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Abstract

Although the RISC revolution improved the regularity of instruction sets, and improvements in manufacturing
moved floating-point arithmetic operations from software to co-processors to processor cores, the basic seman-
tics of arithmetic operations have remained largely unchanged since the origins of the microprocessor. We have
been exploring the possibility of adopting new semantics for arithmetic and other operations to facilitate low-
power computing while retaining high execution speed.

We have initially explored our ideas in the context of integer arithmetic instructions implemented with two-
or three-input logic gates. In this context, we believe it is possible to achieve significant improvements in energy
use while maintaining throughput for some codes. Furthermore, our approach can exposes novel forms of
instruction-level-parallelism which are not readily expressible in traditional instruction sets.

Low-energy computing is a new area for all of us, and we are far from certain about the benefits of this
approach. Clearly they are highly sensitive to details of chip manufacture. Before moving forward, we hope to
engage the WEED community in a discussion about whether our approach might have any value or simply be
an interesting academic exercise. (In an attempt to avoid wasting WEED reviewers’ time, we did run these
ideas past several colleagues who work on computer architecture, and they were consistently rated “not obvi-
ously insane”. If these ideas are deeply misguided, we ask that the WEED reviewers be direct and if possibly
provide specific citations.)

1 Introduction

The fundamental semantics of microprocessor arithmetic operations have remained largely unchanged for many
decades — a single instruction causes a mathematically meaningful operation such as addition or multiplication to
be performed on two (or perhaps three) operands. This concept seems fundamental to the very idea of computer
arithmetic, and has remained through the RISC revolution, and improvements in manufacturing that moved
floating-point arithmetic operations from software to co-processors to processor cores, and even through the explo-
ration of novel number representations for GPU’s.

We have been exploring the possibility of adopting new semantics for arithmetic and other operations to facili-
tate low-power computing while retaining high execution speed. Specifically, we have begun to design an instruc-
tion set whose semantics are defined in terms of the evolving state of arithmetic circuits, rather than their ulti-
mate result. As in the case of current high-end processors, achieving correctness and high-performance with our
design would require sophisticated code generation based on reasoning about the program and the state of the ele-
ments within the processor (hopefully via an automated compiler). As in the case of current high-end processors,
meaningful results can be produced slowly at low speed without sophisticated static analysis. However, when we
cannot ensure high performance via static analysis, our processor design forces us to select slow execution (at low
power) rather than expending power to attempt to re-gain performance.

The essence of our approach is to examine various of breaking in operation into a sequence of steps (essentially
in the same way stages of a pipeline are laid out) and defining these as instructions in our instruction set. The
approach is most advantageous when these intermediate steps have some useful semantic properties (often related
to any invariants from which the correctness of the result follows). In some cases, the availability of these interme-
diate results at the instruction set level opens opportunities for exploitation of instruction level parallels some that
cannot be expressed or captured in a traditional pipeline construction set.

Below, we explore a simple example of this approach and outline the questions we must answer to determine if
the approach has value.

2 Motivating Example

The simplest example of our approach is the construction of a low-power, high-throughput adder from two- or
three-input logic gates. This construction follows the design of a standard “carry-save adder”, but exposes the
intermediate registers at the instruction set level.
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2.1 Adders and Carry-Save Adders

A “ripple carry” adder is probably the conceptually simplest way to construct an n-bit binary adder, and is
familiar from any number of first-semester digital circuitry textbooks. Numbers A and B, with binary digits
An−1	 0 and Bn−1	 0 are added by defining Ci+1, the carry from digit i into digit i + 1, as true whenever the
value in column i is > 2, i.e. when the majority of Ai, Bi, Ci are true (Ci+1 =m(Ai, Bi, Ci)), with C0 either sig-
nifiying incoming carry or being simply 0 for the simple sum A + B; The ith digit of the sum, Si, is true if the
parity (3 or 1 inputs are true) of Ai, Bi, Ci is true (Si= p(Ai, Bi, Ci)).

In a ripple-carry adder, the output of m(Ai, Bi, Ci) in column i is simply wired directly to the Ci+1 inputs of
the m and p circuits in the next position. All digits of A and B are presented simultaneously, along with C0, and
the values of Ci and Si stabilize in order of increasing i, with all bits of the result being ready within n + 1 times
the maximum propogation time through the majority circuit m.

Figure 1. Carry-Save Adder Circuit

The “carry-save” variant simply adds registers RC to hold each bit of C and RS to hold each bit of S after a
single delay of time max (delay(m), delay(p)). The values of A, B, and C0 are then presented in the first clock
cycle, after which A and C0 are held at 0 and B is fed the value of S. After n clock cycles, C must be 0 and the
final answer will be present in S. At first this seems to offer no advantage, as it adds at least n register-load
delays to the time required to produce the final result. However, the semantics of the intermediate result are well-
defined: at any time, RC +RS =A+B (this invariant is what ensures we produce the correct sum). Thus, we can
at any time select a non-zero value for A, even after only one clock cycle, and produce a sum of three values. In
this fashion, k values can be added in n + k quick clock cycles (long enough to produce one digit) rather than k

slow clock cycles (long enough for all bits of a ripple carry to stabilize). A slightly simplified version of this circuit,
in which B is always defined as S (initially reset to 0), is shown in Figure 1.

This circuit is, of course, most useful for algorithms that sum large numbers values; it is a classic way to imple-
ment a multiplier circuit in which two n-bit integers are multiplied in 2n quick steps with comparitively little
hardware (just adding shift registers to Figure 1).

2.2 An Observation about Implementation

There are, of course, many other ways to implement quick addition circuits, as can be found in most textbooks on
computer arithmetic, with various design tradeoffs.

A carry-lookahead adder (see [Par00], Chapter 6) uses additional gates to compute all bits of Ci very quickly
(e.g., in O(1) or O(log(n)) time, e.g. using two-level-design to combine inputs Aj and Bj, for j < i). This is essen-
tially a way of buying speedup with additional power, with the number of gates that may switch during a given
addition growing more than linearly with n (with O(n2) gates to get O(1) time).

A Manchester carry chain treats transistors as switches (rather than tools with which to create gates),
employing a few quick computations for each bit and a sequence of n such switches to compute all bits of Ci very
quickly (in time for power to flow through O(n) such switches that are each set after a O(1) time capacitor-
charging step based on a simple computation on Ai and Bi). Like classic carry-lookahead, this approach uses
power to buy speed, and (for CMOS manufacturing) best suited for n6 8 (see [Par00], Chapter 5.6).
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Carry-save and carry-lookahead are not mutually exclusive. For example, 4-bit carry lookahead produces the
carry-out from each group of four bits in each clock cycle, essentially producing a hexidecimal carry-save adder,
and other speed/power tradeoffs are possible.

2.3 Instructions for a Carry-Save-Adder-Based Architecture

In a traditional ISA, carry-save addition might be used to produce a n-bit integer add and multiply operations
requiring n and 2n clock cycles, respectively. Hybrid carry-save/carry-lookahead could improve the speed (e.g., to
n

4
cycles for hexidecimal carry-save addition). Multiple such units could be implemented on a chip, and pipelined

instruction execution could then be used to improve average IPC (instructions per cycle, i.e. throughput).
Pipelining, however, requires significant chip area and consumes significant energy. Consider a traditional

ADD(R1, R2, R3) operation to place R2 + R3 into R1 — the semantics of a traditional ISA require that subse-
quent uses of R1 (until the next definition) yield R2+R3, and significant design effort and execution power go into
meeting this requirement when an instruction making use of R1, or another ADD instruction, arrives at the pro-
cessor before this ADD writes its result into R1 (see Section 4.1).

Instead, we define the semantics of instructions around the implementation, and require that programmers (or
compilers) ensure that the semantics of addition are preserved in their result. In other words, the instruction
stream must ensure that the final sum of the addition hardware is available when needed. Instructions, whether
involving addition or other operations, can directly address the registers of each carry-save adder as the source or
destination.

Consider the task of extracting certain bits (described by a mask in R1) from the values in registers R3 and R4,
arithmetically summing these values, and turning on other bits as per a value in R2, with the result being placed
in R5, i.e., computing R5 ← (((R1&R3) + (R1&R4))|R2). A traditional ISA might express this computation as
shown on the left of Figure 2, whereas we would express it as shown on the right. On the right, we assume R8 cor-
responds to the “S” register of a carry-save adder, and a write to R9 corresponds to provision of the “A” input for
this adder, and that we know that this adder is idle (“C” is 0); on the left, we assume R6 is available. A traditional
superscalar architeture could simultaneously perform both AND operations and feed their results into the ADD; initi-
ating these four instructions in fewer than few cycles. We believe a VLIW-style static combination of the two AND

operations would be more suited to our low-power emphasis if we wish to allow multiple instruction issues per
clock cycle.

An instruction set with multiple adder and multiplier units would statically assign register numbers to the rele-
vant registers of each unit. Thus, two independent multiplications (or additions) could execute concurrently if
they place their multiplicands in distinct registers. A fused-multiply-add instruction XY +Z arises naturally from
this design when Z is delivered to the carry-save adder that will receive the product XY before (or as) X and Y

are delivered to the shift registers that feed this adder. A sum of three or more operands can be quickly computed
with one adder unit by delivering two operands initially and then feeding the others into the A input in the fol-
lowing instructions.

2.4 Opportunities and Challenges for Program Optimization

Our approach presumes that all opportunites for instruction-level parallelism (ILP) would be detected and sched-
uled statically, as was the case with the very-long instruction word (VLIW) approach. While this approach was
not widely adopted in the era when instructions-per-cycle drove chip design, be are optimistic that it may prove
more valuable in optimizing instructions-per-joule, especially when combined with our ISA design.

By providing funtional units with different performance characteristics (e.g. both a “binary” and a “hexidec-
imal” carry-save adder), delays can be not just anticipated but mitigated by instruction ordering. An addition
whose result is not needed for n cycles can be placed on a binary CSA, and one whose result is needed in n

4
placed

on a hexidecimal CSA, unless we choose to optimize a given application for power use rather than speed, in which
case the latter might also be placed on a binary CSA and no-operation used to produce the necessary delay.

3 Generalization and Other Opportunities

Integer addition provides a simple example with which to investigate our approach, but it is hardly sufficient for
an architecture. We have given some thought to the semantics of other arithmetic, branches, memory operations,
and multi-threading in this context.

Generalization and Other Opportunities 3



AND(R5, R1, R3) AND(R8, R1, R3)

AND(R6, R1, R4) AND(R9, R1, R4)

ADD(R5, R5, R6) (delay slots filled with
(possible independent code, independent code
or dynamic stall/out-of-order or no-operations)
execution if required)

OR(R5, R5, R2) OR(R5, R8, R2)

Figure 2. Code for R5← (((R1&R3)+ (R1&R4))|R2): Traditional vs. Our ISA

3.1 Arithmetic Beyond Addition/Subtraction

We have initially explored integer addition, but note that integer addition plays an important role in other arith-
metic implementations. Integer multiplication requires repeated addition; as discussed above, carry-save adders
are particularly well suited to this context. Floating-point addition requires addition of mantissas (essentially as
integers, once they have been aligned), and floating-point multiplication requires addition of (integer) exponents
and multiplication of mantissas (potentially also based on carry-save multiplication).

3.2 Flow Control and “Branch Kenning”

Branch instructions can interfere with ILP in pipelined processors, and we expect processors based our ISA would
be subject to a similar effect. With our approach, this becomes a correctness issue rather than a performance
issue — consider what happens if the code of Figure 2 braches if the result of the sum is zero, i.e. the OR is pre-
ceded immediately by BZ(target) on the left (assuming the instruction set relies on the traditional notion of
global flags) or by BZ(R8, target) for our code (we do not believe processor status flags would fit well into our
approach). In the absence of sufficient instructions above this branch, our code would branch incorrectly.

Pipelined systems devote a certain amount of hardware (and power) to “branch prediction” [HP03] (which
should perhaps be called “branch forecasting”, since in may predict incorrectly). We could envision similar hard-
ware, but it is antithetical to our low-energy approach.

Instead of hardware directed toward such branch forecasting, we have devolped a technique we call “branch
kenning”, which branches once the direction of the branch is certain (even if the final arithmetic result is not
known). Following our carry-save-adder example, note that we can prove a BZ instruction must not be taken if
there is a non-zero value for any bit Si for some if such that Cj6i are all zero. Note that for a loop index that is
counting down toward zero, most iterations require only a few of the rightmost bits to prove this is so. Similarly,
we may be able to prove a non-negative result of a multiply long before the full value is known.

3.3 Memory Operations

Memory operations (LOAD and STORE) typically allow the addition of a constant offset to a base register; if we
envision addition as a many-cycle instruction, this would greatly hinder performance of memory operations. One
possible way around this would be to allow a bitwise or of a constant offset to a base (presumably ending with
0’s). If records and stack frames were aligned in the proper way, the effect of addition of an offset could be
achieved quickly in this way.

Given our focus on codes that can only be optimized with static analysis, an explicitly-managed cache, as used
in the Cell processor, might make sense with our design. We have not explored this in detail. This would also help
us statically predict which memory operations may take a long time, which would be helpful in deciding when to
switch threads in a multithreading implementation.

3.4 Multithreading

The proposed instruction set architecture has the potential to further exploit parallelism and increase overall
instruction throughput by adding multithreading capabilities. Theoretically, our design should should be able to
handle multithreading with only minimal hardware additions, e.g. registers and program counters to hold the
architectural state when threads are switched and a fetch unit that can schedule multiple threads[HH07]. The
thread scheduler could be tuned to only switch threads when a long latency instruction, such as a LOAD that
experiences a cache miss and must access main memory, is encountered.
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The next logical optimization, in terms of increasing parallelism and throughput, would be to investigate
simultaneous multithreading. Our design would not be compatible with the dynamic demands of SMT. SMT is
most efficiently implemented on top of superscalar processors because multiple instructions must be simultane-
ously issued in the same clock cycle.

Özer et. al.[ÃCS01] outline a implementation for a VLIW processor with multithreading capabilities. They use
a technique called operation welding to combine operations from different threads to more fully utilize the hard-
ware resources. This multithreaded design experienced a 23% speed-up with two threads compared to a single-
threaded VLIW design using the SPECint95 benchmark; at this point we can only guess how much multithreading
would speed up our design.

4 Anticipated Costs and Benefits

Here we examine the relative costs of our approach versus the traditional costs of superscalar pipelined processors.

4.1 Costs of Superscalar Pipelining

Thus far we have been unable to determine exact costs of optimizations in pipelining; however, we have been able
to determine which factors do cost, which we can compare to our own propposed design.

4.1.1 Out-of-order Execution

Out-of-order execution ([HP03], Chapter 3.2) refers to the reordering of instructions to work around potential haz-
ards, such as overlapping operations that modify the same variable; in such a case, the apparent dependency may
be resolved by shifting independent operations from later in the program to act as a buffer between the two
instructions. Although some operation reordering can be performed at compile time, often conflicting instructions
will be undetectable until runtime, preventing us from transfering the full burden of operation reordering off of the
hardware.

4.1.2 Register Renaming

Similar to out-of-order execution, register renaming ([HP03], Chapter 3.7) allows for register assignments to be
altered to eliminate apparent dependencies; if each new assignment generates a new variable (or reuses old vari-
ables only sparingly), fewer dependencies exist and thus more parallelization can be exploited. As with out-of-
order execution, some of these dependencies are not visible until runtime.

4.1.3 Branch Prediction

Heuristics exist in both compiler and hardware designs to allow hardware to anticipate the results of branches in
order to pre-load instructions from the correct destination, preventing pipeline stalls on branches ([HP03], Chapter
3.4). This prediction may incur power costs, especially in the event of misprediction, where incorrect operations
must be discarded and old values restored to their proper registers.

4.1.4 Forwarding

Forwarding ([HP03], Appendix A.3), also called bypassing, allows one instruction to pass its results to more recent
instructions before that result is written back to a register, thus allowing dependent instructions to be executed in
succession more quickly. Obviously, this can only be performed in hardware since it relies on making data avail-
able quickly rather than on eliminating dependencies.

4.2 Anticipated Benefits and Limitations

One cost of this approach is, of course, that it “bakes in” implementation choices about high-level operations. A
revolutionary new approach to, say, addition could be implemented cleanly into an existing instruction set, but
would require rebuilding of the instruction set level with our approach. This, in turn, would require recompilation
of all source code and rewriting (or automatic transcoding) of binaries and assembly language files. However,
these approaches are already required to re-performance-tune applications for new implementations of an existing
chipset.
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5 Questions of Interest/Future Work

A number of important questions remain unanswered by our work so far, including:

5.1 Generalization

How well will this approach work for instructions that don’t rely on a step equivalent to integer addition?

5.2 Other Relevant Related Work

Has there been other work in re-thinking ISA’s for energy-efficient computing? What about other low-energy
implementation techniques that support or undercut our approach (e.g., if the Manchester carry chain can be
implemented on a large scale, it would make all examples discussed above irrelevant)?

5.3 Empirical Analysis with Benchmarks

Any credible argument for or against this approach must be based on empirical data about the speed achieved and
energy required. What degree of implementation is needed? At what level of abstraction? What is the easiest way
to accurately measure energy consumption on this scale?

5.4 Empirical Data for Current Processors

While research on pipelining and pipelining support optimizations (Section 4.1) present considerable empirical evi-
dence of speed improvements, they are much quieter on the topic of energy consumed to produce these gains. In
particular, some have argued[HS99] that some of these techniques are not worthwhile even in existing designs.
How can we get more information about the energy costs of pipelining? What about other elements of (dynamic)
superscalar processor implementation?

5.5 Objective Functions for Measuring Cost/Benefit

The driving motivation behind rethinking the semantics of arithmetic and other operation is to create an instruc-
tion set that promotes low-power computing without negatively impacting performance. There are several specific
metrics that can be used to quantify the energy-efficiency of a microprocessor design. Gonzalez and
Horowitz[GH96] outline the Energy-Delay Product (ED) as an effective metric for measuring power with respect
to performance. The ED Product measures the product of the total energy consumed during a specific execution
and the total end-to-end execution latency. This metric ensures that the balance between energy and performance
is maintained because in order to improve the ED product, either performance must be increased or energy must
be reduced without affecting the other.

Another common metric used to measure the energy-efficiency of microprocessors is the Energy-Delay2 Pro-
duct. This metric expands on the ED Product by placing more emphasis on performance. This means that more
energy can be consumed in order to increase the performance of the processor. Conversely, measuring the
Energy2-Delay Product would allow performance to be sacrificed so that energy consumption can be
decreased[ACP11].

We believe the ED product is the appropiate metric to use when comparing an implementation of our pro-
posed ISA to existing designs. Is this right?
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