

The Inevitable Plug: The Case for Plug-in Cars

Marc Geller

Plug In America San Francisco Electric Vehicle Association

We love cars.

The major problem with cars today is the fuel.

- Pollution
- •Global warming

•Political and economic consequences of petroleum dependency

•Peak oil

- 99% of US motor vehicles use petroleum.
- U.S. imports 55% of its petroleum.
- Cars & trucks use more than 2/3 of all petroleum in U.S. and 1/3 of all energy.

- Emissions from cars & trucks cause 75% of smog in the Bay Area. (Bay Area Air Quality Management Board)
- Send billions overseas to buy petroleum and spend billions on our military to assure its delivery.

Sherry Boschert, Plug-in Hybrids: The Cars that Will Recharge America, 2006

8-24-05

Simply using less petroleum doesn't solve our problem. We need:

Marketable, economic, zero-emission, zero-carbon, zero-petroleum cars.

What are our options? How do we get there?

- Internal combustion engine (ICE)
- Compressed Natural Gas ICE Vehicle (CNG)
- Bio-diesel ICE (B10; B99; B100)
- Ethanol ICE (E10; E85; E100)
- Hydrogen ICE
- Battery electric vehicle (BEV)
- Hybrid gas-electric vehicle (HEV)
- Plug-in hybrid electric vehicle (PHEV)
- Hydrogen fuel-cell electric vehicle (FCEV)
- Hydrogen fuel-cell hybrid (FCHV)
- Hydrogen fuel-cell plug-in hybrid (FCPHEV)

Courtesy Electric Drive Transportation Association

Courtesy Electric Drive Transportation Association

Courtesy Electric Drive Transportation Association

Solution: Electric drive.

Benefits of a vehicle driving on grid electricity:

•Zero emission. No tailpipe.

•Zero petroleum.

•Lower well-to-wheels emissions.

•More efficient.

•Quiet.

•Wicked quick.

•Low maintenance.

Uses existing electric infrastructure.

• Can directly use renewable power (solar, wind, hydro).

Battery or hydrogen fuel cell?

- BEV is 1.5 4 times more efficient than FCV.
- Hydrogen infrastructure virtually non-existent; expensive to create.
- Hydrogen storage difficult, expensive, unresolved.
- FCV still \$1 million each BEV - \$40K - \$100K
- Battery technology advancing more rapidly than H2 and FC.
- Publicly regulated utilities vs. multi-national corps.

Efficiency of EV vs. FCV

Everyone knows, it's about electricity.

- "I believe in the ultimate electrification of the automobile,"
- "...what started as a fuel cell project is now an electric vehicle project."

Robert Lutz, CEO, GM, in interview with Automotive News 11/06.

I have no problem picking a winner....Grid electricity or more specifically...distributed electricity... charging electric vehicles... on pure solar power.

-Pulitzer prize winning Journalist Dan Neil, LA Times, at Peterson Auto Museum panel *Is There Life After Petroleum?* 6/16/06

Electricity is our most ubiquitous and economical energy source

Grid-connected transportation is: Cleaner Cheaper Domestic

Grid-connected transportation benefits from:

- •Distributed production from multiple sources
- •Direct use of renewables
- •Federal and state mandates that continue to clean and green the grid

BEVs Really Do Produce Less Emissions

Well-to-wheels emissions based on total US electrical grid

Carbon Monoxide

* EV Charging on US grid should not result in additional SO2 emissions due to regulatory emission caps on stationary sources already in place

Sources: Argonne National Labs GREET 1.6 Fuel-Cycle Model for Transportation Fuels... June 2001 FCEV based on US grid powered electrolysis fuel cycle

Effects of regulation: 1993-2004

U.S. electricity production increased, but:

- Sulfur oxide emissions fell from 15 million to 10 million metric tons per year.
- Nitrogen oxide emissions fell from 8 million to 4 million metric tons per year.

Source: U.S. Department of Energy Electric Power Annual 2004.

Sherry Boschert, Plug-in Hybrids: The Cars that Will Recharge America, 2006

ZEV Mandate Produced Real ZEVs

TRO .		Leased/Sold	On Road Today
A Carton	Toyota RAV4-EV	1485	820
	Ford Ranger EV	1312	~400
	GM EV-1	800	0 2
	Ford Postal Van	495	0
	Chevrolet S-10 Electric	450	55
	Ford Th!nk City	440	~100 ³
	Honda EV Plus	300	0 ²
	Chrysler EPIC Mini-Van	207	5
	Nissan Altra	130	0 ²
	Nissan Hypermini	50	0 ²
	Tovota eCom	<u>15</u>	<u>0</u> 2
Source: Va	prious industry and private sources	5599 ⁻¹	1380

¹ nationwide deployments of vehicles resulting from ZEV regulation. CA deployments = 4400

² excludes small numbers potentially still in use by OEMs for testing
³ redeployed in Norway – none on US roads

5

ZEV Mandate Experience: Real Drivers; Real ZEV miles

- BEV driver experience overwhelmingly positive
 - home charging a major benefit
 - safe, convenient, reliable
 - public charging useful for occasional longer trips
 - lower refueling and operating costs
 - less regular maintenance
 - no oil changes
 - no smog checks
- NiMH batteries have proven very reliable in real world driving over hundreds of millions of miles in BEVs and hybrids.
 - Safe, robust, predictable, durable

Plug-in Vehicles and Renewable Energy

2 kW rooftop solar array provides all the electricity for typical 12,000 mi/yr \$12 - 15,000 upfront cost ~200 square feet 6 - 8 year payback >30-year life

- Only plug-in cars can be charged from renewable energy produced at home.
- Plug-in cars provide a tremendous incentive to install Solar PV.

The Straus Family Creamery

- Marin County, CA
- 2002 RAV4-EV
- 56,000 zero-emission miles
- Personal transportation and farm utility vehicle

- Farm's methane digester powers RAV4-EV and farm equipment
- No repair issues other than flat tires

Avi Hershkovitz

- Claremont, Ca
- 2002 RAV4-EV
- 105,135 zeroemission miles

- Used as primary vehicle including 100-150 mile per day commute every working day
- No discernable loss of range after more than 100,000 miles

Plug-in Hybrid: Commonsense foot in the door

President Bush at Johnson Controls, January 2006

Plug-in Hybrids: Perfect Transition Vehicle

- Concept: EV with insurance (gas tank.)
 - All electric range
 - All-electric in town; liquid-fueled highway
 - Can use both existing infrastructures
 - ICE component could be gasoline, diesel, bio-diesel, CNG, ethanoleven hydrogen.
 - If H2 and FC became competitive, could replace the engine/generator.

PHEVs: Real-world performance Data compiled by CalCars.org

Project	Battery Manuf.	Battery Model	Chem -istry	Eff Ah	EV mi	Mix mi*	Added Ib	In- range Mpg*	Orig Mpg	City HEV Mpg	Comments
World's 1 st	BB Battery	EVP20 -12	Lead- acid	12	10	20	300**	80	45	-10% due to extra weight**	OEM battery not removed; hilly Marin terrain
EDrive	Valence	U1- 12XP	Li-ion	36	30	60	200	100	50	Unchanged due to lower impedence	Flat Los Angeles driving
Electro Energy	Electro Energy	N/A	NiMH	30	24	48	250	90	45	Unchanged due to lower impedence	Project nearly complete
Another Li-ion	Enax	N/A	Li-ion	33	27	54	100	90	45	Increased due to even lower impedence	Anticipated

* Mixed city & highway driving (also uses around 130 Watt-hr/mi electricity)

** OEM battery pack unused but not removed, adding ~75 lb

Can the electric grid handle PHEV Energy Requirements?

- Average unused capacity = 505 gW (more at night)
- Average charge requirements per PHEV: 1.5 kW (max from 120V, 15A outlet)
- Average unused capacity could simultaneously charge 337 million PHEVs
- NREL study revealed that these cars, each equipped with a 9 kilowatt-hour battery, could reduce overall CO₂ vehicles emissions by half. They could also save owners more than \$450 in fuel costs each year compared to a traditional combustion engine vehicle.

Media

www.sherryboschert.com

Non-profit organizations

www.calcars.org

Businesses

www.edrivesystems.com

www.pluginpartners.org

www.hymotion.com

www.pluginbayarea.org

www.hybridsplus.com

www.whokilledtheelctriccar.com

Vehicle to grid (V2G)

- Average car driven 3 hours, parked 21 hours
- Peak sun or wind into car, later tapped for peak load, load leveling, grid regulation.
- 1 million V2G = 20 average power plants

PHEVs are on the way

Chevy Volt Serial Hybrid

Saab 9-3 PHEV Biopower Convertible

Daimler-Chrysler Plug-in Hybrid Sprinter Van

Plug-in Prius by eDrive Systems

- Rapid progress on plug-in hybrids
 - Numerous prototypes and demonstration vehicles
 - Real on-road testing underway
 - Significant durability testing already completed

New Life for Battery Electrics

Tesla – Roadster

- 250 mi range
- 0-60 mph in 4 sec
- Charging std 110 or 220v outlet
- First 100 units sold out in <30 days
- www.teslamotors.com

•Redesigned Th!nk City

- www.think.no

•AC Propulsion – eBox

- Based on Scion xB
- 140-180 mi range
- Charging std 110 or 220v outlet
- www.acpropulsion.com

•Commuter Cars – Tango

- •100 mile range, PbA
 - Geoge Clooney bought one

Plug-in Vehicles Practical, Proven, Ready

- Over 150 million emission-free consumer miles driven
- Cleanest personal automotive alternative available
- Only option that allows fueling from home-based renewable energy sources

- Consumer demand already demonstrated
- Continued battery advancements promise longer range BEV and PHEVs
- Plug-in hybrid vehicles provide lower cost entry point for plug-in vehicles and potentially wider initial market

Plug-in car resources

- Plug In America pluginamerica.com
- CalCars calcars.org
- Plug-in Partners pluginpartners.org
- Plugs and Cars Blog plugsandcars.blogspot.com

PLUG IN AMERICA

