The Inevitable Plug: The Case for Plug-in Cars

Marc Geller
Plug In America
San Francisco Electric Vehicle Association
We love cars.
The major problem with cars today is the fuel.

- Pollution
- Global warming
- Political and economic consequences of petroleum dependency
- Peak oil
• 99% of US motor vehicles use petroleum.

• U.S. imports 55% of its petroleum.

• Cars & trucks use more than 2/3 of all petroleum in U.S. and 1/3 of all energy.

• Emissions from cars & trucks cause 75% of smog in the Bay Area. (Bay Area Air Quality Management Board)

• Send billions overseas to buy petroleum and spend billions on our military to assure its delivery.

Simply using less petroleum doesn’t solve our problem. We need:

Marketable, economic, zero-emission, zero-carbon, zero-petroleum cars.

What are our options?
How do we get there?
- Internal combustion engine (ICE)
- Compressed Natural Gas ICE Vehicle (CNG)
- Bio-diesel ICE (B10; B99; B100)
- Ethanol ICE (E10; E85; E100)
- Hydrogen ICE
- Battery electric vehicle (BEV)
- Hybrid gas-electric vehicle (HEV)
- Plug-in hybrid electric vehicle (PHEV)
- Hydrogen fuel-cell electric vehicle (FCEV)
- Hydrogen fuel-cell hybrid (FCHV)
- Hydrogen fuel-cell plug-in hybrid (FCPHEV)
BEVs

Regenerative Braking

Electric Motor

Batteries

Courtesy
Electric Drive
Transportation
Association
Solution: Electric drive.

Benefits of a vehicle driving on grid electricity:

• Zero emission. No tailpipe.
• Zero petroleum.
• Lower well-to-wheels emissions.
• More efficient.
• Quiet.
• Wicked quick.
• Low maintenance.
• Uses existing electric infrastructure.
• Can directly use renewable power (solar, wind, hydro).
Battery or hydrogen fuel cell?

- BEV is 1.5 - 4 times more efficient than FCV.
- Hydrogen infrastructure virtually non-existent; expensive to create.
- Hydrogen storage difficult, expensive, unresolved.
- FCV - still $1 million each
 BEV - $40K - $100K
- Battery technology advancing more rapidly than H2 and FC.
- Publicly regulated utilities vs. multi-national corps.

Efficiency of EV vs. FCV

![Graph showing efficiency comparison between EV and FCV](image)

- Natural gas as the base energy source:
 - H₂ from NG reformer
 - Electricity from power plant
 - 64% more NG required for FCV!
- Electricity as the base energy source:
 - H₂ from electrolyzer
 - 400% more electricity for FCV!

Source: AC Propulsion, Dec 2002
Everyone knows, it’s about electricity.

- “I believe in the ultimate electrification of the automobile,”
- “…what started as a fuel cell project is now an electric vehicle project.”

Robert Lutz, CEO, GM, in interview with Automotive News 11/06.

I have no problem picking a winner….Grid electricity or more specifically…distributed electricity… charging electric vehicles… on pure solar power.

-Pulitzer prize winning Journalist Dan Neil, LA Times, at Peterson Auto Museum panel Is There Life After Petroleum? 6/16/06
Electricity is our most ubiquitous and economical energy source

Grid-connected transportation is:
- Cleaner
- Cheaper
- Domestic

Grid-connected transportation benefits from:
- Distributed production from multiple sources
- Direct use of renewables
- Federal and state mandates that continue to clean and green the grid
BEVs Really Do Produce Less Emissions

Well-to-wheels emissions based on total US electrical grid

Carbon Dioxide

Carbon Monoxide

Volatile Organic Compounds

Sulfur Oxides

EV Charging on US grid should not result in additional SO2 emissions due to regulatory emission caps on stationary sources already in place

Sources: Argonne National Labs GREET 1.6 Fuel-Cycle Model for Transportation Fuels… June 2001
FCEV based on US grid powered electrolysis fuel cycle
Effects of regulation: 1993-2004

U.S. electricity production increased, but:

• Sulfur oxide emissions fell from 15 million to 10 million metric tons per year.
• Nitrogen oxide emissions fell from 8 million to 4 million metric tons per year.

Sherry Boschert, Plug-in Hybrids: The Cars that Will Recharge America, 2006
ZEV Mandate Produced Real ZEVs

<table>
<thead>
<tr>
<th></th>
<th>Leased/Sold</th>
<th>On Road Today</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toyota RAV4-EV</td>
<td>1485</td>
<td>820</td>
</tr>
<tr>
<td>Ford Ranger EV</td>
<td>1312</td>
<td>~400</td>
</tr>
<tr>
<td>GM EV-1</td>
<td>800</td>
<td>0</td>
</tr>
<tr>
<td>Ford Postal Van</td>
<td>495</td>
<td>0</td>
</tr>
<tr>
<td>Chevrolet S-10 Electric</td>
<td>450</td>
<td>55</td>
</tr>
<tr>
<td>Ford Th!nk City</td>
<td>440</td>
<td>~100</td>
</tr>
<tr>
<td>Honda EV Plus</td>
<td>300</td>
<td>0</td>
</tr>
<tr>
<td>Chrysler EPIC Mini-Van</td>
<td>207</td>
<td>5</td>
</tr>
<tr>
<td>Nissan Altra</td>
<td>130</td>
<td>0</td>
</tr>
<tr>
<td>Nissan Hypermini</td>
<td>50</td>
<td>0</td>
</tr>
<tr>
<td>Toyota eCom</td>
<td>15</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>5599</td>
<td>1380</td>
</tr>
</tbody>
</table>

Source: Various industry and private sources

1. Nationwide deployments of vehicles resulting from ZEV regulation.
2. Excludes small numbers potentially still in use by OEMs for testing.
ZEV Mandate Experience:
Real Drivers; Real ZEV miles

• BEV driver experience overwhelmingly positive
 – home charging a major benefit
 • safe, convenient, reliable
 – public charging useful for occasional longer trips
 – lower refueling and operating costs
 – less regular maintenance
 • no oil changes
 • no smog checks

• NiMH batteries have proven very reliable in real world driving over hundreds of millions of miles in BEVs and hybrids.
 – Safe, robust, predictable, durable
Plug-in Vehicles and Renewable Energy

Only plug-in cars can be charged from renewable energy produced at home.

Plug-in cars provide a tremendous incentive to install Solar PV.

2 kW rooftop solar array provides all the electricity for typical 12,000 mi/yr
- $12 - 15,000 upfront cost
- ~200 square feet
- 6 - 8 year payback
- >30-year life
The Straus Family Creamery

- Marin County, CA
- 2002 RAV4-EV
- 56,000 zero-emission miles
- Personal transportation and farm utility vehicle

- Farm’s methane digester powers RAV4-EV and farm equipment
- No repair issues other than flat tires
Avi Hershkovitz

- Claremont, Ca
- 2002 RAV4-EV
- 105,135 zero-emission miles

- Used as primary vehicle including 100-150 mile per day commute every working day
- No discernable loss of range after more than 100,000 miles
Plug-in Hybrid: Commonsense foot in the door

President Bush at Johnson Controls, January 2006
Plug-in Hybrids: Perfect Transition Vehicle

• Concept: EV with insurance (gas tank.)
 • All electric range
 • All-electric in town; liquid-fueled highway
 • Can use both existing infrastructures
 • ICE component could be gasoline, diesel, bio-diesel, CNG, ethanol …..even hydrogen.
 • If H2 and FC became competitive, could replace the engine/generator.
PHEVs: Real-world performance
Data compiled by CalCars.org

<table>
<thead>
<tr>
<th>Project</th>
<th>Battery Manuf.</th>
<th>Battery Model</th>
<th>Chem istry</th>
<th>Eff Ah</th>
<th>EV mi</th>
<th>Mix mi*</th>
<th>Added lb</th>
<th>In-range Mpg*</th>
<th>Orig Mpg</th>
<th>City HEV Mpg</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>World’s 1st</td>
<td>BB Battery</td>
<td>EVP20-12</td>
<td>Lead-acid</td>
<td>12</td>
<td>10</td>
<td>20</td>
<td>300**</td>
<td>80</td>
<td>45</td>
<td></td>
<td>-10% due to extra weight**; OEM battery not removed; hilly Marin terrain</td>
</tr>
<tr>
<td>EDrive</td>
<td>Valence</td>
<td>U1-12XP</td>
<td>Li-ion</td>
<td>36</td>
<td>30</td>
<td>60</td>
<td>200</td>
<td>100</td>
<td>50</td>
<td></td>
<td>Unchanged due to lower impedance; Flat Los Angeles driving</td>
</tr>
<tr>
<td>Electro Energy</td>
<td>Electro Energy</td>
<td>N/A</td>
<td>NiMH</td>
<td>30</td>
<td>24</td>
<td>48</td>
<td>250</td>
<td>90</td>
<td>45</td>
<td></td>
<td>Unchanged due to lower impedance; Project nearly complete</td>
</tr>
<tr>
<td>Another Li-ion</td>
<td>Enax</td>
<td>N/A</td>
<td>Li-ion</td>
<td>33</td>
<td>27</td>
<td>54</td>
<td>100</td>
<td>90</td>
<td>45</td>
<td></td>
<td>Increased due to even lower impedance; Anticipated</td>
</tr>
</tbody>
</table>

* Mixed city & highway driving (also uses around 130 Watt-hr/mi electricity)
** OEM battery pack unused but not removed, adding ~75 lb
Can the electric grid handle PHEV Energy Requirements?

- Average unused capacity = 505 gW (more at night)
- Average charge requirements per PHEV: 1.5 kW (max from 120V, 15A outlet)
- Average unused capacity could simultaneously charge 337 million PHEVs
- NREL study revealed that these cars, each equipped with a 9 kilowatt-hour battery, could reduce overall CO$_2$ vehicles emissions by half. They could also save owners more than $450 in fuel costs each year compared to a traditional combustion engine vehicle.
Media

Non-profit organizations

CalCars

THE CALIFORNIA CARS INITIATIVE

www.calcars.org

www.sherryboschert.com

www.pluginpartners.org

www.pluginbayarea.org

www.whokilledtheelectriccar.com

Businesses

EDRIVE

plug-in hybrid systems

www.edrivesystems.com

www.hymotion.com

www.hybridsplus.com
Vehicle to grid (V2G)

- Average car driven 3 hours, parked 21 hours
- Peak sun or wind into car, later tapped for peak load, load leveling, grid regulation.
- 1 million V2G = 20 average power plants
PHEVs are on the way

- Rapid progress on plug-in hybrids
 - Numerous prototypes and demonstration vehicles
 - Real on-road testing underway
 - Significant durability testing already completed
New Life for Battery Electrics

• Tesla – Roadster
 - 250 mi range
 - 0-60 mph in 4 sec
 - Charging - std 110 or 220v outlet
 - First 100 units sold out in <30 days
 - www.teslamotors.com

• Redesigned Th!nk City
 - www.think.no

• AC Propulsion – eBox
 - Based on Scion xB
 - 140-180 mi range
 - Charging - std 110 or 220v outlet
 - www.acpropulsion.com

• Commuter Cars – Tango
 • 100 mile range, PbA
 - George Clooney bought one
Plug-in Vehicles
Practical, Proven, Ready

- Over 150 million emission-free consumer miles driven
- Cleanest personal automotive alternative available
- Only option that allows fueling from home-based renewable energy sources

- Consumer demand already demonstrated
- Continued battery advancements promise longer range BEV and PHEVs
- Plug-in hybrid vehicles provide lower cost entry point for plug-in vehicles and potentially wider initial market
My Next Car: NO PLUG?
NO DEAL!

www.PluginInAmerica.com
Plug-in car resources

• Plug In America - pluginamerica.com
• CalCars - calcars.org
• Plug-in Partners - pluginpartners.org
• Plugs and Cars Blog - plugsandcars.blogspot.com