN+1) = (θj(x0), θj(x1), . . . , θj(xN )) be the

(N + 1)-dimensional latent mixing vector for yj and xN+1 = (x0, x1, . . . , xN ), and

γj ≡ γj(xN ) = (γj(x1), . . . , γj(xN )) be the N -dimensional latent mixing vector for mij ,

i > 0 and xN = (x1, . . . , xN ), for j = 1, . . . , n.

Given the truncation approximation as in Chapter 2, γj = Ul and θj = Zl with

probability pl, the first stage of the hierarchical model for the (mij , yij) is expressed as

{mj ,yj} | λ,wj , U(x), Z(x) ind.∼
n∏
j=1

{
Pois(m0j ;λ)Bin(y0j ;m0j , π(Zwj (x0)))

}s0j ×

N∏
i=1

{
Pois(mij ;λπ(Uwj (xi)))Bin(yij ;mij , π(Zwj (xi)))

}sij ,

(3.10)

where f(p | α) is defined as in Chapter 2 and (Ul(xN ), Zl(xN+1)) arise i.i.d. from

G0x(Ul(xN ), Zl(xN+1) | ψ).

MCMC details

For the studies with pre-implantation exposure, the two centering GPs driving

the parameters of the kernel for the observed implants and the kernel for the number

of negative outcomes. The updates for the parameters of the negative outcomes are

equivalent to those from the DDP Binomial model, with an N + 1-variate proposal (N

active dose levels and one control). The observed implants include similar updates for
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the GP hyperparameters, plus the updates for the N -variate sample paths, Ul(x), {wj},

and the mean of the potential implant distribution, λ.

The full conditional for the vector (Ul(x)) depends on whether l corresponds

to one of the distinct components. Therefore, if l /∈ {w∗k : k = 1, . . . , n∗}, then Ul(x) ∼

NN ((ξ0 + ξ1x1, . . . , ξ0 + ξ1xN )T ,Λ) For Ul : l ∈ {w∗k : k = 1, . . . , n∗},

p(Uw∗k(x) | w, ψ, data) = g0(Uw∗k(x)|ψ)
∏

{j:wj=w∗k}

N∏
i=1

Pois(mij ;λπ(Uw∗k(xi)))sij .

A Metropolis-Hastings step is used with an N -variate normal distribution as

the proposal, with covariance matrix of similar form to the base GP covariance

function. Specifically, for the real data, we use Dij = 1.3 exp(−0.1|xi −

xj |) which yields acceptance rates of approximately 0.15. For the wj ,

the updates come from a discrete distribution with weights proportional to

plBin(y0j ;m0j , π(Zl(x0)))s0j
∏N
i=1{Pois(mij ;λπ(Ul(xi)))Bin(yij ;mij , π(Zl(xi)))}sij .

The parameter λ is the mean of the Poisson distribution for the control group

and coupled with a function of the Ul(x) in the mean of the Poisson distribution for

the active dose levels. Therefore, with a gamma(aλ, bλ) prior, the conditional posterior

is also a gamma distribution with parameters aλ +
∑n

j=1

∑N
i=0m

sij

ij and bλ + n0 +∑n
j=1

∑N
i=1 π(Uwj (xi))sij , where n0 =

∑n
j=1 s0j .

Posterior inference

Under this experimental design, we briefly discuss predictive inference for the

response distributions, where we want to predict a new vector of responses at the
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observed dose levels, y0 = (y00, . . . , yN0) and implants m0 = (m00, . . . ,mN0) from

p(y0,m0 | data) =
∫ [ L∑

l=1

plPois(m00;λ)Bin(y00;m00, π(Zl(x0)))×

N∏
i=1

Pois(mi0;λπ(Ul(xi)))Bin(yi0;mi0, π(Zl(xi)))

]
dp(Θ | data),

which accentuates the distinction of the DDP model at the control level from the active

doses. Thus, p(y0 | m0, data) = p(y0,m0 | data)/p(m0 | data), where

p(m0 | data) =
∫

Pois(m00;λ)
L∑
l=1

pl

N∏
i=1

Pois(mi0;λπ(Ul(xi)))p(Θ | data)dΘ.

To augment the N known dose levels, we want to interpolate across M

new dose levels, x̃ = (x̃1, . . . , x̃M ). Now, each Ul(x) = (Ul(xN ), Ũl(x̃)) and

Zl(x) = (Zl(xN+1), Z̃l(x̃)), for l = 1, . . . , L. These are obtained through the standard

conditional normal regression distributions.. The full vectors of the GP sample paths

are utilized to obtain inference for the dose-response relationships by evaluating the

expressions found in the previous sections.

3.4.4 Data illustrations

We use a simulation study to check the performance of our model, the details

and results of which are given in the next section. To further illustrate the interpolation

and extrapolation capabilities of the model, we also analyze data from a dominant lethal

assay experiment.
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Figure 3.29: Simulation data. Each circle corresponds to a particular dam, the size of
the circle is proportional to the number of implants, and the coordinates of the circle
are the dose level and the proportion of malformations for the three simulation settings.

Simulation study

To determine the effectiveness of the proposed model in capturing inferential

objectives, we use two simulation settings. The first involves observed implants from

a single Poisson distribution with a mean of λπ(h1(x)) with h1(x) = 2 − 0.025x

and λ = 11, and the number of malformed pups arising from a single Binomial

model with dose-dependent probability of π(f1(x)) where f1(x) = −3 + 0.06x. Here,

there are 4 equally spaced active dose levels ranging from 30 to 120 and n = 100

animals at each dose level. The second uses a three component mixture for both

the observed implants and the number of malformed pups, with the three Poisson

distributions being very close and the three binomial distributions well separated;

that is, m is drawn from
∑3

i=1wiPois(λπ(hi(x))) with w = (0.35, 0.40, 0.25), λ = 11,

h1(x) = 5.5− 0.008x, h2(x) = 6− 0.009x, and h3(x) = 5− 0.006x. Conditioned on m,

y arises from
∑3

i=1wiBin(m,π(mi(x))), where w is the same, m1(x) = −10 + 0.05x,

m2(x) = −5 + 0.012x, and m1(x) = −4 + 0.008x. In this setting, we have 3 active dose
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levels (250, 500, and 750) and n = 300 animals at each dose level. The data from each

of the simulation settings is given in Figure 3.29.
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Figure 3.30: For the 5 observed dose levels in simulation 1, the posterior mean
probability mass functions (denoted by “o”) and 90% probability bands for the number
observed implants with the true pmf denoted by “x”.
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Figure 3.31: For the 5 observed dose levels in simulation 1, the posterior mean
probability mass functions (denoted by “o”) and 90% probability bands for the number
of malformations conditional on m = 12 implants with the true pmf denoted by “x”.
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In the first simulation setting, the DDP model recovers the true marginal

probability mass functions for the number of observed implants with narrow probability

bands (Figure 3.30). Inference for the conditional probability mass functions of

the number of malformations given a specified number of observed implants is also

comparable to the truth with relatively small uncertainty bands, as shown in Figure

3.31. Even with the simple structure of a single Binomial and Poisson component, the

DDP model has the capacity to yield appropriate inference, as seen in Figure 3.32, with

satisfactory uncertainty quantifications.
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Figure 3.32: The posterior mean estimate (solid line) and 90% probability bands
(dashed lines) for Pr(m′ = 0;GLX ) (left panel), Pr(y∗ = 1;GLX ) (middle panel), and
the risk function r(x) (right panel). The true curves given the first simulation setting
are given in blue.

The second simulation setting results in probability mass functions for

the number of observed implants which are comparable to the true values with

little uncertainty, and are omitted here. The conditional pmfs for the number of

malformations given a specific number of successful implants (m = 12 in Figure 3.33)

are multimodal in parts of the dose range at both observed and unobserved dose levels.
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The DDP model follows the true values with sensible probability bands.
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Figure 3.33: For the 4 observed dose levels in simulation 2, the posterior mean
probability mass functions (denoted by “o”) and 90% uncertainty bands for the number
of malformations conditional on m = 12 implants with the true pmf denoted by “x”.

The risk assessment quantities are found in Figure 3.34. The DDP model

captures both the simple and non-standard dose-response curves, as the true curves,

given in black, lie within the relatively tight probability intervals. Because there is no

data between 0 mg/kg and 250 mg/kg, the model almost misses the true conditional

probability of malformation and, subsequently, the combined risk between these points.

However, the uncertainty bands still cover the true curves.

Dominant lethal assay experiment

We further illustrate the utility of the DDP model through a data set from a

dominant lethal assay experiment discussed in Lüning et al. (1966). In this experiment,

a number of male mice were given 0, 300, and 600 R of radiation and, within 7 days,

were mated with females. For the 1773 females, the number of implants and the number
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Figure 3.34: The posterior mean estimate (solid line) and 90% probability bands
(dashed lines) for Pr(m′ = 0;GLX ) (left column), Pr(y∗ = 1;GLX ) (middle column),
and the risk function r(x) (right column). The true curves given the second simulation
setting are given in black.

of non-viable fetuses were recorded; the data are shown in the left panel of Figure 3.35.

Figure 3.36 gives the posterior mean and 90% probability intervals for the

marginal probability mass function for the number of observed implants. While the

data do not suggest bimodal or vast deviations from standard shapes, the DDP model

has the ability to interpolate and extrapolate and produces probability mass functions

with a smooth evolution. This progression is also apparent in the conditional probability

mass functions for the number of non-viable fetuses given m = 8 at the three observed

dose levels and six new dose levels within and outside the range of observed levels (see

Figure 3.37). Finally, the risk assessment quantities are found in Figure 3.35. As the

data has only three dose levels and the variability is high, the risk assessment quantities

have a fairly weak signal and large uncertainty bands.

3.4.5 Discussion

We have presented a Bayesian nonparametric mixture model for developmental

toxicity studies with pre-implantation exposure. The model characterizes the data
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Figure 3.35: In the left panel, the radiation data. The posterior mean estimate (solid
line) and 90% probability bands (dashed lines) for Pr(m′ = 0;GLX ) (left middle panel),
Pr(y∗ = 1;GLX ) (right middle panel), and the risk function r(x) (right panel).
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Figure 3.36: For the 3 observed dose levels and 3 new dose levels, the posterior mean
probability mass functions (denoted by “o”) and 90% uncertainty bands for the number
observed implants.
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Figure 3.37: For the 3 observed dose levels and 6 new dose levels, the posterior mean
probability mass functions (denoted by “o”) and 90% probability bands for the number
of non-viable fetuses conditional on m = 8 implants.

structure, and avoids the imputation of the unobserved variables. Simulated data as

well as data from a dominant lethal assay experiment were used to show the ability to

interpolate and extrapolate inferences at unobserved dose levels.

3.5 Conclusions

We have presented a comprehensive framework for the analysis of the many

types of developmental toxicity studies. The framework is based on the single-p

dependent Dirichlet process prior to provide flexibility in the response distributions

and the various probabilities of response. The replication required for the DDP prior

arises in the multiple animals at each dose level. The dose-response curves are imbued

with an increasing trend to aid in interpolation and extrapolation, nevertheless they are

capable of producing non-monotonic shapes if suggested by the data.
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Chapter 4

Nonparametric mixture modeling for

bioassay settings

4.1 Motivation and background

The quantal bioassay dose-response setting has been found valuable in many

different fields, from ecology to medicine. Though quantitative measurement of a

response is preferred, there are certain responses which can only be expressed as a

binary outcome, either occurring or not occurring. The dose-response relationship is

based on observed data from experimental animal, human clinical, or cell studies. In

these types of settings, as dose increases, the responses generally become more severe.

Within a population, the majority of the subjects’ responses are similar; however, a wide

variance of responses may be encountered as some individuals are more susceptible and

others resistant.

At each of N dose levels xi, i = 1, . . . , N , ni subjects are exposed to the

substance, and the number of subjects that have the response of interest is recorded as

yi. The dose-response curve, denoted by D(x), is defined as the probability of positive
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response as a function of dose x. One of the standard assumptions in the analysis of

quantal bioassay problems is that D(x) is a non-decreasing function and can therefore

be modeled as a cumulative distribution function (CDF). Under this assumption, the

distribution corresponding to CDF D(x) is referred to as the tolerance distribution. In

parametric modeling, D(x) is assumed to be a member of a parametric family of CDFs.

Standard parametric models are intuitive and simple to implement, but do not have the

ability to capture complex curves, including skewness and multimodality.

To extend the inferential scope of parametric models, authors have proposed

finite mixtures for the tolerance distribution. Lwin and Martin (1989) presents a

location-scale mixture model, but develops the model based on the idea of a finite

number of unobserved, underlying subpopulations. Geweke and Keane (1999) also

propose full mixtures of probit models to more accurately describe the shape of the

dose-response curve, while Basu and Mukhopadyay (2000) use a finite scale mixture

of normal CDFs. These finite mixtures are, in general, more flexible than parametric

models, however one must choose the number of components. One may take the route of

increasing the number of components in the mixture model, to move in the direction of

semiparametric models. This can be inefficient and entails multiple runs of an MCMC

algorithm to ensure a pertinent cutoff point. In addition to theoretical advantages,

Bayesian nonparametric priors offer the practical benefit of removing the requirement

of setting the cutoff.

The quantal bioassay setting has been studied extensively in the Bayesian

nonparametric arena. One of the more common approaches involves assign a

nonparametric prior to the distribution function D(x). Variants of the DP prior

have been investigated previously for the dose-response curve (e.g., Antoniak,

1974; Bhattacharya, 1981; Disch, 1981; Kuo, 1983, 1988; Gelfand and Kuo, 1991;

108



Mukhopadhyay, 2000). Also along these lines is Muliere and Walker (1997), where

Pólya tree priors are used to determine the maximum tolerated dose. A monotone

nonparametric regression framework is presented in Bornkamp and Ickstadt (2009),

where the monotone function is modeled as a mixture of shifted and scaled two-sided

power distribution functions. An alternative approach is to model the binary responses

with latent continuous variables, and assume flexible mixtures of probit or logit functions

for the dose-response curve. MacEachern (1998) assumes a DP prior directly on the

distribution of the latent variables. Presented in terms of multivariate probit regression,

Jara et al. (2007) mix on the intercept of the linear mean and the covariance matrix of

the distribution of the subject specific latent variable distribution. This model requires

constraints to ensure identifiability. Casanova et al. (2010) place a scale DP mixture of

normal distributions prior on the distribution of the latent variables.

We aim to extend these versions of the product of bernoullis or binomial models

by assuming the data at each dose level arises from a DP mixture model, where the

collection of mixing distributions are related but not identical. That is, we employ the

brilliant services of the dependent Dirichlet process prior.

4.2 Methods

Here, we discuss possible models for the analysis of quantal response data,

including a general DDP approach and modifications thereof. For all subsequent

approaches, we let yij be the binary responses corresponding to the ni subjects at

dose level, xi, for i = 1, . . . , N ; thus, yi =
∑ni

j=1 yij .
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4.2.1 General DDP prior

In the same spirit with the mixture models developed in Chapter 3 for

developmental toxicology data, we first consider a general DDP mixture model for the

binary responses. In particular, we use a Bernoulli kernel with a logistic transform for

the probability of positive response. A single-p DDP prior is placed on the collection

of mixing distributions of the logit parameter across the dose levels, giving the prior

model

f(y;GX ) =
∫

Bern
(
y;

exp(θ)
1 + exp(θ)

)
dGX (θ),

where GX ∼ DDP(α,G0X ). Alternatively, we may take the probit link and place the

DDP prior on the dose-specific, mixing distributions of the probit parameter, i.e.,

f(y;GX ) =
∫

Bern (y; Φ(θ)) dGX (θ). In either formulation, we may take the base

stochastic process to be a Gaussian process with linear mean function, µ(x) = β0 +β1x,

and isotropic correlation function, Σ = σ2H(φ), where Hij(φ) = exp(−φ|xi − xj |).

By definition, the dose-response curve is the probability of a response across

the dose levels. Therefore, under the general DDP model, the dose-response curve is

given by

Pr(y = 1;GX ) =
∫
π(θ)dGX (θ) ≡

L∑
l=1

plπ(θl(x)), (4.1)

where π(·) may take either the logit or probit transform. This model does not strictly

enforce a monotonicity restriction, although it may be shown to be monotonically

increasing in prior expectation provided the GP base stochastic process has a linear mean

and the coefficient associated with the dose level, β1, is strictly positive. Section 3.1.1

includes prior realizations of the dose-response curve under this model, and emphasizes

the monotonicity of the curve in expectation.

110



The relationship between the dose level and the observed response can often

be extremely complex. In general, however, at relatively low doses, the response to a

drug generally increases in direct proportion to increases in the dose. At higher doses

of the drug, the amount of change in response to an increase in the dose gradually

decreases until a dose is reached that produces no further increase in the observed

response. The relationship between the concentration of the drug and the observed

effect is consequently assumed to be monotonically increasing.

In the general DDP model, we take each replicate j as a vector ofN data points,

yj = (y1j , y2j , . . . , yNj), thereby linking the neighboring data. In the developmental

toxicology case, this is warranted as the animals are most often labeled and recorded in

increasing order across the dose level. However, in the traditional dose-response setting,

the subjects are arbitrarily assigned to the elements of the response vector at any given

dose level. There is no reason to believe the subjects within the jth vector of length

N are associated in any fashion. Accordingly, the subjects are assumed to be fully

exchangeable across both i and j.

These restrictions and assumptions support the use of the linear-DDP as a

special case of the general DDP prior. Consequently, we develop a more structured

version of the general DDP mixture model, using the linear-DDP prior for the collection

of dose-dependent mixing distributions.

4.2.2 Linear-DDP mixture model

The linear-DDP (e.g., DeIorio et al. (2009)) is a simplified version of the DDP

prior. That is, we consider f(y;Gx) =
∫

Bern(y;π(θ))dGx(θ), where Gx =
∑L

l=1 plδθl(x)

and θl(x) = γ0l + γ1lx. The {γ0l} and {γ1l} are assumed to be mutually independent,

which begets a weaker dependence on the collection of distributions, and enforces the
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functional dependence of the distributions on x. With the constraint γ1l > 0 for all

l = 1, . . . , L, we force a monotonic increasing trend for the dose-response curve. That

is, with the restriction γ1l > 0, each π(γ0l + γ1lx) is increasing in x, and therefore∑L
l=1 plπ(γ0l + γ1lx) is monotonically increasing with probability one.

Modeling details

For most dose-response experiments, one can argue that the observed binary

response is a proxy for a continuous variable. As a result, an unobserved continuous

variable underlies the binary response, say, arising from a normal distribution. This

procedure offers a tractable way to estimate the parameters of a model. We assume a

probit mixture approach for modeling the intrinsic degree of response variables via the

linear-DDP prior.

The essential observation from the construction of the linear-DDP prior is the

correspondence of {Gx : x ∈ X} and G =
∑L

l=1 plδ(γ0l,γ1l), where

G ∼ DP(α,G0 = G(0) × G(1)), with G(0) and G(1) denoting the component of the

DP base distribution for the γ0l and γ1l, respectively. That is, (γ0l, γ1l) ∼ G0 with

probability pl (definition of G under the DP prior) if and only if θl(x) = γ0l + γ1lx

with probability pl (definition of Gx under the linear-DDP prior). Hence, using the

probit transform for the Bernoulli kernel probability, the linear-DDP mixture model,

f(y;Gx) =
∫

Bern(y; Φ(θ))dGx(θ), can be equivalently formulated as a DP mixture

model

f(y;G, x) =
∫

Bern(y; Φ(γ0 + γ1x))dG(γ0, γ1); G ∼ DP(α,G0).

This model can now be represented through latent continuous responses, say, uij

associated with yij , with a location normal DP mixture defining the latent response
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distribution. Specifically,

yij | uij
ind.∼ 1{yij = 1 iff uij > 0}; i = 1, . . . , N ; j = 1, . . . , ni

uij | G, xi
ind.∼

∫
N(uij ; γ0 + γ1xi, 1)dG(γ0, γ1); i = 1, . . . , N ; j = 1, . . . , ni

G | α,ψ ∼ DP(α,G0(ψ)), (4.2)

where G0 is the bivariate centering distribution for (γ0, γ1) that includes the γ1 > 0

restriction. Comparison to more standard binomial models for the aggregate responses

is ideal; some of the literature has presented models with a bernoulli or binomial

kernel and a finite, somewhat structured mixture of probit curves for the probability

of response. Despite basing the model on the underlying binary outcomes, model

4.2 is equivalently developed in terms of a binomial distribution for the set of

yi =
∑ni

j=1 yij , i = 1, . . . , N , with a probit mixture for the probability of response.

Connection with the probit mixture: Taking the MGF approach, we show that M1,

the model for the sum of the responses starting from the underlying binary outcomes,

is equivalent to M2, the model for the aggregated responses {y′i} with a probit mixture

probability of response and a binomial kernel.
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EM1(et
Pni

j=1 yij ;G) =
∫ ni∑

Pni
j=1 yij=0

et
Pni

j=1 yij

ni∏
j=1

Bern(yij ; Φ(γ0 + γ1xi))dG(γ0, γ1)

=
∫ ni∏

j=1

1∑
yij=0

etyij Bern(yij ; Φ(γ0 + γ1xi))dG(γ0, γ1)

=
∫ ni∏

j=1

(
1− Φ(γ0 + γ1xi) + etΦ(γ0 + γ1xi)

)
dG(γ0, γ1)

= EM2(ety
′
i ;G)

With the restriction on γ1 ∈ R+, we may reparameterize the bernoulli kernel,

and, consequently, the underlying latent response distribution, to a location-scale

mixture of normal distributions. Specifically, let µ = −γ0/γ1 and τ = 1/γ1, µ ∈ R

and τ > 0. Given the above formulation and letting G∗ ∼ DP(α,G∗0(µ, τ2)), we obtain

Pr(y = 1;G, x) =
∫

Φ(γ0 + γ1x)dG(γ0, γ1)

=
∫

Φ ((−µ/τ) + (1/τ)x) dG∗(µ, τ2) =
∫

Φ
(
x− µ
τ

)
dG∗(µ, τ2)

=
∫ ∫ x

−∞
N(z;µ, τ2)dzdG∗(µ, τ2) =

∫ x

−∞

∫
N(z;µ, τ2)dG∗(µ, τ2)dz

= Pr(z ≤ x;G∗),

where the final probability arises under the location-scale normal DP mixture,∫
N(z;µ, τ2)dG∗(µ, τ2), for the latent response distribution. Because the (µ, τ2) normal

parameterization expedites prior specification, we work with the location-scale normal

DP formulation (suppressing the G∗ notation in the following).

As a computational tool, we choose to truncate the collection of mixing

distributions at a suitable level. To represent the component to which each data point is
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associated, configuration variables are introduced. Contrary to the methods discussed in

Chapter 3, each binary response, yij , is assigned to any component and is thusly given

an individual configuration variable, wij . Therefore, including the latent continuous

responses zij associated with the yij , the hierarchical model for the data becomes:

yij | zij
ind.∼ 1{yij = 1 iff zij ≤ xi}; i = 1, . . . , N ; j = 1, . . . , ni

zij | µ, τ 2,w
ind.∼ N(zij ;µwij , τ

2
wij

), i = 1, . . . , N ; j = 1, . . . , ni

wij | p
ind.∼

L∑
l=1

plδl(wij), i = 1, . . . , N ; j = 1, . . . , ni

(µl, τ2
l ) | ψ ind.∼ G0(µl, τ2

l | ψ), l = 1, . . . , L, (4.3)

with p | α ∼ f(p | α), and G0 = N(µl;β0, σ
2
0)× inverse-gamma(τ2; c, δ). Here, µ =

(µ1, . . . , µL), τ 2 = (τ2
1 , . . . , τ

2
L), and w = {wij : i = 1, . . . , N ; j = 1, . . . , ni}. We place

conjugate normal, inverse-gamma priors on the parameters of the prior for the µl, and

a gamma prior on δ (with c fixed). As the model requires learning about the latent

variables, the mixture parameters, and the hyperparameters, prior specification is key

and expected to influence posterior inference.

Prior specification

As the number of parameters in the model is rather large, careful prior

specification is seemingly important. However, we are able to define the hyperpriors

on the parameters of G0 only through the range of the dose levels. The mean of the

normal prior on the µl, β, is centered at the mean of the dose levels and the variance

is determined by the taking range of the dose levels, divide by four, and squaring. The

variance parameter of the normal prior, σ2, is given an inverse-gamma prior with shape
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parameter defined by half the number of dose levels and scale parameter defined by the

range of the dose levels. The τ2
l are given an inverse-gamma prior with fixed shape

parameter (the number of dose levels minus 2) and scale parameter, δ. The exponential

prior on δ is provided such that the mean is roughly a fourth of the dose range.

Specifically, for the trypanosome data where the dose range is from 4.7 to 5.4,

the normal prior on β has mean 5.1 and variance 0.04, and σ2 is given an inverse-

gamma(4, 0.7). The prior on the τ2
l has a fixed shape parameter at 6, and the scale

parameter, δ, is given an exponential(6).

MCMC posterior simulation

The blocked Gibbs sampling approach (Ishwaran and Zarepour, 2000; Ishwaran

and James, 2001) yields straight forward updates for all unknown parameters. For the

quantal bioassay settings, the model simplifies to a normal mean-scale DP mixture.

Also, with the assumption of full exchangeability across dose levels and within, some

notation needs to be updated. Here, we denote the n∗ distinct values of matrix w by

w∗1, . . . , w
∗
n∗ , M

∗
k = |{i, j : wij = w∗k}|, k = 1, . . . , n∗, and Ml = |{wij : wij = l}|,

l = 1, . . . , L. The weights of the DP and the mass parameter α are updated in the same

fashion as in Chapter 2, the other parameter full conditionals are given below.

The latent variables are updated individually, depending on the value of

yij . If yij = 0, the zij are drawn from N(µwij , τ
2
wij

) truncated above at 0.

When yij = 1, the zij are drawn from the normal distribution truncated below at

0. The full conditionals for the distinct components of the (µl, τ2
l ) are given in

closed form. That is, for the l ∈ {w∗k : k = 1, . . . , n∗}, the µw∗k arise from a

normal with mean
(
{
∑∑

i,j:wij=w∗
k

zij}/τ2
w∗k

+ β0/σ
2
0

)
/
(
M∗k/τ

2
w∗k

+ 1/σ2
0

)
and variance(

M∗k/τ
2
w∗k

+ 1/σ2
0

)−1
. Similarly, the τ2

w∗k
are drawn from an inverse-gamma distribution
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with shape c + 0.5M∗k and scale δ + 0.5
∑∑

i,j:wij=w∗
k

(µ∗k − zij)2. Finally, the subject

specific configuration variables are individually from a discrete distribution with weights

proportional to plN(zij ;µl, τ2
l ), for l = 1, . . . , L

The hyperparameters of G0 are given conjugate priors. The mean of the prior

on the µl, β0, is given a normal prior and is drawn from a normal distribution with

mean
(∑L

l=1 µl/σ
2
0 +mβ0/s

2
β0

)
/
(
L/σ2

0 + 1/s2β0

)
and variance

(
L/σ2

0 + 1/s2β0

)−1
. The

variance of the prior on the µl, σ2
0, is given an inverse-gamma prior and is drawn from

an inverse-gamma with updated parameters 0.5L + aσ2
0

and bσ2
0

+ 0.5
∑L

l=1(µl − β0)2.

Finally, δ, the scale parameter of the inverse-gamma prior for the τ2
l , is given a gamma

prior and the updated shape parameter is Lc+ aδ and scale bδ +
∑L

l=1 τ
2
l .

Samples from the posteriors of these parameters are used in posterior inference

for risk assessment.

Posterior inference

The most important inference in terms of the quantal bioassay setting is for

the dose-response curve. This curve, defined as the probability of response as a function

of dose (x), is described by a finite mixture of probit functions.

D(x) = Pr(y = 1;G, x) = Pr(z ≤ x;G) =
L∑
l=1

plΦ
(
x− µl
τl

)
Section 4.2.1 elucidates the monotonicity restriction in terms of the (γ0, γ1)

origination. This restriction carries over to the tolerance formulation by assumption,

as τ2 is a variance parameter and thus positive. Hence, the dose-response curve is

necessarily monotonic by virtue of the inherent properties of the linear-DDP prior model.

Another inferential objective is inversion, where interest lies in estimation of
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the dose-level, xq, corresponding to a specific probability, q. Under the linear DDP

model, this is obtained by numerically inverting the posterior realizations of the dose-

response curve at each iteration of the MCMC; that is, given the posterior sample path

of the dose-response curve at each step of the MCMC algorithm, invert D(xq) = q.

In terms of calibration, we consider a specified vector of responses, y0 = {y0j :

j = 1, ..., n0} and seek to estimate the dose level, x0, which is associated with this

new vector of responses. This inference can be obtained by augmenting the hierarchical

model with the components associated with y0 and expanding the parameter vector to

include the unknown dose x0. Key is the fact that the DDP prior is defined over the

uncountable space X , and it thus induces a proper hierarchical model for any x0. The

calibration problem is challenging for many models, however, our approach lends itself

for a seemingly straightforward update. The full hierarchical model for calibrating dose

x0 is given by:

{yij} | {zij}, x0 ∼
N∏
i=0

ni∏
j=1

1{yij = 1 iff zij ≤ xi}

{zij} | {wij},µ, τ 2 ∼
N∏
i=0

ni∏
j=1

N(zij ;µwij , τ
2
wij

)

{wij} | p ∼
N∏
i=0

ni∏
j=1

L∑
l=1

plδl(wij)

(µl, τ2
l ) | ψ i.i.d.∼ G0(µl, τ2

l | ψ), l = 1, . . . , L

x0 ∼ N(x0;h, v2)

where p | α ∼ f(p | α), and G0 is defined as before. Conditioned on x0, the main MCMC
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updates are the same. The dose level, x0, has posterior full conditional distribution,

x0 | z, data ∝ N(x0;h, v2)
n0∏
j=1

1{y0j = 1 iff z0j ≤ x0}.

Therefore, x0 must satisfy x0 ≥ ax0 = maxj:y0j=1 {z0j}, and x0 < bx0 =minj:y0j=0 {z0j}.

Combining these conditions, the update for x0 follows a normal distribution with

mean h, variance v2, truncated below at ax0 , and truncated above at bx0 . Clearly,

a conscientious prior is essential for sufficient learning. To this end, we find the quartile

of the dose range that roughly corresponds to the proportion of positive responses to

center the prior and divide the variance of the prior placed on β0 by a factor of four to

estimate the spread of the prior on x0.

4.2.3 Data illustrations

We illustrate the linear-DDP model on two data sets, one studied throughout

the literature and the other an application to cytogenetic dosimetry.

Trypanosome data application

We highlight the effectiveness of our model with a data set commonly studied

in the literature. Ashford and Walker (1972) first analyzed the data related with death

rate of protozoan trypanosome found in Table 4.1. Trypanosomes are parasites which

do not grow readily in artificial culture (when they do grow they change from the blood

form to the insect form) and no reliable quantitative genetic characters have been found

nor have accurate methods been available to assess characters such as drug resistance.

Here, we look at results from the trypanosome sensitivity to the log concentrations of

pure neutral acriflavine (Walker, 1966).
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Table 4.1: Trypanosome data reported in Ashford and Walker (1972).

Log concentration 4.7 4.8 4.9 5.0 5.1 5.2 5.3 5.4
Exposed 55 49 60 55 53 53 51 50
Dead 0 8 18 18 22 37 47 50

Using the linear-DDP model, we obtain the posterior mean (solid) and 90%

uncertainty bands (dashed) for the dose-response curve; see the left panel of Figure

4.1. The smooth posterior mean curve follows closely the path of the observed data,

and the interval bands include the majority of the points. The extremes of the observed

proportions are at zero and one, which are known to be burdensome for most parametric

models. In general, the proposed nonparametric mixture model captures well the non-

standard, bimodal shape for the tolerance distribution suggested by the data.

The middle panel of Figure 4.1 gives the posterior estimates for dose levels, xq,

for inversion probabilities q = 0.05, 0.15, 0.25, and 0.5. The posterior range for x0.25

is comparable to that found in Mukhopadhyay (2000), and the spread of the densities

depends on the width of the probability intervals around the dose-response curve at the

given response probability. The final inference reported in Figure 4.1 (right panel) is

for the calibrated dose level, x0, corresponding to a new response vector of y0 = 26 and

n0 = 52. This new response vector resembles the observed counts at dose 5.1, a value

captured by the posterior density for x0.

In terms of the calibrated dose level, we look into sensitivity of the prior

specification. We begin with a normal prior which includes the majority of the dose

range in its support, see the right panel of Figure 4.1. The mean is roughly 5.18 with a

standard deviation of about 0.04. Figure 4.2 gives the calibrated dose estimates for the

normal prior (left), a uniform prior from [4.9, 5.25] in the middle panel, and a uniform
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Figure 4.1: Trypanosome data. The posterior mean estimate (solid line) and 90%
uncertainty bands (dashed lines) for Pr(y = 1;GX ) (left panel); inversion estimates, xq
for q = 0.05, 0.15, 0.25 and 0.5 (middle panel); and the estimated calibrated dose level
given y0 = 26 and n0 = 52 (right panel).

prior over the entire dose range (right panel). In all three cases, the mean is close to

5.18, but the spread differs. The uniform prior across the full dose range has the largest

spread and the spread decreases as the uniform support shrinks or switches to normal

distribution. The calibrated dose level is relatively robust to the prior assumed, though

the uniform priors result in better mixing.

Cytogenetic dosimetry application

Cytogenetic dosimetry is a biological tool for dose assessment in cases of

radiological accidents and suspected overexposures. The main focus of these studies

is to determine the relationship between the dosage of exposure to radiation and some

measure of genetic aberration. The typical experiment considers samples of cell cultures

exposed to a range of levels of an agent with some measure of cell disability recorded

as the response. The two main inferential objectives include the prediction of response

121



x0

D
e
n
s
it
y

4.9 5.0 5.1 5.2 5.3 5.4

0
2

4
6

8

x0
D
e
n
s
it
y

4.9 5.0 5.1 5.2 5.3 5.4

0
2

4
6

8

x0

D
e
n
s
it
y

4.9 5.0 5.1 5.2 5.3 5.4

0
2

4
6

8

Figure 4.2: Trypanosome data. The posterior estimated calibrated dose level given
y0 = 26 and n0 = 52 under a normal prior (left panel), uniform prior from [4.9, 5.25]
(middle panel), and a uniform prior across the full dose range (right panel).

at unobserved exposure levels and inference for unknown dose levels given observed

responses.

For an illustration, we consider part of a larger data set where the blood

samples from individuals were exposed to 60Co radiation at doses of 0, 20, 50, 100, 200,

300, 400, and 500 cGy (centograms). The resulting cultures were tested for binucleated

cells with a recorded number of micronuclei. The full data set, found in Madruga et al.

(1996), groups the individuals into none, one, or two or more micronuclei, see Table

4.2. The data is grouped into these categories as, when many micronuclei are present,

they can be difficult to count exactly. We collapse to two classification groups, no

micronuclei and one or more micronuclei (the two columns on the left of Table 4.2), to

apply the nonparametric mixture model developed in this chapter for quantal response

data. Further exploration of the ordinal response vector of the number of cells with 0

MN, exactly 1 MN, and 2 or more MN is found in Section 4.3.

Given in Figure 4.3 are the posterior distributions of the dose-response curve
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Table 4.2: Cytogenetic dosimetry data. The cell counts for the binucleated cells in the
healthy, older patients as reported in Madruga et al. (1996).

60Co radiation ≥ 2 MN exactly 1 MN 0 MN
0 cGy 2 31 920
20 cGy 8 41 989
50 cGy 14 56 933
100 cGy 32 114 939
200 cGy 67 176 794
300 cGy 59 209 683
400 cGy 107 256 742
500 cGy 143 327 771

(left panel), the inversion dose levels given q = 0.05, 0.15, 0.25 and 0.3 (middle panel),

and the estimated calibrated dose level given y0 = 146 and n0 = 1085. The 90%

probability bands of the dose-response curve are much tighter than those found in the

Trypanosome data, as the number of subjects per dose level is roughly 20 times larger

in the cytogenetic dosimetry data. The data is only observed to about forty percent of

the full curve, and therefore the intervals get much wider near the end of the observed

data. The data points all lie within the uncertainty bands. The inversion inference

is interesting in that at the smaller levels of q (0.05 and 0.15), the estimates of the

corresponding dose level are unimodal and have relatively narrow distributions. The

larger values (0.25 and 0.3) result in distributions with heavier tails and substantially

larger spread. This coincides with the uncertainty bands around the dose-response

curve in these areas. Finally, the calibrated dose level for y0 = 146 and n0 = 1085, the

observed counts at 100 cGy, is estimated to be lower. The mean is approximately 77.5

cGy, with 90% probability interval (59.2, 94.3).

As discussed above, we only observe part of the dose response curve in

cytogenetic dosimetry experiments. We look at calibration for y0 = 146 and n0 = 1085,
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Figure 4.3: Cytogenetic dosimetry. The posterior mean estimate (solid line) and 90%
uncertainty bands (dashed lines) for Pr(y = 1;GX ) (left panel); inversion estimates, xq
for q = 0.05, 0.15, 0.25 and 0.3 (middle panel); the estimated calibrated dose level given
y0 = 146 and n0 = 1085 (right panel).

an observed dose level, and also for two configurations that lie beyond the observed dose-

response curve (i.e. y0 = 500, n0 = 1000 and y0 = n0 = 975). As seen in Figure 4.4, we

expect the spread to widen as the proportions become farther from those observed.
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Figure 4.4: Cytogenetic dosimetry. The estimated calibrated dose level given y0 = 146
and n0 = 1085 (left panel), given y0 = 500 and n0 = 1000 (middle panel), and given
y0 = n0 = 975 (right panel).
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4.3 Modeling extensions for bioassay experiments with

ordinal responses

Ordinal response data are observed frequently in laboratory experiments. For

example, the cytogenetic dosimetry application from the previous section resulted in

three ordered classifications. The approaches presented here aim to model the general

case of bioassay experiments with R ordinal categories. However, we focus on R = 3,

as in the cytogenetic dosimetry application, and refer to the example from Section

4.2.3 for context. Let Y = r, with r = 1 if the cell has 2 or more MN, 2 if the cell has

exactly 1 MN, and 3 if the cell has no MN, such that 0 MN can be viewed as the reference

category. We also denote πr(x) = Pr(Y = r;x), for r = 1, 2, 3, and Fr(x) =Pr(Y ≤ r;x),

for r = 1, 2 (where F3(x) = 1).

4.3.1 Semiparametric and nonparametric strategies

The modeling approach of 4.2.2 involved latent continuous responses with

a flexible DP mixture supporting the rich inference for the quantal dose-response

relationship. A logical starting point for the generalization to ordinal responses is to

explore the cumulative link regression setting. Parametric cumulative link regression

models are built through the Fr using latent continuous responses taking values on

the real line (e.g., Albert and Chib (1993), Erkanli et al. (1993), Albert and Chib

(1995), Agresti (2002)). That is, Y = r if and only if ar−1 < U ≤ ar for r = 1, 2, 3,

with −∞ = a0 < a1 < a2 < a3 = ∞. Given the continuous latent response U has

cumulative distribution function G(u) ≡ G(u − θ) with location parameter θ = xβ

and a fixed scale parameter, Fr(x)= Pr(Y ≤ r;x) = Pr(U ≤ ar;x) = G(ar − xβ), for

r = 1, 2. Accordingly, for the cumulative probit model, we have Fr(x) = Φ(ar − xβ),
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r = 1, 2, and Pr(Y = 1;x) = Φ(a1 − xβ), Pr(Y = 2;x) = Φ(a2 − xβ) − Φ(a1 − xβ),

and Pr(Y = 3;x) = 1 − Φ(a2 − xβ). Note the cutoffs, ar, r = 1, 2, are assumed to be

random, and consequently there is no need for an intercept in the location parameter;

alternatively, the first cutoff point can be fixed. These cutoffs can be particularly

difficult to ascertain during posterior simulation as they are highly correlated with

the other parameters (see Lawrence et al. (2008) and further references therein for

computational techniques to efficiently update the cutoff values). The parametric latent

response distribution may also be too restrictive to appropriately capture skewness or

multimodality that should be reflected in the dose-response relationships. Hence, we

move to the arena of Bayesian nonparametrics.

We replace the parametric latent response distribution with a mixture of

normals, a common distribution driving the cumulative probabilities. Similar to the

argument found in Kottas et al. (2005), we fix the cutoff points and let the mixture

distribution adapt to give the appropriate mass under the curve between each cutoff.

Therefore, we may assume f(u;Gx) =
∫

N(u; θ, 1)dGx(θ), where we give Gx a DDP prior

with a GP base stochastic process. Using the special case of the linear-DDP, we simplify

the truncated mixing distribution to GLx =
∑L

l=1 plδ(γ0l−γ1lx), which is equivalent to

GL =
∑L

l=1 plδ(γ0l,γ1l), and subsequently

f(u;G, x) =
∫

N(u; γ0 − γ1x, 1)dG(γ0, γ1), G ∼ DP(α,G0).

Now, π1(x) = Pr(u ≤ a1;G, x) =
∑L

l=1 plΦ(a1 − γ0l + γ1lx), which is increasing in

x provided γ1l > 0, for all l = 1, . . . , L. Also, π2(x) = Pr(a1 < u ≤ a2;G, x) =∑L
l=1 = pl{Φ(a2 − γ0l + γ1lx) − Φ(a1 − γ0l + γ1lx)}, and π3(x) = Pr(u > a2;G, x) =

1−
∑L

l=1 plΦ(a2−γ0l+γ1lx). Here, π3(x) is decreasing in x given the γ1l > 0 restriction,
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and π2(x) is not restricted to a monotonic shape; this agrees with the hypothesis that

the number of cells with exactly 1 MN increases to a point then decreases as we expect

exposure to the higher dose levels to produce cells with 2 or more MN. Finally, the

cumulative probabilities, F1(x) and F2(x) are stochastically ordered by definition.

By replacing the parametric response distribution, we provide flexibility for the

dose-response curves through the cumulative probabilities. As it is an extension of the

model found in the preceding section, implementation of the model is only marginally

more complicated. Also, the calibration objective is obtained in a straightforward

fashion. However, this formulation for the latent response distribution does not lend

itself to reparameterization as a tolerance distribution as in the binary case. And,

developing the model for the ordered responses in this manner may carry over the

potential restriction of parametric cumulative link models; that is, the cumulative

probabilities, Fr(x), have the same shape and change only with a shift. In fact, we

should expect some inflexibility in inference for two dose-response curves driven by a

single random distribution.

To rectify the conceivable limitations of the cumulative link regression setting,

we turn to the approach of modeling the dose-response curves through flexible response

distributions as highlighted throughout the dissertation. That is, given generic trinary

response vector y = (y1, y2, y3), such that yi = 0, 1 with
∑3

r=1 yr = 1, we assume the

prior model

f0(y;Gx) =
∫
k(y;π(θ1), π(θ2))dGx(θ1, θ2), where

k(y;π(θ1), π(θ2)) = π(θ1)y1π(θ2)y2(1− π(θ1)− π(θ2))y3 .

Here, π(θr), r = 1, 2, is an appropriate scale for the probabilities (e.g., logit or probit)
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such that θr are real-valued parameters. In the same spirit as the models of Chapter 3

for developmental toxicity studies and the discussion at the beginning of Chapter 4, we

place a general DDP prior on GX = {Gx : x ∈ X} with a product of GPs each with a

linear mean function as the base stochastic process such that GLX =
∑L

l=1 plδ(η1lX ,η2lX ),

under the standard truncation approximation. Here, (η1lX , η2lX ) are realizations from

the independent GPs driving each of the probabilities of response.

Bearing in mind the dose-response curve monotonicity assumptions, we once

more simplify the DDP prior to the linear-DDP, whereby η1lX ≡ η1l(x) = β0l + β1lx,

η2lX ≡ η2l(x) = γ0l + γ1lx, and GLx ≡ GL =
∑L

l=1 plδ((β0l,β1l),(γ0l,γ1l)). Then, the mixture

model for the vector of trinary responses becomes

f0(y;G, x) =
∫
k(y;π(β0 + β1x), π(γ0 + γ1x))dG((β0, β1), (γ0, γ1)),

with G ∼DP(α,G0). Given this construction, π1(x) =
∑L

l=1 plπ(β0l+β1lx) and π2(x) =∑L
l=1 plπ(γ0l + γ1lx), which are both increasing in x provided β1l > 0 and γ1l > 0, for

l = 1, . . . , L. That is, the first two dose-response curves are monotonically increasing in

x, and the curve for the third classification is decreasing. In some experiments, allowing

the second classification to increase in probability as dose level increases may be a

desirable assumption. Also, the cumulative probabilities, F1(x) =
∑L

l=1 plπ(β0l + β1lx)

and F2(x) =
∑L

l=1 pl{π(β0l + β1lx) + π(γ0l + γ1lx)}, are both increasing functions of x

under the positive slope coefficient restriction.

By flexibly modeling the response distribution, we induce flexibility in the

probabilities of response. Indeed, with these assumptions we may obtain entirely

different shapes for the dose-response curves, a feature that is not possible under the

semiparameteric cumulative link regression model. There are two random distributions
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driving the two dose-response curves, providing more robust inference. On the other

hand, the MCMC details become more complex. As it is impossible to separate the full

conditionals for the distinct components of the mixture, a four-dimensional Metropolis-

Hastings update is required. Moreover, the calibration objective is no longer routine

and will likely be difficult to learn due to highly correlated parameters. The proposed

model, developed in the next section, is based on a different construction, which retains

and potentially expands on the flexibility of the model under f0(y;G, x) while avoiding

some of the implementation issues.

4.3.2 The nonparametric mixture modeling approach

Each of the two approaches we have presented in Section 4.3.1 have strong and

weak points. The drawbacks are not detrimental if considered before the analysis and

are outweighed by the advantages. However, an alternate method is which incorporates

the continuation-ratio logits structure into the mixture kernel of model f0(y;G, x) may

be optimal. That is, we separate the kernel, k(y;π(θ1), π(θ2)), into a marginal bernoulli

kernel for the probability of a cell having 2 or more MN, ρ(ϕ1), and a conditional

bernoulli kernel with probability of having either exactly 1 MN given that there are 1

or 0 MN, ρ(ϕ2). Here, ρ(·) is a transform from the real line to the unit interval; the

logistic transformation is used for the application in 4.3.3. Note that ρ(ϕ1) = π(θ1) and

ρ(ϕ2) = π(θ2) | (1−π(θ1)). Therefore, while mixing is with respect to ρ(ϕ1) and ρ(ϕ2),

the kernel can be written in either the product Bernoulli or trinomial form.

We again employ the linear-DDP prior for the mixing distributions, thereby

maintaining the possibility for monotonic dose-response curves. Under this prior, we
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arrive at the mixture model

f(y;G, x) =
∫

Bern(y1; ρ(β0 + β1x))Bern(y2 | y1 = 0; ρ(γ0 + γ1x))dG((β0, β1), (γ0, γ1))

= k (y; ρ(β0 + β1x), ρ(γ0 + γ1x)(1− ρ(β0 + β1x))) dG((β0, β1), (γ0, γ1)),

with G ∼DP(α,G0) and G0 is a product of normal distributions for the intercept terms,

(β0, γ0), and a product of exponential distributions for the slope parameters, (β1, γ1).

Consequently, the hyperparameters of G0 are the means, µ and θ, and variances, τ2 and

σ2, for the normal distributions, and the means, δ and ϕ, of the exponential distributions

(thereby, ψ = (µ, τ2, δ, θ, σ2, ϕ)). The hyperparameters are given conjugate priors.

Dose-response relationships

Regarding the dose-response curves implied by the mixture model f(y;G, x),

the probability of a generic cell having 2 or more MN across all x ∈ X ,

Pr(y1 = 1;G, x) =
L∑
l=1

plρ(β0l + β1lx),

is monotonically increasing given the restriction β1l > 0, l = 1, . . . , L. Contrarily, the

probability of the cell having exactly 1 MN,

Pr(y2 = 1;G, x) =
l∑
l=1

plρ(γ0l + γ1lx)[1− ρ(β0l + β1lx)], x ∈ X ,
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which, in common with the cumulative link probabilities model, does not have the

monotonic property. The dose-response curve for 0 MN, can be expressed as

Pr(y3 = 1;G, x) =
L∑
l=1

pl(1− ρ(β0l + β1lx))(1− ρ(γ0l + γ1lx)), x ∈ X ,

and is therefore decreasing in x under the additional restriction γ1l > 0 for l = 1, . . . , L.

Despite the fact that Pr(Y2 = 1;G, x) is not forced to be non-decreasing, restricting both

β1l > 0 and γ1l > 0, for l = 1, . . . , L, results in monotonically increasing cumulative

probabilities, F1(x) = Pr(y1 = 1;G, x) and F2(x) = Pr(y1 = 1;G, x) + Pr(y2 = 1;G, x).

MCMC posterior simulation

Let yij = (yij1, yij2, yij3) be the j = 1, . . . , ni response vectors at dose level

xi, i = 1, . . . , N . Moreover, let (β0j , β1j) and (γ0j , γ1j) be the latent mixing parameters

driving the probabilities of the product Bernoulli mixture kernel.

For posterior inference, we implement a blocked Gibbs sampler under the

truncation approximation as in the quantal response case. We represent the hierarchical

model for the data, with subject specific configuration variables, wij , as

{yij} | β0,β1,γ0,γ1,w ∼
N∏
i=1

ni∏
j=1

Bern(yij1; ρ(β0wij + β1wijxi))Bern(yij2; ρ(γ0wij + γ1wijxi))

wij | p ∼
N∏
i=1

ni∏
j=1

L∑
l=1

plδl(wij)

p,β0,β1,γ0,γ1 | α,ψ ∼ f(p | α)×
L∏
l=1

G0(β0l, β1l, γ0l, γ1l | ψ), (4.4)

where f(p | α) follows the generalized Dirichlet in Chapter 2 and G0 is defined as before.
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The model is completed with priors on ψ, the parameters of G0, and α. The MCMC

details for the hyperparameters of the base distribution are similar to the quantal

response linear-DDP mixture model (4.2.2). The differences lie in the updates for the

distinct components of the mixing parameters and for the wij .

The n∗ distinct components for the mixing parameters (β0w∗k
, β1w∗k

) and

(γ0w∗k
, γ1w∗k

), for k = 1, . . . , n∗, are updated in two blocks in similar fashions. The

first full conditional is proportional to

g0((β0w∗k
, β1w∗k

) | ψ)
∏
{i,j:wij=w∗k}

∏
Bern(yij1; ρ(β0w∗k

+ β1w∗k
xi))Bern(yij2; ρ(γ0w∗k

+

γ1w∗k
xi)), and analogously for the (γ0w∗k

, γ1w∗k
). For each block, we implement a random-

walk Metropolis-Hastings update, with a bivariate normal proposal (with β1w∗k
and γ1w∗k

on the log-scale) and a scaled identity covariance matrix. The configuration variables

are updated on a subject specific basis from a discrete distribution on {1, . . . , L}

with weights proportional to plBern(yij1; ρ(β0l + β1lxi))Bern(yij2; ρ(γ0l + γ1lxi)) for

l = 1, . . . , L.

Posterior inference

Given the samples from the posterior distribution of model (4.2), we obtain

inference for the dose-response curves by evaluating their expressions developed above.

For instance, for the probability of having 2 or more MN, posterior samples are obtained

through
∑L

l=1 plρ(β0l + β1lx), for all x whether observed or unobserved. The dose-

response curves and the cumulative probability functions are used for risk assessment,

along with the scientifically important inferential objective of calibration.

The approach to calibration requires augmenting the data with a new vector

of responses, and the goal is to estimate the dose level, x0, corresponding to that

vector. This problem is challenging under many modeling techniques, including classical
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nonparametric estimation. Parametric Bayesian models (e.g., Madruga et al., 1994,

1996) are limited in that the dose-response relationship is introduced with a functional

form. The corresponding calibration inference relies heavily on the assumption of the

restriction on the shape of the curve. Even less attention has been paid to this type of

inference in the Bayesian nonparametric literature; the only available reference being

Kottas et al. (2002), where the dose-response curves are modeled directly through

a combination of DP priors. The proposed linear-DDP mixture model improves on

inference in that it avoids the discreteness of the DP prior, is simpler to extend to

R > 3 ordinal classifications, and has a more tenable computational approach.

Given new responses y0 = (y01, . . . ,y0n0), the hierarchical model becomes

{yij} | β0,β1,γ0,γ1,w ∼
N∏
i=0

ni∏
j=1

Bern(yij1; ρ(β0wij + β1wijxi))Bern(yij2; ρ(γ0wij + γ1wijxi))

wij | p ∼
N∏
i=0

ni∏
j=1

L∑
l=1

plδl(wij),

where the weights and mixing parameters arise as in (4.2), G0 is defined as before, and a

prior π(x0) is placed on x0. The main MCMC updates remain the same conditioned on

x0, with the added vector of responses. Conditioned on the other parameters, the update

for x0 is proportional to π(x0)
∏L
l=1 Bern(y0j1; ρ(β0w0j + β1w0jx0))Bern(y0j2; ρ(γ0w0j +

γ1w0jx0)), requiring a Metropolis-Hastings step. Here, we use a random walk with a

normal proposal, under either dispersed normal or uniform priors; however, mixing

proves to be marginally preferable under the uniform prior. Careful tuning bequeaths

acceptance rates around 0.20.
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4.3.3 Cytogenetic dosimetry application amendment

As in the previous analysis, we consider the same part of a larger data set

where the blood samples from individuals were exposed to 60Co radiation at doses of 0,

20, 50, 100, 200, 300, 400, and 500 cGy (see Table 4.2).

Figure 4.5 gives the mean and 90% interval bands of the smooth dose-

response curves (left panel). The probability of a cell culture having 2 or more MN

is monotonically increasing across the dose levels and follows the data (given by “o”).

The probability of the second group (exactly 1 MN, data shown as “x”) is increasing

through dose 500 cGy. The data fall within the probability bands. The last group, 0

MN (data “�”), is defined through the other two dose-response curves and is decreasing

monotonically. Again, the data all lie close within the interval bands. The curves

capture the non-standard forms suggested by the data with reasonable uncertainty,

and, as the three curves are driven by two distributions, they have different shapes.

The extrapolated dose response curves are given in the middle panel of Figure 4.5. The

curves are equivalent to the left panel up to dose 500 cGy, then the curves level off and

the interval bands widen significantly due to the lack of data.

The right panel of Figure 4.5 plots estimates for the cumulative probabilities,

Pr(Y = 1;G, x) (lower curve, data given by “o”) and Pr(Y = 2;G, x) (upper curve,

data shown as “x”). Note that the first cumulative probability is equivalent to the first

dose-response curve. Both probabilities are nondecreasing, even with the non-monotonic

nature of the second dose-response curve, and the corresponding data points follow the

curve.

Finally, we have the posterior distribution of the calibrated dose level given a

new vector of responses equivalent to the observed vector at 100 cGy (top left panel of
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Figure 4.5: Cytogenetic dosimetry application. The posterior mean estimate (solid line)
and 90% uncertainty bands (dashed lines) for Pr(Y1 = 1;G, x) (bottom curve, left panel,
data “o”), Pr(Y2 = 1;G, x) (middle curve, left panel, data “x”), and Pr(Y3 = 1;G, x)
(top curve, left panel, data “�”); the extrapolated dose response curves (middle panel),
Pr(Y = 1;G, x) (lower curve, right panel, data “o”) and Pr(Y = 2;G, x) (upper curve,
right panel, data “x”).

Figure 4.6). The estimate of the dose level is approximately 85.1 cGy with a 90% credible

interval of (61.5, 109.7), which includes the observed dose 100 cGy, but is generally

underestimated. This is comparable to the results found in Kottas et al. (2002). The

observed vector at 500 cGy is estimated in the bottom left panel of Figure 4.6. Here,

500 cGy is closer to the middle of the distribution; the posterior mean is 507.3 cGy with

90% interval of (476.8, 538.9). The right column of Figure 4.6 provides the posterior

distribution of the same calibration response vectors, leaving the observed vector out

of the fitted data. The centers are roughly comparable, but the spread is larger as the

data has been removed.
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Figure 4.6: Cytogenetic dosimetry application. The posterior distributions for the
estimated calibrated dose level given the observed vector at dose 100 cGy including
the data vector (top left panel) and leaving the vector out (top right panel), and given
the observed vector at dose 500 cGy including the data vector (bottom left panel) and
leaving the vector out (bottom right panel).

4.3.4 Discussion

The linear-DDP model for ordinal responses allows for smooth estimates of

the dose-response curves which allow for different shapes. The cumulative probabilities

are non-decreasing functions of dose level. The details for implementation are not

exceedingly difficult, as the updates for the distinct components in the mixture driving
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the two probabilities can be separated. The calibration objective requires a Metropolis-

Hastings update; nevertheless, under relatively dispersed priors, this inference can

be obtained with suitable mixing and acceptance rates. The smooth, flexible dose-

response relationships and the aptitude for calibration and extrapolation are the main

contributions to the application area.

4.4 Conclusions

We have presented a Bayesian nonparametric approach to the analysis of

quantal data from bioassay studies. The framework is driven by a simplified version

of a dependent Dirichlet process prior, the linear-DDP prior. The consequent dose-

response curve is monotonically increasing with probability one in the prior model, the

inversion inferential objective becomes straightforward to address, and the calibration

objective can be implemented without immense computational complexity. We provide

illustration with a commonly used data example which bears evidence of multiple modes

and skewness in the dose-response curve. Further demonstration through portions of a

cytogenetic dosimetry data set reveals the practicality of the model.

Prompted by the cytogenetic dosimetry application and the scientific

importance of calibration in this setting, we have considered dose-response experiments

with ordinal responses. Specifically, we have developed one such linear-DDP mixture

model built from a structured product of Bernoulli kernel. This construction results

in desirable properties for the implied dose-response relationships and a relatively

straightforward approach to implementation for the calibration objective.

Note the linear-DDP prior for the quantal responses setting is ideal: it connects

with the approach in Chapter 3 and Binomial models with mixtures of non-decreasing
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functions for the probability of response; it is easily implemented as a DP mixture

model; and it provides a tractable method for obtaining the calibration inference. The

model supports a monotonic dose-response curve, D(x) =
∫
π(θ)dGx(θ) = EGx(π(θ)),

by stochastically ordering the mixing distributions. That is, if Gx ≤st Gx′ for x < x′,

then D(x) is a non-decreasing function. A more general approach to ordering the

mixing distributions can be accomplished through replacing the linear function of x

with a generic function, µ(x), with a monotonicity restriction. Dunson and Peddada

(2008) proposed a structured function which borrows information across groups, Wang

and Dunson (2009) suggest an I-spline basis expansion to promote monotone functions,

and Bornkamp et al. (2010) use a linear combination of ridge functions given multiple

covariates. While this extension may not add much to the quantal case, in the context

of the cytogenetic dosimetry application, the model may be extended with more general

stochastically ordered distributions to improve extrapolation. This is an area of future

research.
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Chapter 5

Conclusions

Bayesian nonparametric mixture models are ideal for the analysis of

developmental toxicity studies as well as quantal bioassay studies. The current state

of the literature is based on classical estimation techniques, which do not include

any distributional assumptions or the distributional assumptions are too restrictive to

appropriately capture the complexity of the data. The framework presented builds

on the single-p dependent Dirichlet process (DDP) prior to eliminate the limiting

assumptions of parametric models while retaining a proper probabilistic setting for

inference.

Note that in the developmental toxicity studies, it is very important to model

both the subject specific distributions and the probability of response in an appropriate

manner to more accurately account for the multiple sources of heterogeneity. The

nonparametric mixture models developed in this dissertation provide flexible inference

for the response distribution as well as for the various dose-response curves. Using

simulation studies, we have shown that the DDP mixture models accomplish both

of these inferential goals. Finally, data from assorted toxicity studies were used to

139



illustrate the variety of inferences that can be obtained from the DDP mixture modeling

framework, including its practical utility with regard to estimation of non-monotonic

dose-response relationships.

The models are in essence simple, yet effective in providing flexible inference

with sensible uncertainty quantification. Implementation can be daunting with multiple

independent Gaussian processes about which to learn and thoughtful prior specification

is undoubtably imperative, however posterior simulation is relatively routine and

posterior distributions peak despite the generally small sample sizes. As the data

examples have demonstrated, the single-p DDP prior mixture model is sufficiently

flexible to capture the dependence structure of the distributions across dose levels, while

remaining interpretable and manageable to implement. While some nonparametric

priors are more heavily influenced by individual data points, the single-p DDP prior

setting induces a smooth evolution across the dose levels.

The bioassay setting has been studied profusely in the literature, both classical

and Bayesian. The main attraction of our approach is that the framework is based upon

modeling the response distributions. However, as shown in Chapter 4, this is equivalent

to modeling the dose-response curve with a nonparametric mixture model. We have

considered a more structured version of the DDP prior to induce monotonicity in the

dose-response curve as well as to facilitate full exchangeability of the subjects. Through

data previously studied in the literature and an application to the area of cytogenetic

dosimetry, we have shown the utility of our method with regard to flexible inference for

the dose-response curve as well as for inversion and calibration.

Ordinal responses are routinely found in bioassay studies, and motivated by

the full cytogenetic dosimetry application, we have developed a model to accommodate

data resulting in multiple, ordered classifications. We assume a continuation-ratio type
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structure to promote flexibility in both dose-response curves and maintaining relative

ease of implementation. The expanded cytogenetic dosimetry application is used to

illustrate the method with respect to the prime inferential objectives, the various dose-

response curves and calibration.

141



Bibliography

Agresti, A. (2002), Categorical Data Analysis, Hoboken, NJ: Wiley, 2nd ed.

Albert, J. and Chib, S. (1993), “Bayesian analysis of binary and polychotomous response

data,” Journal of the American Statistical Association, 88, 669–679.

— (1995), “Bayesian residual analysis for binary response regression models,”

Biometrika, 82, 747–759.

Allen, A. and Barnhart, H. (2002), “Joint models for toxicology studies with dose-

dependent number of implantations,” Risk Analysis, 22, 1165–1173.

Antoniak, C. (1974), “Mixtures of Dirichlet processes with applications to Bayesian

nonparametric problems,” The Annals of Statistics, 2, 1152–1174.

Ashford, J. and Walker, P. (1972), “Quantal response anaylsis for mixture populations,”

Biometrics, 28, 981–988.

Basu, S. and Mukhopadyay, S. (2000), “Binary response regression with normal scale

mixture links,” in Generalized Linear Models: A Bayesian Perspective, eds. Dey, D.,

Ghosh, S., and Mallick, B., New York: Marcel Dekker, pp. 231–241.

Bhattacharya, P. (1981), “Posterior distribution of a Dirichlet process from quantal

response data,” The Annals of Statistics, 9, 803–811.

142



Bornkamp, B. and Ickstadt, K. (2009), “Bayesian nonparametric estimation of

continuous monotone functions with applications to dose-response analysis,”

Biometrics, 65, 198–205.

Bornkamp, B., Ickstadt, K., and Dunson, D. (2010), “Stochastically ordered multiple

regression,” Biostatistics, 11, 419–431.

Bowman, D. and George, E. (1995), “A saturated model for analyzing exchangeable

binary data: applications to clinical and developmental toxicity studies,” Journal of

the American Statistical Association, 90, 871–879.

Bush, C. and MacEachern, S. (1996), “A semiparametric Bayesian model for randomised

block designs,” Biometrika, 83, 275–285.

Calabrese, E. J. (2005), “Paradigm lost, paradigm found: The re-emergence of hormesis

as a fundamental dose response model in the toxicological sciences,” Environmental

Pollution, 138, 378–411.

Carota, C. and Parmigiani, G. (2002), “Semiparametric regression for count data,”

Biometrika, 89, 265–281.

Casanova, M. P., Iglesias, P., and Bolfarine, H. (2010), “A Bayesian semiparametric

approach for solving the discrete calibration problem,” Communications in Statistics

- Simulation and Computation, 39, 347–360.

Catalano, P. and Ryan, L. (1992), “Bivariate latent variable models for clustered discrete

and continuous outcomes,” Journal of the American Statistical Association, 87, 651–

658.

Chen, J., Kodell, R., Howe, R., and Gaylor, D. (1991), “Analysis of trinomial responses

143



from reproductive and developmental toxicity experiments,” Biometrics, 47, 1049–

1058.

Cifarelli, D. and Regazzini, E. (1978), “Nonparametric statistical problems under partial

exchangeability. The use of associative means,” Annali dell’ Istituto di Matematica

Finanaziaria dell’Universita di Torino, Serie III, 12, 1–36.

Connor, R. and Mosimann, J. (1969), “Concepts of independence for proportions with

a generalization of the Dirichlet distribution,” Journal of the American Statistical

Association, 64, 194–206.

DeIorio, M., Johnson, W. O., Müller, P., and Rosner, G. L. (2009), “Bayesian

nonparametric non-proportional hazards survival modelling,” Biometrics, 63, 762–

771.

DeIorio, M., Müller, P., Rosner, G., and MacEachern, S. (2004), “An ANOVA model

for dependent random measures,” Journal of the American Statistical Association,

99, 205–215.

Disch, D. (1981), “Bayesian nonparametric inference for effective doses in a quantal-

response experiment,” Biometrics, 37, 713–722.

Dominici, F. and Parmigiani, G. (2001), “Bayesian semiparametric analysis of

developmental toxicology data,” Biometrics, 57, 150–157.

Dunson, D. (1998), “Dose-dependent number of implants and implications in

developmental toxicity,” Biometrics, 54, 558–569.

Dunson, D., Chen, Z., and Harry, J. (2003), “A Bayesian approach for joint modeling

of cluster size and subunit-specific outcomes,” Biometrics, 59, 521–530.

144



Dunson, D. and Park, J. (2008), “Kernel stick-breaking processes,” Biometrika, 95,

307–323.

Dunson, D. and Peddada, S. (2008), “Bayesian nonparametric inference on stochastic

ordering,” Biometrika, 95, 859–874.

Erkanli, A., Stangl, D., and Müller, P. (1993), “A Bayesian analysis of ordinal data

using mixtures,” in ASA Proceedings of the Section on Bayesian Statistical Science,

Alexandria, VA: American Statistical Association.

Escobar, M. and West, M. (1995), “Bayesian density estimation and inference using

mixtures,” Journal of the American Statistical Association, 90, 577–588.

Faes, C., Geys, H., Aerts, M., and Molenberghs, G. (2006), “A hierarchical modeling

approach for risk assessment in developmental toxicity studies,” Computational

Statistics & Data Analysis, 51, 1848–1861.

Ferguson, T. S. (1973), “A Bayesian analysis of some nonparametric problems,” The

Annals of Statistics, 1, 209–230.

Fronczyk, K., Kottas, A., and Munch, S. (2011), “Flexible modeling for stock-

recruitment relationships using Bayesian nonparametric mixtures,” Environmental

and Ecological Statistics, to appear.

Fuentes-Garćıa, R., Mena, R. H., and Walker, S. G. (2009), “A nonparametric dependent

process for Bayesian regression,” Statistics and Probability Letters, 79, 1112–1119.

Gelfand, A., Kottas, A., and MacEachern, S. (2005), “Bayesian Nonparametric Spatial

Modeling With Dirichlet Process Mixing,” Journal of the American Statistical

Association, 100, 1021–1035.

145



Gelfand, A. and Kuo, L. (1991), “Nonparametric Bayesian bioassay including ordered

polytomous response,” Biometrika, 78, 657–666.

George, E. and Bowman, D. (1995), “A full likelihood procedure for analysing

exchangeable binary data,” Biometrics, 51, 512–523.

Geweke, J. and Keane, M. (1999), “Mixture of normals probit models,” in Analysis

of Panels and Limited Dependent Variable Models, eds. Hsiao, C., Pesaran, M. H.,

Lahiri, K., and Lee, L. F., Cambridge University Press, pp. 49–78.

Gueorguieva, R. and Agresti, A. (2001), “A correlated probit model for joint modeling

of clustered binary and continuous responses,” Journal of the American Statistical

Association, 96, 1102–1112.

Holson, J., Gaines, T., Nelson, C., LaBorde, J., Gaylor, D., Sheehan, D., and Young, J.

(1991), “Developmental toxicity of 2,4,5-trichlorophenoxiacetic acid I: Dose response

studies in four inbred strains and one outbred stock of mice,” Fundamentals of Applied

Toxicology, 19, 286–297.

Ishwaran, H. and James, L. (2001), “Gibbs sampling methods for stick-breaking priors,”

Journal of the American Statistical Association, 96, 161–173.

Ishwaran, H. and Zarepour, M. (2000), “Markov chain Monte Carlo in approximate

Dirihlet and beta two-parameter process hierarchical models,” Biometrika, 87, 371–

390.
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