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ABSTRACT 

   For the proposed project, the well-known ball and plate control problem is explored. 

The basic idea is that a system using sensors, actuators, and a control law will keep a 

free rolling ball in a desired position on a flat plate accounting for external disturbances 

which may occur. This report clarifies functional requirements, evaluates alternative 

concepts, presents the design requirements, shows minimum performance success 

criteria, details the physical design, outlines the control systems, overviews the 

prototyping and testing phase, as well as mentions some post prototype optimizations 

which may be considered for future development. Over all, the design and prototype 

was successful and met all minimum performance success criteria. 
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1. Introduction 

1.1. Overview 

 
   The ball and beam experiment is one of the most popular and widespread control 

systems projects in undergraduate studies. It is so widespread because of the fact that 

many control systems techniques and practices can be studied and applied. The 

purpose of the system is to balance a small ball on a pivoting beam at a certain point 

over any period of time and disturbance. This particular project will take the ball and 

beam experiment and extend it by essentially adding a second ball and beam system in 

parallel creating what is known as a ball and plate experiment.  

 

1.2. Background 

 

   To understand the concept of the ball on plate system, it is first imperative to 

understand the simpler ball on beam system.  The theoretical model of the ball on beam 

system is shown in Figure 1. This model of the ball and beam system is a two degree of 

freedom system. The first degree is the angle of the beam which is actuated by the 

electric motor. The second degree of freedom is the ball‟s position along the beam, 

which is non-actuated and is a function of the angle of the beam.  

 

 

 

Figure 1: Ball and Beam Model 
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 This system is referred to as under-actuated system because not all degrees of 

freedom are forced by the controller. Also, the system is known as a marginally stable 

system. That is in an open loop control system, a step input to the system‟s beam angle 

results in the ball's position continuously changing without bound until the ball falls off 

the end of the beam. Another negative inherent in the system, is the system‟s nonlinear 

nature. The acceleration enacted on the ball due to changes in beam angle has a non-

linear relationship to the ball‟s position. 

 

1.3. Objectives 

 
   One of the main problems with past implementations of the ball and plate system is 

the nonlinearity that is inherent in the mechanical pivot design of the system.  

Secondary to this problem, past implementations have used complex and expensive 

actuation, control, and programming equipment.   

 

   If the system could be designed so that the origin of the plate is fixed in relation to the 

origin of the two rotation frames, the system would be simplified and improved.  In 

addition to that improvement, the implementation of the system using affordable and 

readily available equipment would open the use of the system up to many more groups.  

 

   This project will focus on creating a ball and plate control system that will come as 

close as possible to simulating the ideal theoretical model of the system.  Also within the 

project scope is the goal to reduce cost and complexity of the system by streamlining 

the control of the system with the use of a graphical user interface. 
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2. System Requirements 

2.1. Technical Requirements and Specifications 

Upon completion of the project, the following design requirements were set as goals 

that should be met: 

 

Functional Performance 
● Maximum settling time of 15 seconds 
● System will operate on 110-120 volt, 60 Hz power supply 
● Camera will operate at 15 frames per second or better 
● Balance an object between ¾” and 2” in diameter 
● Support objects of up to ¼ lb. 
● Working plate size of 2‟x2‟ 

 
 
 
Operating Environment 
● Educational lab temperatures of 50o-125o F and humidity of 10-90% 
● Pressure range of 1 atm ± 50% 

 
Safety 
● Will not burn or electrocute operator or bystanders 
● Safety shut off if interference is detected 

 
Economic 
● Useful life of greater than 5 years 
● Electricity as only operating expense 

 
Maintenance and Repair  
● No regular maintenance should be required 
● Materials should be corrosion resistant 
● Repairs should require no special tools or equipment 

 
Ease of Use 
● Operator need only undergraduate basic course work to operate 
● Reading and understanding data sheet should take less than 15 minutes 
● All software needed should be free or available on the Southern Polytechnic State 

University campus 
 
Manufacturing 
● Manufacture cost should be under $500 
● A single prototype will be made 
● Prototype should be complete by April 28, 2011 
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2.2. Activity Analysis  

 
   The following is an activity analysis that shows how the product will be used and 

ultimately be retired: 

 

Set Up 
1) Read Data Sheet 
2) Run Matlab Program 
3) Adjust Camera 
4) Place Ball 

 
Use 

5) Set desired position 
6) Subject ball to force 
7) Repeat steps 5 and 6 
8) Replace ball when necessary 

 
Retire 

9) Remove servos and controller for future use 
10) Scrap the frame 

 

2.3. Minimum Performance Success Criteria 

 
   While the team considers all design requirements reachable, the following conditions 

should be met to consider the final product minimally sufficient: 

 

 Build a working prototype 

 Balance a ball in desired position on the plate though any reasonable 
disturbance. 

 Communicate knowledge learned through formal report 
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3. System Configuration 
 

With the functions and requirements of the system determined, a configuration will 

now be specified. The most essential element of the system is the method in which the 

plate is pivoted. After some quick research and brainstorming ideas, three suitable 

solutions were identified. These three solutions and their description is shown below: 

 

1. Roller Ball: In this system a cage with driven multidirectional wheels are placed 

on a ball that is solidly mounted to ground.  When the wheels are turned the 

cage and in turn the plate‟s angle is altered. 

2. Labyrinth:  This system is based around the age old labyrinth game‟s pivoting 

layout.  One frame rotates inside of another to give the plate two degrees of 

rotation. 

3. U-Joint:  In this system the plate is joined to one end of a u-joint at its center 

while the other end of the u-joint is mounted to the ground.  The plate is then 

actuated by levers placed on the actuators near the edge of the plate. 

 

Table 1 shows an Alternatives Matrix that was used to determine the best design for 

the pivoting sub-system out of the three designs that were considered. The ranking is 

based on six areas of importance; cost and simplicity are regarded as the highest 

factors. The team assigned a number between 1 and 5 to each design in each category 

and a weighted sum was calculated for the three systems. The labyrinth game‟s pivoting 

design was determined as the best pivoting sub-system. A sample system is shown in 

Figure 2. 

 

Table 1: Pivot Alternatives Matrix 

 



6 
 

 

Figure 2: Labyrinth Game 

 

   Figure 3 shows the general form of the system as developed and agreed upon by the 

design team. It closely parallels the labyrinth game with an inner plate rotating inside 

another outer frame. The rotating axis of the inner frame and outer plate are 

perpendicular to each other and in the same plane. The inner plate working area was 

set as two feet by two feet. Complete drawings of this system can be found in Appendix 

A. 

 

 

Figure 3: General Model 
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Once the plate configuration was developed, a basic system block diagram was made 

showing the relationships of each major sub-system. Using this data the system‟s sub-

systems were then developed. The system block diagram is shown in Figure 4. 

 

Figure 4: System Block Diagram 
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4. Component Selection and Major Subsystems 

4.1. Actuation Selection 

 
   After the plate configuration was determined, an actuation mechanism was 

developed. It is important to determine the actuation mechanism, because other 

calculations will be based upon it. The torque of the desired actuator will also need to be 

a reference for how robust the structure should be designed. There are typically three 

actuator types that can accomplish the motion needed, a DC gear motor, a DC stepper 

motor, and a DC servo motor.  With a budget of $100 per actuator, a search was 

conducted for suitable models of each actuator type. The data in Table 2 shows the 

selected models along with their cost, torque, and speed. As can be seen, the torque is 

much higher for the servo motor and the speed is relatively higher on the gear motor 

and stepper motor.  

 

Table 2: Actuation Types 

 DC Gear motor  Stepper Motor  DC Servo  
Manufacturer/Part 

#  
Globe 

Motors/415A157-2  
SDP-SI/S9117M-

D15HT  Turnigy/HV300  

Price  $120.15  $92.22  $74.00  
Torque(oz-in)  33.5  36.1  533  
Speed(rev/s)  2.8  3.3  1.4  

 

   A simple time calculation for an object to fall the two foot length of the plate vertical is 

shown as follows: 

 

   Using this time value, the equation below is used to calculate the needed speed to 

rotate the plate from vertical to horizontal within that time period: 
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Since every actuator falls within the needed speed criteria calculated, the deciding 

factor is torque and price. In both of these areas the servo motor excels so it is the 

obvious choice. The specifications for the Turnigy HV300 is shown below: 

 Dead band: 0.0008 ms (Default)  

 Control System: +Pulse Width Control  

 Working frequency: 1520μs / 333hz   

 (RX) Required Pulse: 3.5 ~7.4 Volt Peak to Peak Square Wave  

 Operating Voltage: 8.4 ~12.0 V DC Volts  

 Operating Temperature Range: -10 to + 60 Degree C  

 Operating Speed (8.4V): 0.180 sec/60° degrees at no load  

 Operating Speed (12V): 0.130 sec/60° degrees at no load  

 Stall Torque (8.4V): 26.90 kg.cm   (373.6 oz/in)  

 Stall Torque (12V): 38.40 kg.cm   (533.3 oz/in)  

 360° Modifiable:  NO  

 Motor Type:  Coreless Motor  

 Potentiometer Drive: Indirect Drive  

 Driver Type: FET  

 Bearing Type: Dual Ball Bearings  

 Gear Type: Titanium Gears  

 Programmable: NO  

 Connector Wire Length: 15.0 cm          (5.9 in)  

 Dimensions: 40X20X45 mm (1.57x0.97x1.77 in)  

 Weight:  78.5g              (2.77 oz)  

 

4.2. Material Selection 

 
   After communicating with a local metal supplier it was suggested that the frame be 

constructed of square tubing that is one inch square and 1/8 inch thick. Using the cross 

sectional area of this tubing and setting the size of the plate at two square feet,  

Table 3 shows the results of calculations to determine the density of the material 

needed. Using 6063T6 aluminum as a reference, it was calculated that the torque that 

would be produced from the plate is 480 oz-in which lies below 533 oz-in, the maximum 

of the chosen actuator.  6063T6 was chosen as a reference because the only other 

locally available light weight alloy at the time was 6061T5. While 6061T5 has better 

welding characteristics it was only available in full twenty-four feet lengths and is twice 

as expensive as 6063T6. 

 

    T6 temper 6063 has an ultimate tensile strength 30,000 psi (207 MPa) and yield 

strength of 25,000 psi (172 MPa). In thicknesses of 0.124-inch (3.1 mm) or less, it has 

elongation of 8% or more; in thicker sections, it has elongation of 10%. 
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Table 3: Material Selection Calculations 

A 28"x28" frame will need to hold the weight of a 1/2lb force (ball) on its outer edge as well as the 
weight of a 2'x2' inner frame all made out of 1"x1"x0.125 tube (square). Using 6063T6 will allow the use 

of an available servo with a torque rating of 533 oz-in. 

 
Problem Definition Parameters 

 

Parameter Symbol Units Value 

 
Cross Sectional Area A in

2

 0.234 

Inner Frame Volume V
i
 in

3

 21.53 

Outer Frame Volume V
o
 in

3

 23.4 

 
Design Variables 

 
Parameter Symbol Units Value 

 

Material Density l lb/in
3

 0.097 6063T6 Tube 

 

Performance Characteristics 
 

Engineering 
Characteristics 

Symbol Units Value Type Value Condition 

Torque t oz-in 533 > 480 Satisfied 

Weight W lb 5 > 4.54 Satisfied 

 

4.3. Shaft Material and Design 

 
   The structure will need a shaft to allow the actuator connection to the central axis of 

the plate, support the plate, and allow rotation. This shaft will be subjected to a torque 

equal to the maximum torque of the actuator, 533 oz-in. The most available shaft 

diameter size is 3/8”, so the calculations below use this value as a reference. The 

resulting shear stress of the shaft, using the weight of the inner and outer frames from 

the material calculation section, equates to 400 psi. Using a commonly available shaft 

material, 303 stainless steel, the allowed shear stress is 11.2 million psi. This material is 

not only economical but also gives a safety factor of 28,000 in the shaft.  

 

  



11 
 

Table 4: Shaft Selection Calculations 

The shafts will need to hold the weight of the inner and outer frame at 4.54lb as well as withstand the 
torque of the actuator at 533oz-in.tuator at 533oz-in 

 

Problem Definition Parameters 
 

 

Parameter Symbol Units Value 

Weight of Frames W
f
 lb 4.54 

Maximum Torque t
m
 oz-in 533 

 

Design Variables 
 

Parameter Symbol Units Value 

 Shaft Diameter d in 0.375 

 
Performance 

Characteristics  

Engineering Characteristics Symbol Units Value Type Value Condition 

Shear Stress σ ksi 11200 > 0.4 Satisfied 

4.4. Drive Selection and Design 

 
   There were three options considered for connecting the actuator to the shaft pivots of 

the plate: 

  

 directly with a coupler  

 with gears 

 with a chain or belt 
 

Since the inner plate will be placed inside of the outer frame, the connector must be 

very compact, less than one inch tall. The chosen option for this connector is limited 

only to a direct couple to the actuator. Calculations for the strength of this connection 

are omitted as the connection has a very high safety factor. 
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Table 5: Chain Drive Calculations 

A chain system is calculated to work with the maximum torque from the actuator, 533 oz-in, using 
standard 0.25" pitch length chain. 

 
Problem Definition Parameters 

 

Parameter Symbol Units Value 

 Maximum Torque tm oz-in 533 

 
Design Variables 

 

 
Parameter Symbol Units Value 

Pitch Diameter PD in 1.955 

 
Performance 

Characteristics  

Engineering 
Characteristics 

Symbol Units Value Type Value Condition 

Tensile Load T lb 787 > 34.1 Satisfied 

 

4.5. Ball Position Detection 

 

   There are two types of position detection devices that were considered for this 

system. One type of sensor that was considered is a pressure sensitive resistive device, 

much like the touch screen on newer cell phones. The second option considered is a 

simple camera mounted above the plate that would be able to relay position data to the 

system. Though the resistive panel offers a more stable and easier to implement 

solution, the price was out of the budget for this project. Of easily available touch 

panels, the best product to fit the application  is the 3M 17-9311-25. This touch screen 

is smaller than the goal working area of two feet at only 22.37” in diagonal and costs 

$264 from Mouser Electronics. Using a $25 web camera with a resolution of only 

480x480 pixels gives a resolution of one pixel every 1/20 inch.  For the purposes of this 

project the resolution is considered satisfactory. 
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4.6. Software 

 
As stated in the design requirements, the system must be able to operate on software 

that is either free or readily available to students at Southern Polytechnic State 

University. A review of the software in multiple labs throughout the campus revealed 

that the two solutions that were most widely available are LabView and Matlab/Simulink.  

LabView licenses installed on computers at the school however do not have the image 

acquisition and manipulation toolboxes that would be needed installed. While 

Matlab/Simulink installations on available computers also lacked the control systems 

toolbox they do have the image acquisition toolbox. Because of these factors 

Matlab/Simulink was chosen as the processing software. 

 

4.7. Microcontroller 

 

   With the knowledge that the system would use DC Servos which are pulse width 

modulation controlled devices and Matlab/Simulink as the software to be used, a search 

for suitable hardware to control the system was conducted. Because of its availability 

and cost effectiveness, an Arduino Nano microcontroller was chosen. This decision is 

based mainly on the fact that the Arduino has readily available free software for 

interfacing with Matlab/Simulink. To use this interface, the Arduino Nano microcontroller 

is loaded with a „server‟ program. The microcontroller then will be able to control the DC 

servos by sending a signal over USB using simple Matlab functions. This eased 

implementation and made the system very user friendly. The specifications for the 

Arduino Nano are shown below: 

 

 Microcontroller Atmel ATmega168 

 Operating Voltage 5 V 

 Input Voltage 7-12 V 

 Input Voltage (limits) 6-20 V 

 Digital I/O Pins 14 (of which 6 provide PWM output) 

 Analog Input Pins 8 

 DC Current per I/O Pin 40 mA 

 Flash Memory 16 KB of which 2 KB used by bootloader 

 SRAM 1 KB 

 EEPROM 512 bytes  

 Clock Speed 16 MHz 

 Dimensions 0.73" x 1.70" 
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4.8 Graphical User Interface 

 
The following specifications were design requirements for the Graphical User Interface: 

 

- Display x,y coordinates and velocity components of ball 

- Graph position of ball 

- Communicate with the Arduino and Simulink 

- Allow controls options for communication with Arduino,  for different display and 

image processing options, for different implementations of control algorithms and 

for control of plate 

- A display box showing messages and next steps to take 

- Display current angles of plate 

 

GUIDE was used to simplify the development of the GUI. GUIDE is MATLAB‟s 

Graphical User Interface Development Environment and provides a set of tools for 

creating a GUI. Using the GUIDE Layout Editor, you can populate a GUI by clicking and 

dragging GUI components. 

 

4.9 Controller Analysis and Design Verification 

 
   In order to design a controller for the ball and plate system, a mathematical model of 

the physical dynamics of the system is developed. Consider one dimensional ball and 

beam system. The variables used are defined below: 

 

m Ball mass 

R Ball radius 

J Ball moment of inertia 

x Ball position 

g Gravity 

θ Plate angle 

r Motor output gear radius 

L Length of plate 

α Motor angle 
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To help simplify the equations for ease of modeling, friction will be neglected and the 

assumption that no slippage will occur between the ball and the plate. Using these 

constraints the force equation centered around the motion of the ball is  

 

 

 

 

 

 

 

 

 

 

 

 

 

Now if the assumption of small angle changes are considered 

 

 

 

 

 

 

  

  Also, it may be desirable to have motor angel as a variable instead of plate angle. A 

relation between the two are given by 
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Substituting this relationship into the previous equation and solving for  

 

 

 

 

 

 

 

    

This is a mathematical representation of system in one direction. Since we are 

assuming small angle motions, the two directions, x and y, are decoupled. This means 

the model above will apply to both direction independently. Therefore the equations is 

the x and y direction are 

 

 

 

Where αy is the motor angle around the x axis and αx is the motor angle around the y 

axis. For the system developed, the motor angle and the plate angle are in direct 

relation because of a 1:1 ratio used in the gearing. 

 

Note that the inertia of a ball is given by tow equations for either a solid ball or a hollow 

ball. 
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Substituting this relationship into the previous equations and simplifying 

 

 

 

 

 

 

 

 

 

Once the physical system has been modeled, a controller can be designed. By the 

nature of the system, many small miscalculations or calibration errors can dramatically 

affect the system response. Therefore, a state-space controller was chosen to help deal 

with these issues. Taking the equations for the x and y acceleration, a state-space 

model is obtained. Only the hollow ball case is shown. 

 

 

 

 

 

  

 The initial controller design was setup to implement a settling time of 4 seconds. Using 

the “place” function in Matlab, a K gain matrix was obtained. Then the Simulink model 

shown in Figure 5 was used to simulate the controller. The output can be seen in Figure 

6. 
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Figure 5: Controller Simulink Model 

 

 

Figure 6: Initial Controller Simulation Response 
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5. Implementation 

5.1. Tilt Mechanism 

All effort was made to keep the prototype as close to the theoretical design as 

possible. With this in mind, construction of the tilt mechanism was built from 6063 

Aluminum tubing. The structure was cut from raw materials, prepared, and welded with 

the help of Randle Johnson on the Southern Polytechnic State University campus. 

Figure 7 shows a picture of the structure during construction. 

 

 

Figure 7: Tilt Mechanism During Construction 

 

 Figure 8 shows the method used to attach the shafts to the frame of the structure. A 

½” by 1 ¼” steel plate was cut to length and drilled and honed through the center for the 

3/8” shaft. Two additional holes were drilled for ¼” bolts. Each shaft was then placed in 

its respective mounting bracket and the whole assembly was drilled through and pinned 

with a hardened pin. This pin holds the shaft from both rotational and translational 

motion relative to the mount. 
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Figure 8: Shaft Mount 

 

 All four shafts are solidly bolted using the ¼” bolts to the outer rotating frame. Two 

shafts stick inward and through the inner rotating plate. The inner rotating frame is 

equipped with brass bushings, as shown in Figure 9, to limit friction and support load.  

Brass bushings were used in this area because of the limited thickness of the mounting 

surface. Using a roller bearing would require the frame tube size to be increased from 1” 

to 1 ¼”, raising costs and the weight of the system. 
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Figure 9: Brass Bushings 

 

The remaining two shafts face outward from the outer rotating frame. These shafts are 

supported by a pillow block mounted bearing on each side as shown in Figure 10. 

 

 

Figure 10: Pillow Block 

   To mount the actuators, simple mounts were made from ¼” thick sheet aluminum.  

These were made to bolt to the main frame and not be welded. This design was 

implemented because it allows the motor mounts to be switched out, and therefore the 

actuation type changed for future study. Figure 11 shows the outside actuator mount 

and chain drive configuration for DC servo.   
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Figure 11: Actuation Mount and Chain Drive 

 

5.2. Actuation 

 
   Construction began with the intent to use the Turnigy HV300, that was specified in the 

design specifications. After a short time, testing problems occurred and both actuators 

that were purchased sheared the shafts near the case as shown in Figure 12.  

 

 

Figure 12: Broken Turnigy Servo 
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  It was later determined that the cause of the failure in these two actuators was not 

using the actuator beyond its rated torque, but rather a combination of using too short of 

a mount screw for the sprocket and an over tightening of the chain. While replacing 

these with identical actuators would have been the best option, shipping times would 

have been two weeks so other options were investigated. Two Savox SC1258TG 

servos were found locally and purchased. The specifications for this servo can be found 

in Appendix H: Savox SC1258TG Specifications. Unfortunately before the Savox servos 

were able to be installed one was stolen. 

 

  Since the hobby servos also seemed to be struggling to move the outside frame, 

research was conducted to see what other options were available. The that was chosen 

was using a DC globe motor and a motor controller. A Globe Motor was readily 

available for free, part number 415A157-2. Since the implemented control signal was 

PWM, a controller that would accept PWM signal and translate that information to a DC 

voltage signal was needed. A search revealed the Roboteq AX500 motor controller. The 

AX500 is capable of driving two brushed DC motors of up to 15 amps each in a closed 

loop system to control either speed or position of the motor. Another reason for using 

this particular controller is that it allows an PWM input control signal for the motor 

position. This makes it plug and play for the Arduino controller and developed code. 

Specifications for the Roboteq  AX500 can be found in Appendix I: Roboteq AX500 

Specifications. Figure 13 shows the Globe motor mounted on its interchangeable 

mount. 

 

 

 

Figure 13: Mounted DC Motor 
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Figure 14 shows the method used to feedback the position data to the AX500 control 

module. A simple voltage divider is created using a linear rotary potentiometer. This 

potentiometer is attached directly to the plate opposite the motor to feedback actual 

plate angle. One drawback to the AX500 is that it only allows 8-bit resolution on the 

sensor in PWM control mode. 

 

 

Figure 14: DC Motor Position Feedback 

 

5.3. Power and Wiring 

 
 Figure 15 shows the arrangement for powering the system and enclosing electronics.  

With a rated maximum current of 5 amps for the Savox servo and 7 amps for the Globe 

DC motor, a high performance power supply was needed. Lab power supplies that were 

available on the Southern Polytechnic State University campus fell well short of the 

needed amperage. The most economical solution was a personal computer power 

supply. One was obtained locally for under $25 that had 3.3, 5, and two 12 volt rails and 

was capable of supplying 27 amps at the 12 volt level.   
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 The enclosure for the Arduino microcontroller and the Roboteq motor controller is also 

shown in Figure 15. On the upper right corner is the serial connector for the Roboteq 

controller. Connecting this to a computer allows you to change specifications such as 

PID constants through Roboteq's Roborun utility. The two wires entering the enclosure 

on the top are the control wires for the Savox servo and the DC motor respectively.  

Starting from the lower left of the enclosure the switch turns off/on the Roboteq 

controller, the first connector leads to the potentiometer feedback, the second connector 

leads to a safety shut off switch, the third connector leads to the DC motor, and the last 

connector brings power to the enclosure. 

 

 

 

Figure 15: Power and Wiring 
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5.4. Vision Processing  

 
A video camera is placed above the plate system which is used to get x and y 

coordinates of the ball, along with the translational velocity. Using the Video and Image 

Processing blockset in Simulink, the centroid of the ball can be found. To find the 

centroid, an auto threshold algorithm followed by a blob analysis algorithm can be 

applied. The Autothreshold block converts an intensity image to a binary image using a 

threshold value computed using Otsu's method. This block computes this threshold 

value by splitting the histogram of the input image such that the variance of each pixel 

group is minimized. Figure 16 shows the results of the image processing, 

 

 

Figure 16: Autothresholding of the Image 
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Following the autothresholding, the Blob Analysis block receives the binary image and 

does analysis on the prominent blobs, outputting the minor axis and centroid of each 

blob. Using an Embedded MATLAB Function block, the minor axis is used to find which 

blob is the actual ball. Figure 17 shows the live feed of the ball being tracked. 

 

Once the centroid of the ball was found, the coordinates were changed from the 

camera coordinates to new system coordinates. This change was applied to make the 

origin the center of the plate and to account for the rotation of the camera on top of the 

plate.  

 

 

Figure 17:  Ball Tracking 

 
The centroid of the ball is sent to the S-function block and the velocity components of 

the ball are calculated by storing the x and y coordinates into global variables and using 

the tic and toc functions to find the elapsed time between different displacement 

positions. 

 

The option of turning on and off the feeds of the camera was used to allow better 

performance of the system. By having the feeds on, the processing power is cut and 

significantly affects the frame rate of the image processing. 

 

Two different options for the feed were given, Live Feed and Threshold Feed, both of 

which were made possible with the use of the Simulink blocks in Figure 18. The final 

setup of the Simulink model can be found in Appendix D.  
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Figure 18: Simulink Model for Viewing the Ball and Plate 

 

5.5. Graphical User Interface  

 
A graphical user interface (GUI) is a type of user interface that allows users to interact 

with electronic devices with images rather than text commands. The GUI will serve two 

purposes. First, the GUI will be used to facilitate the development stages of the Ball and 

Plate system. By having a GUI, the developers will be able to troubleshoot the 

equipment and debug the control algorithm without having to change the text code. 

Second once the ball and plate system is developed and fully built, the GUI will allow 

any user to operate the plate. It will also allow a user to try and balance the ball where 

they deem appropriate. Figure 19 shows the final design of the GUI. All the inputs and 

outputs were test for quality assurance. 
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5.6. State-Space Controller  

 
 The controller developed in section 5 was implemented on the physical system with 

some mixed outcomes. First, the latency of the system, which was not accounted for in 

our mathematical model, was much higher than expected. Second, the state gain was 

not large enough to move our servos. Therefore, the poles of the controlled system 

were pushed farther to the left to account for the oversight in the system modeling and 

latency. Upon simple trial and error, the finalized controller poles were implemented. 

The new system output can be seen in Figure 20Figure 19. 

 

Figure 19: Finalized Graphical User Interface (GUI) 
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Figure 20: Finalized Controller Simulation 
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6. Test Data 
 

Many test were run using the ball and plate system. For many of the test, different 

poles and different desired positions on the plate were used. Table 6 below shows the 

best results for when a ping pong ball was thrown at different velocities and angles with 

the poles set at -11±4i and -11.5±4i and the desired position set at (0,0). 

 

Table 6: Test Results 

Run 
Settling Time 

(sec) 
Error Along 

x(ft) 
Error Along 

y(ft) 

1 13 0.04 0.1 

2 15 0.03 0.08 

3 16 0.05 0.12 

4 10 0.03 0.9 

5 9 0.01 0.1 

Average 12.6 0.032 0.26 

 
 

The error along the y axis is large due to the fact that the DC motor controller. As 

mentioned in section 5.2, the low sensitivity of the sensor made the controller have a 

large steady state error that could not be overcome by our controller. These results 

were consistent when the desired position was set somewhere other than at the origin 

(0,0).  
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7. Optimization 
  
  Due to early failure of the chosen actuators several compromises were made in the 

actuation of the system.  The Savox servo is capable but not as strong as what is really 

needed and the Roboteq controlled DC motor is very strong but rather slow and has low 

resolution on the position sensor.  A possible solution to these problems is a rather 

expensive stepper motor.  The stepper motor would need to be geared to overcome its 

weak area, a 1.2-2.5 degree step resolution. The stepper motor would then be able to 

provide positive and accurate position control. 

 

  In order to control the motors accurately and effectively a more robust microcontroller 

or computer interface would also need to be developed.  While the Arduino itself 

provides very low lag in its control the characteristics of the PWM signal and the 

cascading of several different controllers introduces latencies.  A serial control signal 

would be the best option to replace the PWM signal.   

 

  To take advantage of the faster communication between controllers the processing 

would need to be improved as well.  With every feature of the current program working 

frame rates in the camera lagged to as low as 2-5 frames per second.  Matlab was also 

using a full 1/2 gigabyte of memory to run with the frame resolution set to 240x240 

pixels.  The solution to this is using the multithreading capabilities of Matlab by way of a 

mex file.  Figure 21 shows the effect of using a mex file compared to the regular Matlab 

file in an image processing function.  As can be seen the processing time using a 

regular Matlab function increases exponentially with image size, limiting image 

resolution and therefore restricting the robustness of the program.  Using a mex file on 

the other hand is fairly flat with an increase in picture size, which would allow the full 

use of the 720x720 pixel camera. 
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Figure 21: Matlab vs Mex Comparision 

 

   It would also be of value to increase the robustness of the image processing.  This 
could be done by including more disturbance rejecting features as well as more object 
recognition filters.  
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8. Conclusion 
A ball and plate system was developed which met and exceeded the minimum 

performance success criteria. Though some of the initial specifications had to be 

changed during prototyping, the main idea of the ball and plate system was completed. 

The system was able to push a ball from a random position on the plate to a user 

desired position within an average of 15 seconds and with a maximum error of 20%. 

This error was accounted for in the fact that our secondary DC motor actuation system 

did not have the sensitivity to settle the ball close to our desired location.  

 

Throughout the semester, major engineering design steps were implemented on a 

practical basis. Though there was a compressed timeline, the basic structure of report 

writing, engineering economy, theoretical design, prototyping, and optimization were 

learned. Also, the functional requirements, alternative concepts, design requirements, 

minimum performance success criteria, physical design, control system, prototyping and 

testing, as well as some optimizations were met. Each team member now has a 

practical understanding of how an engineering design project is implemented. 
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Appendix A: Technical Drawings 
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Appendix B: Initial Wiring Schematic 
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Appendix C: Bill of Materials 

 

Item # Part Name Description Part # 
Num. 
Req 

1 Inner Servo Mount Plate 6063 plate AL1 2 

2 Outer Servo Mount Plate 6063 plate AL2 1 

3 Inner Bar 6063 square tube stock AL3 4 

4 Outer Bar 6063 square tube stock AL4 4 

5 Side Frame Bottom Rail 6063 square tube stock AL5 2 

6 Side Frame Side Rail 6063 square tube stock AL6 4 

7 Side Frame Top Rail 6063 square tube stock AL7 2 

8 Bottom Frame Runner 6063 square tube stock AL8 2 

9 Shaft Mounts Mild Steel ST1 4 

10 Servo Turnigy 12V PWM servo HV-300 2 

11 Pillow Block 
Mounted needle roller bearing, 0.375" 
inside diameter 

A7Z33-PB375N 2 

12 Bronze Bearing 0.375" inside diameter bronze bearing A7B4-F010 4 

13 Sprocket 
24 tooth sprocket, #25 chain size, 
0.375" bore with set screw 

A6C725B24 2 

14 Chain 
#25 chain size, mild steel, sold by the 
foot 

A6Q725 3 

15 Chain Clip #25 mild steel spring chain clip A6Q725SCCL 1 

16 Shaft 
303 Stainless steel shaft, 0.3747" 
diameter, 3.5" long 

A7X112100 4 

17 Servo to Shaft Adapter 
6061 aluminum, Futaba splines, 
0.375" bore 

FSA-375 1 

18 Servo Hub 
6061 aluminum, Futaba splines, 
tapped 

SH503F 1 

19 Plate UHMW polyethylene 2'x2'x0.25" 85705K38 1 

20 Camera 
iHome 30fps Webcam  
 

IH-W351DW 1 

21 Controller Arduino Nano V2.3 Nano 1 
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Appendix D: Modified S-FUNCTION 
function [sys,x0,str,ts] = sfuntmpl(t,x,u,flag) 
%SFUNTMPL General M-file S-function template 
% With M-file S-functions, you can define you own ordinary 
differential 
% equations (ODEs), discrete system equations, and/or just about 
% any type of algorithm to be used within a Simulink block diagram. 
% 
% The general form of an M-File S-function syntax is: 
% [SYS,X0,STR,TS] = SFUNC(T,X,U,FLAG,P1,...,Pn) 
% 
% What is returned by SFUNC at a given point in time, T, depends on 
the 
% value of the FLAG, the current state vector, X, and the current 
% input vector, U. 
% 
% FLAG RESULT DESCRIPTION 
% ----- ------ ----------------------------------------- 
--- 
% 0 [SIZES,X0,STR,TS] Initialization, return system sizes in 
SYS, 
% initial state in X0, state ordering 
strings 
% in STR, and sample times in TS. 
% 1 DX Return continuous state derivatives in 
SYS. 
% 2 DS Update discrete states SYS = X(n+1) 
% 3 Y Return outputs in SYS. 
% 4 TNEXT Return next time hit for variable step 
sample 
% time in SYS. 
% 5 Reserved for future (root finding). 
% 9 [] Termination, perform any cleanup SYS=[]. 
% 
% 
% The state vectors, X and X0 consists of continuous states followed 
% by discrete states. 
% 
% Optional parameters, P1,...,Pn can be provided to the S-function 
and 
% used during any FLAG operation. 
% 
% When SFUNC is called with FLAG = 0, the following information 
% should be returned: 
% 
% SYS(1) = Number of continuous states. 
% SYS(2) = Number of discrete states. 
% SYS(3) = Number of outputs. 
% SYS(4) = Number of inputs. 
% Any of the first four elements in SYS can be specified 
% as -1 indicating that they are dynamically sized. The 
% actual length for all other flags will be equal to the 
% length of the input, U. 
% SYS(5) = Reserved for root finding. Must be zero. 
% SYS(6) = Direct feed through flag (1=yes, 0=no). The s-function 
% has direct feed through if U is used during the FLAG=3 
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% call editing this to 0 is akin to making a promise 
that 
% U will not be used during FLAG=3. If you break the 
promise 
% then unpredictable results will occur. 
% SYS(7) = Number of sample times. This is the number of rows in 
TS. 
% 
% 
% X0 = Initial state conditions or [] if no states. 
% 
% STR = State ordering strings which is generally specified as 
[]. 
% 
% TS = An m-by-2 matrix containing the sample time 
% (period, offset) information. Where m = number of 
sample 
% times. The ordering of the sample times must be: 
% 
% TS = [0 0, : Continuous sample time. 
% 0 1, : Continuous, but fixed in minor 
step 
% sample time. 
% PERIOD OFFSET, : Discrete sample time where 
% PERIOD > 0 & OFFSET < PERIOD. 
% -2 0]; : Variable step discrete sample 
time 
% where FLAG=4 is used to get time 
of 
% next hit. 
% 
% There can be more than one sample time providing 
% they are ordered such that they are monotonically 
% increasing. Only the needed sample times should be 
% specified in TS. When specifying than one 
% sample time, you must check for sample hits explicitly 
by 
% seeing if 
% abs(round((T-OFFSET)/PERIOD) - (T-OFFSET)/PERIOD) 
% is within a specified tolerance, generally 1e-8. This 
% tolerance is dependent upon your model's sampling times 
% and simulation time. 
% 
% You can also specify that the sample time of the Sfunction 
% is inherited from the driving block. For functions 
which 
% change during minor steps, this is done by 
% specifying SYS(7) = 1 and TS = [-1 0]. For functions 
which 
% are held during minor steps, this is done by specifying 
% SYS(7) = 1 and TS = [-1 1]. 
% Copyright 1990-2002 The MathWorks, Inc. 
% $Revision: 1.18 $ 
% The following outlines the general structure of an S-function. 
% 
switch flag, 
%%%%%%%%%%%%%%%%%% 
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% Initialization % 
%%%%%%%%%%%%%%%%%% 
case 0, 
[sys,x0,str,ts]=mdlInitializeSizes; 
%%%%%%%%%%%%%%% 
% Derivatives % 
%%%%%%%%%%%%%%% 
case 1, 
sys=mdlDerivatives(t,x,u); 
%%%%%%%%%% 
% Update % 
%%%%%%%%%% 
case 2, 
sys=mdlUpdate(t,x,u); 
%%%%%%%%%%% 
% Outputs % 
%%%%%%%%%%% 
case 3, 
tic; 
sys=mdlOutputs(t,x,u); 
%%%%%%%%%%%%%%%%%%%%%%% 
% GetTimeOfNextVarHit % 
%%%%%%%%%%%%%%%%%%%%%%% 
case 4, 
sys=mdlGetTimeOfNextVarHit(t,x,u); 
%%%%%%%%%%%%% 
% Terminate % 
%%%%%%%%%%%%% 
case 9, 
sys=mdlTerminate(t,x,u); 
%%%%%%%%%%%%%%%%%%%% 
% Unexpected flags % 
%%%%%%%%%%%%%%%%%%%% 
otherwise 
error(['Unhandled flag = ',num2str(flag)]); 
end 
% end sfuntmpl 
% 
%====================================================================== 
% mdlInitializeSizes 
% Return the sizes, initial conditions, and sample times for the Sfunction. 
%====================================================================== 
======= 
% 
function [sys,x0,str,ts]=mdlInitializeSizes 
% 
% call simsizes for a sizes structure, fill it in and convert it to a 
% sizes array. 
% 
% Note that in this example, the values are hard coded. This is not a 
% recommended practice as the characteristics of the block are 
typically 
% defined by the S-function parameters. 
% 
sizes = simsizes; 
sizes.NumContStates = 0; 
sizes.NumDiscStates = 0; 
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sizes.NumOutputs = 0; 
sizes.NumInputs = 2; 
sizes.DirFeedthrough = 1; 
sizes.NumSampleTimes = 1; % at least one sample time is needed 
sys = simsizes(sizes); 
% 
% initialize the initial conditions 
% 
x0 = []; 
% 
% str is always an empty matrix 
% 
str = []; 
%global a; 
%a=arduino('COM15'); 
%a.servoAttach(1); 
%a.servoAttach(2); 
global connected; 
connected=false; 
fig=gui; 
global h; 
h = guihandles(fig); 
set(h.manual, 'Value', 1); 
global runtime; 
global oldx; 
global oldy; 
global k; 
k = BMatrixCalc(0.00595, 0.131233596/2 , 0 ); 
%k = BMatrixCalc(0.1,((1.68/12)/2),1); 
% 
% initialize the array of sample times 
% 
ts = [0 0]; 
% end mdlInitializeSizes 
% 
%====================================================================== 
======= 
% mdlDerivatives 
% Return the derivatives for the continuous states. 
%====================================================================== 
======= 
% 
function sys=mdlDerivatives(t,x,u) 
sys = []; 
% end mdlDerivatives 
% 
%====================================================================== 
======= 
% mdlUpdate 
% Handle discrete state updates, sample time hits, and major time step 
% requirements. 
%====================================================================== 
======= 
% 
function sys=mdlUpdate(t,x,u) 
sys = []; 
% end mdlUpdate 



54 
 

% 
%====================================================================== 
======= 
% mdlOutputs 
% Return the block outputs. 
%====================================================================== 
======= 
% 
function sys=mdlOutputs(t,x,u) 
global a; 
global h; 
global runtime; 
global oldx; 
global oldy; 
global k; 
global connected; 
global olds1; 
global olds2; 
%position of ball centroid 
i=u(2)%x 
j=u(1)%y 
set(h.x, 'String', sprintf('%3s:%.2f%', 'X ',i/120) ); 
set(h.y, 'String', sprintf('%3s:%.2f%', 'Y ',j/120) ); 
%velocity of ball 
Vx=((i-oldx)/runtime) 
Vy=((j-oldy)/runtime) 
set(h.Vy, 'String', sprintf('%3s:%.2f%', 'Vy: ',Vy/120) ); 
set(h.Vx, 'String', sprintf('%3s:%.2f%', 'Vx: ',Vx/120) ); 
%servo trim 
trimy=get(h.trimy,'Value'); 
trimx=get(h.trimx,'Value'); 
set(h.showytrim, 'String', sprintf('%3.0f%',trimy)); 
set(h.showxtrim, 'String', sprintf('%3.0f%',trimx)); 
%desired position 
desiredx=get(h.desiredx,'Value') 
desiredy=get(h.desiredy,'Value') 
set(h.showdesiredx, 'String', sprintf('%0.2f%',desiredx)); 
set(h.showdesiredy, 'String', sprintf('%0.2f%',desiredy)); 
%Plot ball centroid 
xmin = -1; 
xmax =1 ; 
ymin = -1; 
ymax = 1; 
plot(i/120,j/120,'LineWidth',2,'Marker','.'); 
axis([xmin xmax ymin ymax]); 
set(gca,'XTick',-1:.2:1, 'YTick',-1:.2:1); 
grid on; 
%Establish connection with Arduino 
if get(h.connect, 'Value') 
if (connected==false) 
a=arduino('COM15'); 
a.servoAttach(1); 
a.servoAttach(2); 
connected=true; 
end 
else 
delete(instrfind({'Port'},{'COM15'})); 
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connected=false; 
set(h.message, 'String','Arduino Disconnected' ); 
end 
%servo control 
%s1=pivot about x axis 
%s2=pivot about y axis 
if get(h.desired, 'Value') 
s=BPController([i;j;Vx;Vy], [desiredx;desiredy;0;0], k) 
%s1=round((90)-0.32*s(2)); 
s1=round((90)+s(2)); 
s2=round((90)+s(1)); 
set(h.servo1, 'Enable', 'off'); 
set(h.servo2, 'Enable', 'off'); 
set(h.manual, 'Value', 0) 
else 
set(h.servo1, 'Enable', 'on'); 
set(h.servo2, 'Enable', 'on'); 
s1=round(180*(get(h.servo1,'Value'))); %other servo 
%s1=round(-180*(get(h.servo1,'Value')-1)); 
%s2=round(-180*(get(h.servo2,'Value')-1)); %HV300 Servo 
s2=round(180*(get(h.servo2,'Value'))); %other servo 
set(h.manual, 'Value', 1) 
end 
%video feed control 
if get(h.livefeed, 'Value') 
set_param('test/LiveFeed', 'Gain', '1'); 
else 
set_param('test/LiveFeed', 'Gain', '0'); 
end 
if get(h.thresholdfeed, 'Value') 
set_param('test/ThresholdFeed', 'Gain', '1'); 
else 
set_param('test/ThresholdFeed', 'Gain', '0'); 
end 
%adjust desired angle by trim amount 
s1=s1+trimy 
s2=s2+trimx 
%send angle for servos to Arduino 
if (connected==true) 
if olds1~=s1 
a.servoWrite(1,s1); 
end 
if olds2~=s2 
a.servoWrite(2,s2); 
end 
set(h.pos1, 'String', sprintf('%3.0f%',s1-trimy)); 
%set(h.pos2, 'String', sprintf('%4.0f%',-(a.servoRead(2)- 
180)+trimx));%HV300 
set(h.pos2, 'String', sprintf('%3.0f%',s2-trimx));%other servo 
end 
%reset run time and store coordinates to memory for velocity 
calculation 
runtime=toc; 
oldx=i; 
oldy=j; 
%save new values to send to arduino 
olds1=s1; 
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olds2=s2; 
sys = []; 
% end mdlOutputs 
% 
%====================================================================== 
======= 
% mdlGetTimeOfNextVarHit 
% Return the time of the next hit for this block. Note that the result 
is 
% absolute time. Note that this function is only used when you specify 
a 
% variable discrete-time sample time [-2 0] in the sample time array in 
% mdlInitializeSizes. 
%====================================================================== 
======= 
% 
function sys=mdlGetTimeOfNextVarHit(t,x,u) 
sampleTime = 1; % Example, set the next hit to be one second later. 
sys = t + sampleTime; 
% end mdlGetTimeOfNextVarHit 
% 
%====================================================================== 
======= 
% mdlTerminate 
% Perform any end of simulation tasks. 
%====================================================================== 
======= 
% 
function sys=mdlTerminate(t,x,u) 
sys = []; 
% end mdlTerminate 
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Appendix E: Modified Guide Generated Code 
function varargout = gui(varargin) 
% GUI M-file for gui.fig 
% GUI, by itself, creates a new GUI or raises the existing 
% singleton*. 
% 
% H = GUI returns the handle to a new GUI or the handle to 
% the existing singleton*. 
% 
% GUI('CALLBACK',hObject,eventData,handles,...) calls the local 
% function named CALLBACK in GUI.M with the given input arguments. 
% 
% GUI('Property','Value',...) creates a new GUI or raises the 
% existing singleton*. Starting from the left, property value 
pairs are 
% applied to the GUI before gui_OpeningFcn gets called. An 
% unrecognized property name or invalid value makes property 
application 
% stop. All inputs are passed to gui_OpeningFcn via varargin. 
% 
% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only 
one 
% instance to run (singleton)". 
% 
% See also: GUIDE, GUIDATA, GUIHANDLES 
% Edit the above text to modify the response to help gui 
% Last Modified by GUIDE v2.5 20-Apr-2011 00:34:29 
% Begin initialization code - DO NOT EDIT 
gui_Singleton = 1; 
gui_State = struct('gui_Name', mfilename, ... 
'gui_Singleton', gui_Singleton, ... 
'gui_OpeningFcn', @gui_OpeningFcn, ... 
'gui_OutputFcn', @gui_OutputFcn, ... 
'gui_LayoutFcn', [] , ... 
'gui_Callback', []); 
if nargin && ischar(varargin{1}) 
gui_State.gui_Callback = str2func(varargin{1}); 
end 
if nargout 
[varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); 
else 
gui_mainfcn(gui_State, varargin{:}); 
end 
% End initialization code - DO NOT EDIT 
% --- Executes just before gui is made visible. 
function gui_OpeningFcn(hObject, eventdata, handles, varargin) 
% This function has no output args, see OutputFcn. 
% hObject handle to figure 
% eventdata reserved - to be defined in a future version of MATLAB 
% handles structure with handles and user data (see GUIDATA) 
% varargin command line arguments to gui (see VARARGIN) 
% Choose default command line output for gui 
set(handles.servo1, 'Value', .5); 
set(handles.servo2, 'Value', .5); 
handles.output = hObject; 
% Update handles structure 
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guidata(hObject, handles); 
% UIWAIT makes gui wait for user response (see UIRESUME) 
% uiwait(handles.figure1); 
% --- Outputs from this function are returned to the command line. 
function varargout = gui_OutputFcn(hObject, eventdata, handles) 
% varargout cell array for returning output args (see VARARGOUT); 
% hObject handle to figure 
% eventdata reserved - to be defined in a future version of MATLAB 
% handles structure with handles and user data (see GUIDATA) 
% Get default command line output from handles structure 
varargout{1} = handles.output; 
% --- Executes on button press in Start. 
function Start_Callback(hObject, eventdata, handles) 
% hObject handle to Start (see GCBO) 
% eventdata reserved - to be defined in a future version of MATLAB 
% handles structure with handles and user data (see GUIDATA) 
open('test.mdl'); 
set_param('test/videosource','ROIWidth','240'); 
set_param('test/videosource','ROIHeight','240'); 
set_param('test/Gain','Gain','0'); 
sim('test.mdl'); 
% --- Executes on button press in Stop. 
function Stop_Callback(hObject, eventdata, handles) 
% hObject handle to Stop (see GCBO) 
% eventdata reserved - to be defined in a future version of MATLAB 
% handles structure with handles and user data (see GUIDATA) 
set_param('test/Gain','Gain','1'); 
delete(instrfind({'Port'},{'COM15'})); 
set(handles.message, 'String', 'Arduino Disconnected'); 
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Appendix F: Ball and Plate Gain Controller Code 
function [ U ] = BPController( X, D, K ) 
% This function will take in a 2x1 vector of position coordinates for 
the 
% ball. Then output a motor angle.  
% DEVELOPED BY JONATHON BRUCE. 
X = X; 
K = K; 
%if X(1)<=-120 && X(2)>=120 
% U = [0,0,0,0]; 
% return 
%end 
Ud = K*D; 
Up = K*(X/120); 
P = Up - Ud; 
%P(2) = P(2)*0.75; 
U = P; 
end 
 
function [ K1 ] = BMatrixCalc( mass, radius, solid ) 
%UNTITLED3 Summary of this function goes here 
% DEVELOPED BY JONATHON BRUCE 
M = mass; 
S = solid; 
R = radius; 
g = 32.2; 
if S == 1 
J = (2/5).*M.*(R^2); 
%bx = -(M.*g.*(rx./L))./((J/(R^2))+M); 
%by = -(M.*g.*(ry./L))./((J/(R^2))+M); 
%return; 
%end 
elseif S == 0 
J = (2/3).*M.*(R^2); 
else 
fprintf('Please input correct ball type: 1 - Solid, 0 - 
Hollow.\n'); 
return; 
end 
bx = -(M.*g)./((J/(R^2))+M); 
by = -(M.*g)./((J/(R^2))+M); 
A = [0,0,1,0;0,0,0,1;0,0,0,0;0,0,0,0]; 
B = [0,0;0,0;bx,0;0,by]; 
C = [1,0,0,0;0,1,0,0]; 
ssTest = ss(A,B,C,0); 
P1 = [-9,-9.1,-10,-10.1]*1.1; 
K1 = place(ssTest.a,ssTest.b,P1); 
%ssTest2 = ss((ssTest.a - (ssTest.b*K1)),ssTest.b,ssTest.c,ssTest.d); 
%P = P1*4; 
%L = place(ssTest.a',ssTest.c',P); 
%Ae = ssTest2.a - (L*ssTest2.c); 
%ssTest3 = ss(Ae,ssTest.b,ssTest.c,ssTest.d); 
end 

Appendix G: Final Simulink Model 
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Appendix H: Savox SC1258TG Specifications 
 
Dimensions(mm):   40.3x20.2x37.2 
Weight(g):   52.4 
Speed(@4.8V sec/60):   .10 
Torque(@4.8V oz-in):   133.3 
Speed(@6.0V sec/60):   .08 
Torque(@6.0V oz-in):   166.6 
Gear:   Titanium & Aluminum 
Bearing:   2BB 
Case:   Aluminum 
Running current (at no load):   100 mA @ 4.8V 
Running current (at no load):   120 mA @ 6.0V 
Stall current (at locked):   4000 mA @ 4.8V 
Stall current (at locked):   5000 mA @ 6.0V 
Idle current (at stopped):   5 mA @ 4.8V 
Idle current (at stopped):   5 mA @ 6.0V 
Limit angle:   200°±10° 

Connector wire gauge:   ＃22 AWG 

Connector wire length:   250 ±5 mm 
Horn gear spline:   25T 
Control system:   Pulse width modification 
Amplifier type:   Digital Controller 
Operating Travel:   100° (when1000→2000 μsec) 
Neutral position:   1500 μsec 
Dead band width:   3 μsec 
Rotating direction:   Counterclockwise (when1500→2000 μsec) 
Pulse width range:   800→2200 μsec 
Maximum travel:  Approx 130°(when900→2100 μsec) 
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Appendix I: Roboteq AX500 Specifications 
 
 
Operating Voltage  12V to 24V DC 
Number of Channels  2 
Max Current Per Channel 
 30s 15A 
 1min 10A 
 3min 8A 
 1hr 7.5A 
Surge Current  >30A 
ON Resistance 100 mOhm  
Current Limiting  By automatic power output reduction according to user preset 

limit and temperature 
Temperature protection Automated current limit reduction starting at 80o C (175o F) 

heat sink temperature 
Voltage protection  Output shut off below 8V 
Power Wiring  Terminal strip. AWG 14 max cable 
R/C Inputs  2 + 1 accessories (1.0ms - 1.5ms center - 2ms, Adjustable) 
Serial Interface  RS232. 9600 bauds 
Analog Interface  2 inputs (0V - 2.5V center - 5V) 
Input Corrections  Ch1 & Ch2 mixing for tank steering. Programmable deadband. 4 

Exponent & Logarithmic command curves. 
Optical Encoder Inputs   No 
Analog Inputs  4 inputs, 8-bit resolution 
Digital Outputs  1 output, 24V 100mA max. 
Digital Inputs  3 general purpose inputs 
Open Loop Speed  Forward & Reverse Speed Control. Separate or Mixed 
Closed Loop Speed  Use Tachometer on analog inputs & PID 
Position Mode  Use Potentiometer on analog inputs & PID 
Controller Configuration Jumper-less using PC utility 
Operating Temperature -40 to +85oC heat sink temperature 
Enclosure  Unenclosed, board level 
Controller size  4.2" (106mm) wide x 2.9" (50mm) long x 1.5" tall (38mm) tall 

including heat sink 
Supplied Cables  4' (1m) RS232 cable for PC connection. 10" (25cm) RC cable to 

Radio. 
Weight  3 oz (85g) 
 

 


