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1. Introduction and Problem Context
According to the Interactive Advertising Bureau (IAB)
and PricewaterhouseCoopers (PWC), Internet display
related advertising revenues in the United States totaled
$6.5 billion during the first six months of 2014. This
revenue represents 28% of the total online advertising
($23.1 billion) and constitutes an increase of 6% over
the $6.1 billion reported over the same period in 2013.
Because of the proliferation of the online user activ-
ity tracking, performance-based, or Cost-Per-Action
(CPA), campaigns accounted for 65% of the campaigns
run for the same period. On the other hand, 34% of
campaigns were run under the more traditional Cost-
Per-Impression (CPM) business model.1 In this context,
determining the effectiveness of an online campaign in
achieving increased user commercial actions is usually
used to give credit to CPA campaigns. This process is
termed campaign attribution.

1 IAB internet advertising revenue report. 2014 first six months’
results. http://www.iab.com/wp-content/uploads/2015/05/IAB
_Internet_Advertising_Revenue_Report_HY_2014_PDF.pdf.

The advertising industry has developed methods
for online conversion attribution such as Last-Touch
Attribution. In this framework, the full conversion
credit is given to the last campaign that a convert-
ing user is exposed to (i.e., the touch point). Another
method is the Multi-Touch Attribution (MTA), where
the conversion credit is heuristically split across the
touch points in the path to conversion (Atlas Insti-
tute 2008). Data-driven MTA approaches have been
proposed to model interacting channel effects (Shao
and Li 2011, Li and Kannan 2014). However, these
methods assign attribution credit to every exposed
and converting user while ignoring the counterfactual
response without ad exposures. Also, these approaches
incentivize selection for ad exposure of baseline users
(Berman 2015), those who convert regardless of the
touch point (always-buy users).

Running randomized experiments (or field exper-
iments) is becoming the standard approach to mea-
suring the marginal effectiveness of online campaigns
(Chittilappilly 2012, Lewis et al. 2011, Yildiz and
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Narayanan 2013, Johnson et al. 2016). In this practice,
the ad is assumed to be the treatment to evaluate, and
users are randomly separated into study and con-
trol groups. Hence, when a targeting engine selects
a visiting user for exposure, the campaign ad is dis-
played to users in the study group, or a placebo ad
is displayed to users in the control group (Yildiz and
Narayanan 2013, Lewis et al. 2011). Full deployment
of this framework is limited by the cost of displaying
placebo ads, and the potential revenue loss resulting
from yielding the opportunity to advertise to control
users. As a consequence, current industry practice is
to run a low-budget CPM campaign and measure its
effectiveness, which is also assumed to hold (external
validity) for a larger budget CPA campaign (Yildiz and
Narayanan 2013, Chittilappilly 2012).

Today, ad exchange platforms facilitate marketplaces
where advertising spaces on websites are bought and
sold. A survey of 49 media buyers indicates that 87.8%
intended to purchase digital advertising via real-time
bidding (RTB) by 2011 (Digiday and Google 2011).
Similarly, outside RTB exchanges, ad networks run
internal auctions (Broder and Josifovski 2011). Because
media buying is done endogenously in a competitive
market, the user selection for ad exposure complicates
the evaluation using placebo ads. Moreover, to display
a placebo ad, the opportunity to advertise must be con-
sumed and the campaign must exist in the marketplace
(i.e., campaign presence effect). Johnson et al. (2016)
acknowledge the bias induced by endogenous user
selection when running a placebo campaign. Similar
to propensity-score based corrections, their proposed
solution predicts ad exposures of users in the control
group based on their features, which are often noisy
and fragmented. Also, their approach relies on auction
simulations assumed to be stationary. Most important,
the effect of the campaign presence in the marketplace2

(i.e., strategic effect) is ignored by current practices and
literature.

User targeting is one of the most important decisions
in running a campaign. A survey of 100 marketers,
agencies, and media planners indicates that user tar-
geting and campaign optimization capabilities are
perceived as the main differentiators among ad net-
works (Morrison and Coolbirth 2008). In campaign
attribution, ad exposures are often considered a conse-
quence of user activity (Lewis et al. 2011), or even a
potential “coincidence” (Yildiz and Narayanan 2013).
In reality, deployment of CPA campaigns has pro-
duced increasingly sophisticated targeting engines that
aim to display ads to converting users (i.e., selection
effect) (Pandey et al. 2011, Aly et al. 2012). As a result,

2 Blake and Coey (2014) identify test-control interference in mar-
ketplaces where users bid on scarce products. In the marketplace
we address, advertisers bid on ad slots assuming there is enough
inventory to satisfy the demand.

the external validity of nonoptimized CPM campaign
effects to CPA campaigns, assumed by current industry
evaluation practice, is prone to inaccuracies.

In a recent economic literature review, Goldfarb
(2014) surveys the online advertising literature based
on the decreasing cost of user targeting. However, most
of the literature on ad effectiveness based on field
experiments evaluates focused and specific targeting
practices (Lambrecht and Tucker 2013, Goldfarb and
Tucker 2011, Lewis and Reiley 2014). To our knowl-
edge, comparing the selection policy performance of
CPA and CPM campaigns, and the implications for
current practices have not been adequately addressed
by previous literature.

1.1. Our Contribution
We focus on the marginal causal attribution of single-
product online conversions to online display campaigns
(i.e., single channel) run on hundreds of publisher
websites, given all other advertising channel exposures
or prior branding effect. We find that current indus-
try practice often confounds three campaign effects,
i.e., the ad effect on exposed users, the strategic impact
of the campaign presence in a competitive market, and
the selection effect of the media buyer. We summarize
the elements of our contribution below in this context.

Expand the scope of attribution in marketplaces to the
overall campaign. We propose to perform continuing
evaluation and estimate the campaign attribution for
the current running conditions instead of isolating the
ad effect. In this new perspective, the entire campaign,
including the campaign presence in the marketplace
and the ad, is now the treatment to evaluate. Conse-
quently, we propose a new randomized design that
considers all of the visiting users and does not dis-
play placebo ads to users of the control group. We
argue that this control group represents the right cam-
paign counterfactual in a marketplace. This design
cost, which is minimal as to revenue loss, enables us to
perform continuing evaluation and attempts to close
the feedback loop for causal campaign optimization
displayed by Figure 1. The proposed design is simple
to implement and does not suffer from endogenous
user selection.

Capture the effect of the campaign presence in the market-
place. We propose a second randomized design that
separates the ad effect from the impact of the campaign
presence in the marketplace. Without relying on noisy
user features, we develop a method to estimate the user
conversion probability of the statistically equivalent
users in the control group to those exposed to the ad
in the study group. We show the risks of inducing
a selection effect in the standard evaluation practice
of using placebo ads in a marketplace. Contrary to
paid search marketplaces (Blake et al. 2015), we report
evidence of a campaign presence effect. This effect is
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Figure 1 (Color online) Online Advertising Optimization Loop
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Note. The focus of this paper is the measurement (i.e., attribution) box.

largely ignored in the literature and can significantly
change the campaign attribution.

Characterize the user selection based on user influenceable
classes. We present a method to characterize the user
selection of influenceable user classes using a Potential
Outcomes causal model and Principal Stratification
(Frangakis and Rubin 2002). By comparing the proba-
bility of selecting always-buy users, we report evidence
supporting the hypothesis that CPA campaigns incen-
tivize the selection of these users when compared
with CPM campaigns (Berman 2015). Based on user
demographics, we test different user selection policies
for mid-flight campaign optimization in the context
of the control loop in Figure 1. Our results suggest
that optimizing user selection for ad exposure has a
significant impact on campaign effects. These findings
raise questions about the external validity of ad effects
estimated by a CPM experiment to the CPA campaigns
(current practice).

We approach the problem in two phases: (1) the
randomized design, and (2) the causal estimation given
this design. Hence, in §2, we analyze the targeted dis-
play advertising process in a marketplace and describe
the proposed design. We present the methodology to

Table 1 Description of the Variables Used in This Paper

Term Description Term Description

Z ∈ 8C1P1S9 Random treatment assignment Y ∈ 80119 Converting user indicator
B ∈ 8No1Yes9 Decision to bid indicator A ∈ 8Lose1Win9 Auction output indicator
D ∈ 80119 Selected for ad exposure indicator W ∈ 80119 Ad exposure indicator
i ∈� Variable index for the ith user X ∈�p User feature vector
�dz ∈ 60117 Probability of Y = 1 given D = d, Z = z psel ∈ 60117 Probability of D = 1
�
4s5

0z 1 p
4s5

sel 1 z ∈ 60117 Parameters obtained by repeated
randomization for validation

ã
4s5

psel 1 ã
405
�0 ∈ 6−1117 Difference statistics between repeated

randomized groups
ãselect ∈ 6−1117 Statistic to test for equivalent user

selection for placebo ads
ãconvert ∈ 6−1117 Statistic to test for equivalent user

populations for placebo ads
Ny
dz ∈� User count given Y = y 1 D = d1 Z = z Nobs , Nsamp Observed/sampled count sets

Nburnin , Ns ∈� Burn-in/Gibbs number of samples a01 b0 ∈ 401�7 Beta prior parameters
U ∈ 8Per+

1Per−
1AB1NB9 Influenceable user category indicator �sel 1 �dz ∈�p+1 Regression parameters to model

P 4Y � X1D1Z1 �dz51 P 4D � �sel 1X 5

ä Parameters Equation (5): 8�01 �1C 1 �1S1 psel9 äX Parameters Equation (14):
8�01 �1C 1 �1S1 �sel9

Ftarg 4Xi 51 Fsig 4Xi 51 F
ATE
sign 4Xi 5, wsig Exposure selection optimizing functions (Algorithm 3)

characterize the users based on the potential causal
effects on them, and the user selection effect in §3. In §4,
we cover the estimation model validation, attribution
results for two CPA campaigns, the market presence
effect for one CPM campaign, and the user selection
characterization for these campaigns. We show the
value of continuing evaluation in §5 by optimizing
user selection for ad exposure assuming short-term
ex-ante external validity of the effects. Finally, in §6,
we discuss the main findings and their managerial
implications. Tables 1 and 2 define the notation used
in this paper.

2. Experimental Design for Attribution
in Marketplaces

2.1. Targeted Display Advertising
in Marketplaces: Overview

In Targeted Display Advertising, marketing campaigns
are often run by advertisers working closely with a
given ad network. The mechanism for displaying an ad
is depicted by the decision tree shown in Figure 2(a).
This process is based on conducting an auction for
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Table 2 Performance Metrics Used in This Paper

Metric Lift Description

ATECamp liftCamp Overall campaign average effect on all visiting
users

ATEAd ACLAd Average effect of the ad on selected users for ad
exposure

ATEMarket ACLMarket Average campaign presence in the marketplace
effect on exposure-selected users

ATED=1
Camp liftD=1

Camp Average treatment effect of the campaign on
selected users

SelEff liftsel User selection effect introduced by the targeting
engine

P 4D = 1 � U5 Probability of selecting user influenceable category U for
ad exposure

ATRBD=1
Camp Campaign attributed converting users, with

respect to N1
0S +N1

1S , estimated based on ATED=1
Camp

ATRBCamp Campaign attributed converting users, with
respect to N1

0S +N1
1S , estimated based on ATECamp

Notes. Lifts ∈ 6−11�5, P 4D = 1 � U5 ∈ 60117. Other metrics ∈ 6−1117.

every visiting user who is provided by a supply-side
platform (SSP) or publisher websites. To target users,
advertisers develop user profiles of the target market
segment based on demographics and other features.
However, in practice, the ad network uses a highly
sophisticated algorithm, illustrated by the decision
node B of Figure 2(a), to determine if a user should be
targeted. In CPA campaigns, this decision is based on
user behavior and history, and how likely the user is
to convert, among other features (Pandey et al. 2011,
Aly et al. 2012). If the campaign decides to bid through
a demand-side platform (DSP) in the ad exchange
(B = Yes), it submits the bid through RTB (Spencer et al.
2011). The chance (endogenous) node A of Figure 2(a)
represents this auction output. If the campaign wins
the advertising slot (A = Win), the campaign ad is
displayed to the user. Otherwise, another advertiser
shows an ad. For CPM campaigns, the decision to
bid is set to B = Yes. Moreover, the bidding strategy
is determined by guaranteed delivery contracts or
by the spot market (Ghosh et al. 2009). Outside of
ad exchanges, these targeting and auction processes
are routinely run by large ad networks (Broder and
Josifovski 2011). For the effects of the current paper, we
consider the aggregate targeting engine output (chance
node D of Figure 2(b)) to refer to users selected for ad
exposure, where D = 1 if the user is selected, i.e., if
B = Yes and A= Win, and D = 0 otherwise. Referring
to selected ad-exposed users as targeted users is typical
in the targeted advertising literature. However, we
note the case where the user is targeted B = Yes but
not exposed to the ad if A= Lose.

2.2. Campaign Evaluation Using Placebos:
The Standard Practice

The standard approach to evaluating online marketing
campaigns is to use randomized experiments assuming

the ad design is the treatment to evaluate. Lewis et al.
(2011) propose randomly assigning visiting users at
serving time to see the focal ad (study) or the placebo
ad assumed to be unrelated to the brand (control).
Figure 3(a) illustrates this process. In this model, none
of the components of standard Targeted Display Adver-
tising in a marketplace are considered. Moreover, ran-
domizing user visits limits this design power; a given
user might be assigned to both treatment arms during
different visits.

Current industry practice is to randomize the vis-
iting users once and keep them in the same arm
throughout the experiment, as depicted in Figure 3(b)
(Yildiz and Narayanan 2013). Because media buying
is endogenously performed in a competitive market,
user selection for ad exposure indicator D becomes a
post-treatment variable. Conditioning the analysis on
its realization might introduce a post-treatment bias.3

Moreover, the targeting engine routinely incorporates
user activity feedback, such as user clicks and visits,
to improve user selection for ad exposure (Aly et al.
2012), which would not be the case for the placebo ad.

These practices focus on the ad evaluation, without
considering the effect of the campaign presence in the
marketplace. Also, the ad is often evaluated with a
low-budget CPM campaign; the effects are assumed to
hold for larger-budget CPA campaigns (Chittilappilly
2012 describes a general industry practice). However,
the external validity of CPM campaign effects to CPA
campaigns is prone to inaccuracies due to different
user selection incentives (Berman 2015), and market
interactions (Morrison and Coolbirth 2008).

2.3. Proposed Randomized Design
We propose evaluating the overall campaign, including
the ad and the campaign presence in the marketplace.
This new perspective implies that the campaign is
now the treatment to evaluate. We randomize the visit-
ing users before any decision has been made in the
decision tree shown in Figure 3(c), and keep them
in the same group for the campaign duration. As a
result, users in the control group are not exposed
to placebo ads. This design aggregates the ad and
campaign presence in the marketplace effects analyzed
in detail below. Our goal for this randomized design
is not to predict or generalize campaign performance
for future long-term exposures, which is the objective
of randomized experiments. Our goal is to evaluate
campaign performance under the current conditions
to attribute credit to its overall performance, which
is the key attribution problem of interest to online

3 A post-treatment variable is a random variable whose realization
is available after performing the randomized assignment. As a
result, the treatment could affect this realization (Frangakis and
Rubin 2002).
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Figure 2 (Color online) Online Targeted Display Advertising Flow for a Given User Visit
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advertisers. In the context of the campaign loop shown
in Figure 1, our focus is short-term (mid-flight) ad
prediction where both effects are stable.4

To disaggregate the proposed design in Figure 3(c),
we consider the design of Figure 3(d), where Z ∈

8Control1Placebo1Study9= 8C1P1S9. To avoid a selec-
tion effect, two assumptions of the observed selection
in the study and placebo arms need to be tested:

Assumption 1. Statistically equivalent user selection;
the marginal probability of user selection for ad exposure is
the same for both treatment arms.

Assumption 2. Statistically equivalent selected popula-
tions; the marginal conversion probability of the nonselected
users for ad exposure is the same for both treatment arms.

Testing Assumption 1 indicates whether the selection
policy (aggregated over user segments) is the same for
placebo and study arms. Testing Assumption 2 indi-
cates whether the user selection process (aggregated
over user segments) provides statistically equivalent
populations based on conversion probabilities. If the
nonselected populations are equivalent, in terms of
conversion probability, then the complementary popu-
lations are statistically equivalent as a consequence
of user randomization. Although rejecting Assump-
tion 1 suggests nonequivalent user selection, testing
Assumption 2 determines the presence of a selection
effect (bias) on the observed conversion data.5

Let Yi4Zi5 be the ith user conversion indicator under
the treatment Zi, and assume Assumption 2 holds.
Similarly, assume P4Yi4C5 �Di = 11Zi =C5 is known
for the control group, in which the user selection

4 External validity of effects is implicitly assumed by most evaluation
practices in literature (Lewis et al. 2011, Yildiz and Narayanan
2013, Johnson et al. 2016). Given evolving user tastes, marketplace
dynamics, and the sequential learning of targeting algorithms, even
medium-term effect generalizations could be highly inaccurate.
5 A typical belief is that user pre-treatment feature based balancing
is the only way to show that control and study populations are
statistically equivalent (Johnson et al. 2016). However, Assumptions 1
and 2 do not require these features as long as the user assignment is
independent of the effect, i.e., random.

indicator Di is not observed; we address this estimation
in §3. Thus, the ad average treatment effect ATEAd1 i,
and the average treatment effect of the campaign
presence in the marketplace ATEMarket1 i are defined as
follows:

ATEAd1 i = E6Yi4S5 �Di = 11Zi = S7

− E6Yi4P5 �Di = 11Zi = P71
(1)

ATEMarket1 i = E6Yi4P5 �Di = 11Zi = P7

− E6Yi4C5 �Di = 11Zi =C70

The proposed randomized design in Figure 3(c) takes
the entire campaign as treatment and estimates the cam-
paign average treatment effect (ATECamp1 i) as follows:

ATECamp1 i = E6Yi4S5 �Zi = S7− E6Yi4C5 �Zi =C7

=
∑

d∈80119

P4Di = d5× 8E6Yi4S5 �Di = d1Zi = S7

− E6Yi4C5 �Di = d1Zi =C790 (2)

Given that Yi is affected only for the users to whom
the ad is displayed, i.e., 4Di = 15, all other terms of
Equation (2) cancel out. Thus, by substituting for
ATEAd1 i and ATEMarket1 i from Equation (1), and defining
ATED=1

Camp1 i to be the campaign local effect given Di = 1
we have

ATECamp1 i = P4Di = 15× 8E6Yi4S5 �Di = 11Zi = S7

− E6Yi4C5 �Di = 11Zi =C79

= P4Di = 15× 8ATEAd1 i + ATEMarket1 i9

= P4Di = 15× ATED=1
Camp1 i0 (3)

Therefore, the campaign effect of the proposed design
in Figure 3(c) provides the aggregated ad and cam-
paign presence effect, ATED=1

Camp1 i. The weighting term,
P4Di = 15, is a consequence of a larger user population
considered by the campaign (i.e., all visiting users),
rather than the subpopulation of exposed users to
whom the ad is displayed.
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Figure 3 (Color online) (a) User Randomization Framework Proposed by Lewis et al. (2011) Without User Targeting-Engine Selection; (b) Standard
Industry Randomization Practice with Placebo Ads; (c) Proposed Randomization Design for Campaign Attribution; (d) Randomization Framework
with Disaggregated Campaign Effects
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The standard evaluation using placebo ads identifies
ATEAd1 i as the “campaign” effect. However, the esti-
mation of the economic value (campaign attribution)
based on ATEAd1 i alone does not incorporate ATEMarket1 i,
which is a consequence of displaying the ad. Therefore,
the summation of these two effects, ATED=1

Camp1 i, must
be considered. We analyze values of ATEMarket1 i for
different scenarios in Appendix A. In Appendix B
we show that the proposed design has the lowest
potential revenue loss when compared with the stan-
dard practice, and is the most suitable for continuing
evaluation.

Remark 1. The design in Figure 3(c) identifies the
right counterfactual to calculate ATECamp (Equation (2))
when the objective is to estimate the campaign attribu-
tion. The design in Figure 3(d) disaggregates ATECamp

into two effects: ATEAd and ATEMarket (Equation (3)).

Remark 2. To estimate ATEMarket (Equation (1)), the
expected conversion probability of control users who
would be exposed to the ad if they were in the study

group, E6Yi4C5 � Di = 11Zi = C7, has to be inferred
(missing Di if Zi = C). In §3, we address this estimation.

Remark 3. One might believe that the three-arm
design described in Figure 3(d) is easily analyzed.
We can perceive this model as an extension of the
standard randomized experiment of Figure 3(b), which
includes a placebo arm. We reiterate that the error in
that logic, and the reason for a different counterfac-
tual and estimation method, is that the publisher slot
must be captured and assigned to the campaign or
placebo ad.

3. Estimation Methodology
Given the randomized design shown in Figure 3(c),
the estimation of the campaign attribution is straight-
forward (Equation (6)). However, by Remark 2, the
conversion probability of the users of the control
group who would be selected for ad exposure must
be inferred. We calculate the local campaign effect on
this subpopulation and characterize them based on
their response. We develop this methodology in the
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Potential Outcomes causal model via the Principal
Stratification framework.6

3.1. Causal Modeling: Campaign Effect on the
Users Exposed to the Ad

The Potential Outcomes Causal Model analyzes the
individual potential outcomes for each of the treatments
(Rubin 2005). For two treatment arms, this framework
implies that half of the data is missing because we never
observe a unit response in both arms. If the treatment
assignment is independent of the treatment effect (i.e.,
random assignment), then the causal estimates are
unbiased. The Stable Unit Treatment Value Assumption
(SUTVA) is necessary for this causal model; it implies
that the treatment status of any unit does not affect
the potential outcomes of the other units (i.e., no
user interference). Also, the user indicator events are
modeled to be random and conditionally independent
among users given a predetermined probability.

Principal Stratification modeling provides a frame-
work to estimate treatment effects conditional on post-
treatment (nonignorable) variables, which might be
affected by the treatment (Frangakis and Rubin 2002).
The key element in this context is identification of
user classes, or strata, with equal treatment effects
and probability of treatment assignment. Given the
proposed randomized design in Figure 3(c), where
Zi ∈ 8Control1Study9= 8C1S9, user exposure to the ad
is a post-treatment variable. Here, the exposure selec-
tion process is performed in the study group and not
performed in the control group.7 Let Wi4Zi5 indicate if
the ad is shown to the user (Wi = 1) or not (Wi = 0)
under treatment Zi. To define the principal strata, we
model the potential outcomes for Wi4Zi51Zi ∈ 8C1S9.
Because the ad is never shown to the users of the
control group 4Wi4C5= 05, we define the user principal
strata, W P

i , as follows:

W P
i =

{(

Wi4C5 ∈ 809
Wi4S5 ∈ 80119

)}

=

{(

0
0

)

1

(

0
1

)}

1

Di =

{

0 if W P
i = 40105′

1 if W P
i = 40115′

0

(4)

Table 3 shows the observed and missed data in the
potential outcomes notation. This definition guarantees

6 The campaign effect estimation of Equation (6), which is similar to
the Intention-to-Treat (ITT) estimation, might be perceived as a noisy
estimation. Note that the campaign budget, a crucial decision, is
captured in the campaign attribution by this estimator. Also, we
emphasize that only the visiting users to a given set of publisher
websites are potentially selected for ad exposure, and not all of the
online users as stated by Johnson et al. (2016). Although other causal
frameworks have been developed, mainly the Structural Equation
framework (Heckman 2008), we use Potential Outcomes to model
post-treatment variables with experimental data.
7 The current analysis holds for the randomized design in Figure 3(d)
if only the control and study arms are analyzed.

Table 3 Observed User Counts Based on the User Potential Outcomes

Potential outcomes

Control Study Principal stratumUser
counts Treatment
Ny
dz Wi 4C5 Yi 4C5 Wi 4S5 Yi 4S5 assignment Zi 4Wi 4C51Wi 4S55 Di

N0
80119C 0 0 ∗ ∗ C (01∗) ∗

N1
80119C 0 1 ∗ ∗ C (01∗) ∗

N0
0S 0 ∗ 0 0 S (010) 0

N1
0S 0 ∗ 0 1 S (010) 0

N0
1S 0 ∗ 1 0 S (011) 1

N1
1S 0 ∗ 1 1 S (011) 1

Notes. Ny
dz , where Di = d , Zi = z, Yi = y , are user counts for the given values

of Y 1Z1D. Missing values are presented as ∗.

that the selection effect in the control group is the
same as that of the study group (Assumption 1). In
the definition of Equation (4), Di indicates whether the
user is exposed to the ad had the user been assigned
to the study group (exposed-if-assigned, Di = 1), or not
(never-exposed, Di = 0). Consequently, we do not observe
Di in the control group (Figure 4(a)).

We define the probability of Di to be Bernoulli
distributed with parameter psel, and the probability of
user conversion Yi to be Bernoulli distributed with
parameters �dz for the four combinations Di = d, Zi = z,
and Y = 8Yi9, Z = 8Zi9, D = 8Di9. Let the user selection
for ad exposure indicator for those assigned to the
control arm be DC

i and for those assigned to the study
arm be DS

i . Therefore, assuming ä = 8�dz1psel3 d ∈

801191 z ∈ 8C1S99 are random variables, we have

P4Y 1Z1D1ä5

= P4ä5
�Z�
∏

i=1

P4Di = d � psel5

· P4Yi4Zi5 �Di = d1Zi = z1�dz5P4Zi = z50 (5)

One concern with the model described by Equation (5)
is that distribution parameters 8�0C1 �1C9 are not iden-
tifiable. That is, for given values of �0C and �1C , the
same likelihood value (P4Y 1Z1D �ä5) is produced if
we switch these parameter values. Thus, we require a
constraint based on identifiable parameters 8�0S1 �1S9 to
guarantee a unique solution. By Assumption 2, the
treatment assignment is independent of the potential
outcomes of never-selected users 4Yi ⊥ Zi �Di = 05. There-
fore, we do not consider any campaign effect on this
subpopulation as depicted in Figure 4(b) leading to:
�0S = �0C = �0 ⇒ä = 8�01 �1C1 �1S1 psel9.

Note also that, in a sequential setting, the targeting
engine uses user conversion probability estimates to
determine the selection probability of the next visiting
user. However, based on SUTVA and conditionally
independent user conversions of each other given
a predetermined probability, the user selection for
ad exposure indicators Di; for all i are conditionally
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Figure 4 (Color online) User Segments Based on Control/Study 4Zi 5 and Nonselected/Selected 4Di 5 Groups

Control: Zi = C  Study: Zi = S

Selected
Di = 1

(a) (b)

Nonselected
Di = 0

Control: Zi = C  Study: Zi = S

Di
S = 1, Zi = S Di

C = 1, Zi = C Di
S = 1, Zi = S

Di
S = 0, Zi = S

Zi = C

Di
C ∈ {0, 1}

Di
{C,S} = 0, Zi  ∈ {C, S}

Notes. (a) Observed segments. (b) Idealized segments to estimate the campaign effects on the selected users for ad exposure.

independent from each other, given psel. As a result, psel
represents the aggregate selection probability during
the time of the analysis.

Algorithm 1 (Gibbs sampling algorithm based on the
joint distribution of Equation (5))
1: Input: Nobs = 8N

y

dS1N
y

80119C3 d ∈ 801191 y ∈ 801199
from Table 3

2: Define Nsamp = 8N
y

dC3d ∈ 801191 y ∈ 801199
3: Set a0 = 005, b0 = 005
4: Initial guess ä0 = 8�1z1 �01 psel9

0, z ∈ 8C1S9
5: for i ← 1 to Nburnin +Ns do

6: Set P4DCy
i = 1 �ä1Nobs5

=
psel4�1C5

y41 − �1C5
1−y

psel4�1C5
y41 − �1C5

1−y + 41 − psel54�05
y41 − �05

1−y
,

y ∈ 80119

7: Draw N
y
1C �ä1Nobs ∼ Binomial4N y

80119C ,
P4D

Cy
i = 1 �ä1Nobs55, y ∈ 80119

8: Set N y
0C =N

y

80119C −N
y
1C , y ∈ 80119

9: Draw �
4i5
1z �ä−�1z

1Nsamp1Nobs ∼ Beta4a0 +N 1
1z,

b0 +N 0
1z), z ∈ 8C1S9

10: Draw �
4i5
0 �ä−�0

1Nsamp1Nobs ∼ Beta4a0 +N 1
0C +N 1

0S ,
b0 +N 0

0C +N 0
0S5,

11: Draw p
4i5
sel �ä−psel

1Nsamp1Nobs

∼ Beta4a0 +
∑

z∈8C1S91y∈80119N
y
1z1 b0

+
∑

z∈8C1S91y∈80119N
y
0z5

12: end for
13: return äNburnin+12Nburnin+Ns

The inference objective of the joint distribution of
Equation (5) is to estimate the posterior distribution of
the parameters ä given the observed data from Table 3.
Estimating this posterior distribution in closed form is
intractable because DC must be observed. Thus, we
implement a Markov Chain Monte Carlo (MCMC)-
based approach using Gibbs sampling depicted by
Algorithm 1. We denote the set of observed counts
as Nobs (step 1). Given an initial guess for ä0 (step 4),
we sample DC and estimate the counts N

y

dC ; d ∈ 80119,
y ∈ 80119 based on the probability of DCy

i (steps 6–8).
We denote these sampled counts as Nsamp = 8N

y

dC3 d ∈

801191y ∈ 801199 (step 2). Given the augmented user

counts, 8Nobs1Nsamp9, we sample each parameter of
ä conditional on ä−�, which is the set ä without �
(steps 9–11). The sampling distributions of the parame-
ters 8�01 �1C1 �1S1 psel9, are Beta(a01 b0) distributions with
Jeffreys conjugate prior parameters, 8a0 = 0051 b0 = 0059
(step 3). We test other prior parameters in Appendix C.
This sampling process is repeated for Nburnin +Ns times
(steps 5–12). After discarding a set of burn-in samples,
Nburnin, a set of samples of the posterior distribution is
obtained, ä12N samples. These samples are used to estimate
the variability of the effects and the analysis of §§3.2
and 3.3.

Remark 4. We use the randomization power to esti-
mate the conversion probability of the statistically
equivalent users in the control group to those exposed
to the ad in the study group. We leverage the fact that
there is no campaign effect on the nonselected users.
Also, the proportion of users statistically equivalent to
those selected in the study group must be the same
in both treatment groups. Therefore, the proposed
model guarantees that the conversion probabilities are
balanced for control and study arms.8

3.2. Campaign Effect Estimation
We estimate the average treatment effect by the cam-
paign (ATECamp) on the overall visiting users and the
lift (liftCamp) as follows:

ATECamp = E6Yi4S5 �Zi = S7− E6Yi4C5 �Zi =C71

liftCamp =
ATECamp

E6Yi4C5 �Zi =C7
0

(6)

Assuming a Jeffreys conjugate prior distribution,
8a0 = 0051 b0 = 0059, the posterior distribution becomes
Beta(a0 +N 1

z 1 b0 +N 0
z ) where N 1

z 1N
0
z are the number of

converting and nonconverting users of the z group. We
sample from these posterior distributions to provide
credible intervals for both ATECamp and liftCamp.

8 By focusing on average effect estimates, we obviate the need to
predict individual selection for ad exposure indicators, as performed
by Johnson et al. (2016), with associated prediction errors.
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The campaign average treatment effect on the users
selected for ad exposure (ATED=1

Camp), and the lift (liftD=1
Camp)

are estimated from the posterior distribution of ä as
follows:

ATED=1
Camp = E4Yi4S5 �Di = 11Zi = S5

− E4Yi4C5 �Di = 11Zi =C51

ATED=1
Camp = �1S − �1C1 liftD=1

Camp = 4�1S − �1C5/�1C 0

(7)

Based on the samples ä412Ns 5 obtained by the Gibbs
sampling procedure in §3.1, credible intervals are
estimated from the set 8ATED=1

Camp1 liftD=1
Camp9

412Ns 5.
We estimate the proportion of converting users

attributed to the campaign with respect to those in the
study group based on ATECamp and ATED=1

Camp (ATRBCamp,
ATRBD=1

Camp)

ATRBCamp = ATECamp ×

∑

d∈801191 y∈80119N
y

dS

N 1
0S +N 1

1S

1

(8)

ATRBD=1
Camp = ATED=1

Camp ×
N 0

1S +N 1
1S

N 1
0S +N 1

1S

0

Given that only the users exposed to the ad are im-
pacted by the campaign, these metrics must match.
They represent the campaign value (causally generated
conversions) and the output of the measurement block
shown in Figure 1.

3.3. User Selection Characterization
To characterize user selection for ad exposure of con-
verting users performed by the targeting engine, we
estimate the user selection effect (SelEff) and the lift
(liftsel) as follows:

SelEff = E4Yi4C5 �Di = 11Zi =C5
− E4Yi4C5 �Di = 01Zi =C51

SelEff = �1C − �01 liftsel = 4�1C − �05/�00

(9)

Note that selecting converting users, whose perfor-
mance is measured by SelEff, is a common objective of
the targeting engine (Pandey et al. 2011) because of
the industry business model for CPA campaigns, i.e.,
last-touch and multitouch attribution (Atlas Institute
2008). Thus, being part of a converting user path is
enough to attribute credit to the campaign.

To characterize the causal user selection process, we
partition the users into four influenceable categories
(Chickering and Heckerman 2000), Ui as follows: Per+,
positively influenced user, persuadable; Per−, negatively
influenced user, anti-persuadable; AB, converting user
with no effect, always-buy; NB, nonconverting user
with no effect, never-buy. Given the selection for ad

exposure indicator Di, the probability of a category Ui

is defined as

P4Ui =Per+
�Di1ä5 ∝ P4Yi4S5=1 �Di1Zi =S1ä5

·P4Yi4C5=0 �Di1Zi =C1ä51

P4Ui =Per−
�Di1ä5 ∝ P4Yi4S5=0 �Di1Zi =S1ä5

·P4Yi4C5=1 �Di1Zi =C1ä51

P4Ui =AB �Di1ä5 ∝ P4Yi4S5=1 �Di1Zi =S1ä5
·P4Yi4C5=1 �Di1Zi =C1ä51

P4Ui =NB �Di1ä5 ∝ P4Yi4S5=0 �Di1Zi =S1ä5
·P4Yi4C5=0 �Di1Zi =C1ä50

(10)

We estimate the probability of selecting a user given Ui

by Bayes theorem as follows:9

P4Di = 1 �Ui1ä5

=
P4Di = 1 �ä5P4Ui �Di = 11ä5

∑

d∈80119 P4Di = d �ä5P4Ui �Di = d1ä5
1

P4Yi4Zi5= y �Zi1Di1ä5= �
y

dz41 − �dz5
1−y1

P4Di = d �1ä5= pdsel41 − psel5
1−d0

(11)

Remark 5. We estimate the probabilities of persuad-
able, anti-persuadable, always-buy, and never-buy user
categories, despite not using user features because
we observe the counterfactual user response in both
control and study treatment groups.

4. Results
In this section, we discuss data collection and process-
ing. We also validate the model assumptions based on
user randomization. Then, we present the analysis of
two CPA campaigns (Figure 3(c) design),10 and one
CPM campaign where placebo ads were displayed
(Figure 3(d) design). Finally, we analyze the selection
for ad exposure policy for these campaigns.

4.1. Data Collection and Description
We ran two large scale randomized (or field) experi-
ments (Figure 3(c) design) collaboratively with two
European advertisers in the mobile communications
and the public transportation service sectors. The user
selection for ad exposure was optimized in real time
by a sophisticated targeting engine that valued the
user and managed the bidding process for both CPA
campaigns. User conversions were economically equiv-
alent for both campaigns. For privacy reasons, we are
not allowed to disclose the ad content or the identity
of the advertiser.

9 The campaign effect is not considered for the nonselected users,
thus P4Ui =Per+

i �Di = 05=P4Ui = Per−

i �Di = 05.
10 We present a power analysis of the campaign effect estimation in
Appendix D, which illustrates the difficulty in measuring this effect
in Targeted Advertising even when tens of millions of users are part
of the experiment.
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Table 4 Campaign Data Based on Notation of Table 3

Count N0
80119C N1

80119C N0
0S N1

0S N0
1S N1

1S

Campaign 1 1,560,146 400 12,010,058 2,387 5,708,558 2,599
Campaign 2 2,803,640 734 18,681,097 3,170 2,584,728 2,685

Note. Duration for Campaign 1, 30 days, Campaign 2, 28 days.

We randomly assigned the visiting users using the
last two digits of the time their cookies were created.
This rule separated the users and kept them in their
assigned group while the campaign was active. To
avoid user contamination and guarantee that we do
not miss user tracking due to cookie deletion, we
only consider users whose cookies were born before
the campaign started and remained active in the ad
network.11

Given a user timeline of events, we focus on those
events recorded after the first visit to any publisher
website where the ad was potentially displayed. We
mark the user as selected and exposed in the study
group (Zi = S1Wi = 11Di = 1) if at least one ad expo-
sure was recorded (otherwise Wi = 01Di = 0). If one
conversion was recorded after at least one ad exposure
and before the campaign ended, the user is considered
to be selected and a converter (Wi = 11Di = 11Yi = 1).
No ad exposure was performed for the users in the
control group (Zi = C1Wi = 0). Thus, the user selection
indicator is missing in this group (Di = ∗). User counts
based on the notation in Table 3 are displayed in
Table 4; Table 5 shows user activity statistics.

4.2. Estimation Model Validation
The estimation approach in §3.1 relies on equal prob-
abilities of selection for both treatment groups, and
the condition of no campaign effects on the nons-
elected users for ad exposure (Figure 4(b)). To test
these conditions, we randomly partition the users
of the study group of the CPA campaigns (Table 4)
into simulated control (Zi = C) and study (Zi = S)
groups, where DC

i and DS
i are observed. We define

psel1 z to be the selection for ad exposure probability,
psel, for the z random group. We perform this parti-
tion 3,000 times, obtain the method-of-moments (MM)
estimate for 8p

4s5
sel1 z1 �

4s5
0z 9 independently of our proposed

model, and calculate the empirical distribution of:
ã

4s5
psel = p

4s5
sel1 S − p

4s5
sel1C1ã

4s5
�0 = �

4s5
0S − �

4s5
0C .

Zero values for ãpsel and ã�0 verify the conditions of
the model (Assumptions 1 and 2). Table 6 reports the
credible intervals for these statistics and shows that
they are centered at 0 for both campaigns. Therefore,
we conclude that psel is the same for both treatment

11 We assume that the cookie deletion event is independent of the
campaign effect (ignorable or exogenous). Thus, no bias is introduced
by focusing on users with stable cookies.

arms, and that no campaign effect is present in the
nonselected users.12

4.3. Campaign Effect Results
Figure 5 depicts the estimation results for the CPA cam-
paigns shown in Table 4. Here, we use Nburnin = 21000
burn-in iterations and Ns = 101000 samples for the
Gibbs sampling framework of Algorithm 1. As illus-
trated, the posterior distribution for liftD=1

Camp is skewed
because liftD=1

Camp is a ratio of random variables. The
posterior distributions for 8�01 �1C1�1S9 are illustrated
by the box plots in Figures 5(a) and 5(b). A significant
difference is evident between the conversion rates for
the selected for ad exposure 4�1C1�1S5 and the nonse-
lected (�0) groups, which is measured by SelEff and
liftsel of Equation (9). As indicated by Table 7, we obtain
a median liftsel = 889%1444%9 for Campaign 1 and 2,
respectively.

For comparison, we estimate the campaign effect
on the selected users by assuming that we do not
observe the control group response, ATEI2C

Camp. This naïve
estimation is used by last-touch (I2C: impression-to-
conversion) or multitouch attribution when only the
focal campaign is run (i.e., single channel). Similarly,
we estimate the campaign effect without correcting for
post-treatment bias, ATEpost

Camp. These effects are defined
as follows:

ATEI2C
Camp = E6Yi �Wi4S5= 11Zi = S7

− E6Yi �Wi4S5= 01Zi = S71

ATEpost
Camp = E6Yi �Wi4S5= 11Zi = S7

− E6Yi �Wi4C5= 01Zi =C70

(12)

Table 7 shows the campaign effects on the over-
all user population, ATECamp, and on the selected
for ad exposure population, ATED=1

Camp. Here, the zero
effect is not included in the 90% credible intervals
for Campaign 1. Campaign 2 leans toward positive
values but with a small negative range in the credible
interval. In addition, we observe variations of less
than 0.2% between median ATRBD=1

Camp and ATRBCamp:
89005%18090%9 for Campaign 1 and 85005%14091%9 for
Campaign 2, respectively. This result shows consis-
tency between ATED=1

Camp and ATECamp, and confirms the
campaign effect analysis of §2.3. Note the severe over-
estimation by last-touch attribution, and by the effect
without correcting for post-treatment bias compared
with the causal lift (liftI2CCamp and liftpost

Camp versus liftD=1
Camp);

12 User principal strata are defined based on the observed selection
indicator of the study group. Thus, our testing procedure focuses on
this group. Generating actual control groups with one less bidder
might produce spillover effects among bidders. We assume these
(unlikely) effects to be negligible on average. Also, the larger the
user population, the more likely this assumption holds.
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Table 5 User Activity Statistics for the Campaigns of Table 4

Campaign 1 Campaign 2

Zi = C Zi = S Zi = S, Di = 1 Zi = C Zi = S Zi = S, Di = 1

Variable Mean St dev Mean St dev Mean St dev Mean St dev Mean St dev Mean St dev

Visits/user 36025 162021 36049 175098 83050 332074 37032 218013 37016 223023 160093 637071
Convs � Yi = 1 1014 0040 1019 0059 1019 0059 1032 0073 1033 0084 1035 0087
Imps/user — — — — 3047 8041 — — — — 2063 5071

Notes. Mean and standard deviation (St dev) are displayed. Visits/user is the number of visits per user. Convs � Yi = 1 is the number of conversions per converting
user. Imps/user is the number of ad exposures per selected user (Di = 1).

Table 6 Validation of Model Conditions Expressed by Figure 4(b)

Campaign 1 Campaign 2 Campaign 1 Campaign 2

Low Med High Low Med High Low Med High Low Med High

ãpsel (1e−3) −2065 0.02 2.71 −0089 0.01 0.91 ã�0(1e−5) −1071 0.03 1.70 −1022 0.02 1.23

Notes. The testing procedure is detailed in §4.2. 90% credible intervals are reported. 8Low 1Med 1High9 are the 800051005100959 quantiles.

that is, for Campaign 1: 129% and 77.54% versus 21.04%;
for Campaign 2: 511% and 296% versus 12.36%.13

4.4. Comparison with Campaign Evaluation Using
Placebo Ads

To illustrate the effect of campaign presence in the mar-
ketplace and the risk of conditioning the ad effect on
post-treatment (endogenous) variables, we ran a large
scale experiment considering three treatment groups,
Zi ∈ 8Control1Placebo1Study9= 8C1P1S9 (Figure 3(d)
design), collaboratively with an advertiser in the finan-
cial information services sector. We implemented the
standard practice to evaluate online campaigns and ran
a low-budget CPM campaign, where user conversions
are economically equivalent, without optimizing the
ad delivery process. Consequently, the decision to bid
was always affirmative (Figure 2(a): Bi = Yes), and the
auction was run for all visiting users to satisfy the
budget contractual schedule. This auction took place
inside the ad network where simultaneous campaigns
of the same brand were run to market other products,
among other competing campaigns. Table 8 shows the
aggregated data (Campaign 3) based on the notation in
Table 3, and Table 9 shows user activity statistics. To
verify that there was no selection effect, we now test
Assumptions 1 and 2.

Define the selection indicator Di under the treatments,
Zi = 8P1S9, to be 8DP

i 1D
S
i 9. To estimate the ad effect

conditional on the observed Dz
i , we define ãselect

i and
ãconvert

i as

ãselect
i = P4DS

i = 1 �Zi = S5− P4DP
i = 1 �Zi = P51

13 Intervals of 8ATEI2C
Camp1ATEpost

Camp9 are estimated using their t-statistics.
Lifts are the average point estimates. Thus, ATEI2C

Camp(1e−4), Campaign
1: [2.40, 2.56, 2.73], Campaign 2: [8.34, 8.68, 9.01]; ATEpost

Camp(1e−4),
Campaign 1: 6107311099120247, Campaign 2: 6703917076180137.

ãconvert
i = P4Yi4S5= 1 �DS

i = 01Zi = S5 (13)

− P4Yi4P5= 1 �DP
i = 01Zi = P50

Then, we define the hypotheses: H select
0 2 ãselect

i = 0,
H convert

0 2 ãconvert
i = 0. We test these hypotheses, and esti-

mate their lifts (ãselect
i Lift, ãconvert

i Lift) by sampling the
Beta distribution as in the case of the liftCamp estimation
in §3.2.14 The testing results in Table 10 suggest rejecting
H select

0 (ãselect
i Lift = 6−2084%1−2075%1−2065%7), and not

rejecting H convert
0 (ãconvert

i Lift = 6−2080%14012%111041%7).
As a result, the change of user selection probability is
not enough to reject the assumption that the sampled
placebo and campaign populations are equivalent in
conversion rates.15

We estimate the lift effect of the ad ACLAd, based
on ATEAd from Equation (1), which is the standard
“campaign” attributed effect. We obtain a positively
leaning effect (ACLAd = 6−2078%16074%117097%7). We
analyze §3.1 to calculate E6Yi4C5 � Di = 11Zi = C7 =

�1C , and estimate ATEMarket lift, ACLMarket, based on
Equation (1). We estimate a negative effect of the
campaign presence in the marketplace and discard the
zero effect of the 90% credible interval (ACLMarket =

6−24002%1−15006%1−3070%7).
We know that the focal campaign competed in the

marketplace against campaigns run to advertise other
products of the same brand. We also know that the
product being promoted is a free trial of one of the
other products. As a result, we expect significant
spillover effects from other brand campaigns. In this

14 We estimate a t-statistic for these conversion probability differences
and the results are equivalent. However, estimation of the lifts
requires further approximations.
15 We expect larger effects for CPA campaigns where delivery of
placebo ads must be equally optimized.
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Figure 5 (Color online) Model Fitting Results for (a) Campaign 1 and (b) Campaign 2
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Notes. From left to right, posterior distribution for liftD=1
Camp , and the box plot for �0, �1C , �1S where y -axis is the conversion probability. Gibbs sample size

Ns = 101000.

Table 7 Attribution Results Using 90% Credible Intervals

Campaign 1 Campaign 2 Campaign 1 Campaign 2

Low Med High Low Med High Low Med High Low Med High

liftI2CCamp (%) — 129 — — 511 — liftpostCamp (%) — 77054 — — 296 —
liftCamp (%) 0.84 9071 19061 −1035 5015 12019 ATRBCamp (%) 0.85 8090 16051 −1036 4.91 10096
liftD=1

Camp (%) 1.89 21004 46033 −3000 12036 32043 ATRBD=1
Camp (%) 0.96 9005 16059 −1042 5.05 11026

liftsel (%) 55 89 126 359 444 534

Note. 8Low 1Med 1High9 are the 800051005100959 quantiles.

Table 8 Campaign 3 Data (Design of Figure 3(d), Zi ∈ 8C1 P 1S9), Based on Notation of Table 3

Count N0
80119C N1

80119C N0
0P N1

0P N0
1P N1

1P N0
0S N1

0S N0
1S N1

1S

Campaign 3 57,492,247 8,131 9,817,552 1,182 3,713,430 583 9,938,896 1,246 3,618,467 607

Note. Duration, 16 days.

Table 9 User Activity Statistics for Campaign 3 of Table 8

Zi = C Zi = P Zi = S Zi = P 1Di = 1 Zi = S1Di = 1

Variable Mean St dev Mean St dev Mean St dev Mean St dev Mean St dev

Visits/user 18018 93067 18022 93040 18022 94004 54042 132091 54040 133012
Convs � Yi = 1 1003 0036 1003 0018 1004 0033 1002 0016 1005 0046
Imps/user — — — — — — 1068 1035 1070 1039

Notes. Mean and standard deviation (St dev) are displayed. Visits/user is the number of visits per user. Convs � Yi = 1 is the number of conversions per converting
user. Imps/user is the number of ad exposures per selected user (Di = 1).

Table 10 Campaign Disaggregated Results, and Validation of the Placebo Campaign Based on 90% Credible Intervals

ãselect Lift (%) ãconver t Lift (%) ACLAd (%) ACLMarket (%) liftD=1
Camp (%)

Low Med High Low Med High Low Med High Low Med High Low Med High

−2084 −2075 −2065 −2080 4.12 11041 −2078 6.74 17097 −24002 −15006 −3070 −18088 −9015 2.62

Note. 8Low 1Med 1High9 are the 800051005100959 quantiles.
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scenario, other campaigns generate the user visit (lead)
to the advertiser website, where the users are more
likely to sign up for a free trial product than for the
promoted paid service. Therefore, the mere presence
of the focal campaign prevented the other ads of the
same brand from being displayed. This strategic effect
significantly moves the net campaign effect (liftD=1

Camp =

6−18088%1−9015%12062%7). Similar spillovers across
product campaigns have been detected before by Sahni
et al. (2015) in the context of email coupon promotions.
Note that the user selection effect of this CPM campaign
significantly contributes to the negative presence effect.
However, this user selection can be improved to identify
the positively influenceable population.

4.5. User Selection Characterization Results
Table 11 shows the user selection characterization
results, based on the analysis of §3.3, for CPA Cam-
paigns 1 and 2 in Table 4, and for CPM Campaign 3 in
Table 8. The probability of never-buy users is large in
the selected population (P4Ui = NB �Di = 15 > 0099 for
all campaigns); this is a consequence of low conversion
rates. Using Bayes theorem as in Equation (11), we
observe that the probability of selecting a never-buy
user is the lowest as there is no incentive to display
the ad to this user category (P4Di = 1 � Ui = NB5 =

8003210012100279 for Campaign 8112139, respectively).
Similarly, the probability of selecting a persuadable
user is significantly lower for CPM Campaign 3 than
for CPA Campaigns 1 and 2 by as much as 37%
(0052 − 0033 = 0019 with respect to 0052, where P4Di = 1 �

Ui = Per+5= 8005210046100339 for campaigns 8112139,
respectively), showing the positive effect of optimized
user selection of ad exposure.

As discussed in §3.3, liftsel provides the conversion
probability change in the selected population (i.e.,
selection effect). The CPA last-touch business model
suggests that increasing this difference is beneficial for
the overall campaign effect. We find that Campaign 2
performance (liftsel = 444%) is superior to Campaign 1
(liftsel = 89%) under the CPA policy of selecting con-
verting users. However, we estimate a significantly
larger probability of selecting an always-buy user for
Campaign 2 than for Campaign 1 (P4Di = 1 �Ui = AB5=

80082100679 for campaigns 81129, respectively). There-
fore, although Campaign 2 is more useful in optimizing
user conversions than Campaign 1 by a factor of five
(444% vs. 89%), Campaign 2 is 22% (0082 − 0067 = 0015
with respect to 0.67) and more likely to select always-
buy users. This analysis shows that the well accepted
policy of selecting users with the highest conversion
probability does not necessarily improve the campaign
value to the advertiser. Moreover, we find that this
probability of selecting always-buy users is as much as
96% larger for CPA Campaign 2 when compared to
CPM Campaign 3 (0082 − 00418 = 00402 with respect
to 00418). This evidence shows that CPA campaigns

incentivize the selection for ad exposure of always-buy
users when compared with CPM campaigns (Berman
2015). Also, the generalization of the ad effect estimated
for a CPM campaign to a CPA campaign, assumed
under the standard evaluation practice, is highly prone
to inaccuracies.

By analyzing the marginal probabilities P4Ui5, we
note that the population size of always-buy users is
three to four orders of magnitude smaller than the size
of the persuadable and anti-persuadable user segments.
As a result, the impact of a large P4Di = 1 �Ui = AB5 is
attenuated by the visiting population size of always-buy
users.

5. Campaign Mid-Flight Optimization:
Leveraging User Features

5.1. Methodology
We illustrate the value of continuing evaluation in the
context of Figure 1 by leveraging user features (Xi) in
the effect estimation. We develop user selection rules
to achieve mid-flight campaign optimization. Here,
we replace the Bernoulli distributions in Equation (5)
with probit regressions conditional on Xi. Thus, we
estimate the campaign effects conditional on Xi to
guide the targeting engine. Let ê4x5 be the standard
Normal cumulative density function, X = 8Xi9, and
äX = 8�01�1C1�1S1�sel9, then

P4Y 1Z1D1äX �X5

= P4äX5
�Z�
∏

i=1

P4Di = d � �sel1Xi5

· P4Yi4Zi5 �Di = d1Zi = z1�dz1Xi5P4Zi = z51

P4Di � �sel1Xi5=ê4��
i 51 ��

i =X ′

i�sel1

P4Yi �Di1Zi1�dz1Xi5=ê4�dz
i 51 �dz

i =X ′

i�dz0

(14)

This model exploits the power of randomization and
balances the treatment groups in the inference of the
indicator DC

i � Xi based on the propensity of being
selected.16

We find the user counts of Control and Study treat-
ment arms (Table 3) for all user feature combination
segments, which are assumed to be finite and countable

N obs
Camp = 8N

y

dS �Xi1N
y

80119S �Xi3

d ∈ 801191 y ∈ 801191Xi ∈ 8X991 (15)

whose cardinality becomes #8N obs
Camp9 = 6 × #8X9. To

estimate the model described by Equation (14), we

16 Johnson et al. (2016) balance the user features in the prediction of
the selection indicator first, and then compare this prediction with
the selected users in the study group. In our approach, we model
user randomization and user feature balancing jointly, which is more
powerful than stepwise model fittings.
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Table 11 User Selection Median Probabilities Based on Equations (10)–(11)

Campaign 1 Campaign 2 Campaign 3 Campaign 1 Campaign 2 Campaign 3

P 4Ui = Per+
� Di = 15 4055e−4 1004e−3 1068e−4 P 4Ui = Per+

5 2081e−4 2075e−4 1037e−4
P 4Ui = Per−

� Di = 15 3076e−4 9024e−4 1085e−4 P 4Ui = Per−
5 2056e−4 2062e−4 1041e−4

P 4Ui = AB � Di = 15 1071e−7 9059e−7 3011e−8 P 4Ui = AB5 8019e−8 1042e−7 1098e−8
P 4Ui = NB � Di = 15 009992 009980 009996 P 4Ui = NB5 009995 009995 009997
P 4Di = 1 � Ui = Per+

5 005211 004583 003276 P 4Di = 1 � Ui = AB5 006728 008217 004180
P 4Di = 1 � Ui = Per−

5 004732 004296 003497 P 4Di = 1 � Ui = NB5 003221 001215 002669

Note. Campaigns 1 and 2 are CPA (optimized selection for ad exposure), and Campaign 3 is CPM (nonoptimized selection for ad exposure).

propose a variant of the Gibbs sampling of Algorithm 1,
depicted by Algorithm 2 and detailed in Appendix E.
We calculate posterior credible intervals of the effect
estimates based on the set of Gibbs samples returned
by Algorithm 2, ä412Ns 5

X .

5.2. User Selection Optimization Results
We leverage demographic user features to optimize user
selection for ad exposure mid-flight, i.e., in the middle
of the campaign. For visiting users of CPM Campaign 3,
we know the gender, age, and income. These features
are segmented by ranges to make them finite and
countable (e.g., Male, 35–44 years old, 50,000–75,000
income). We partition the campaign data in duration
by half and train the model in Equation (14) using
Algorithm 2 for the first half. During the second half of
the campaign, we test different user selection policies
based on user response categories from Equation (10)
for each user segment Xi.

To simulate a given selection policy, we execute
Algorithm 3, which requires: (1) a selection function
Fsel4Xi5; (2) a non-zero effect indicator function Fsig4Xi5,
and (3) ATED=1

Camp sign function F ATE
sign 4Xi5. We discuss

this simulation in detail in Appendix F. Given the
posterior samples (äNburnin+12 Nburnin+Ns

X ), we estimate the
median probability of influenceable user categories
(P4Ui �Di = 11Xi5) in the ad-exposured population. We
avoid classifying the users into these categories because
this approach requires a set of fine-tuned thresholds. We
choose Fsel4Xi5 as the ratio of probabilities of desirable
over nondesirable classes as indicated in Table 12.
We define Fsig4Xi5 as the inclusion (Fsig4Xi5= true) or
noninclusion (Fsig4Xi5 = false) of the zero ATED=1

Camp �

Xi effect in the 90% credible intervals. Similarly, we
set F ATE

sign 4Xi5 as the sign of ATED=1
Camp �Xi. The intuition

behind these functions is to incorporate the degree of
uncertainty of the estimated average campaign effects
for each user segment. We fix wsig = 8w−1w±1w+9 to
be a set of certainty weights. These weights are chosen
based on whether median ATED=1

Camp �Xi is positive or
negative and whether a zero effect lies outside or inside
the credible interval. This process generates the count
set in Table 3, which we use to run Algorithm 1 to
estimate liftD=1

Ad (Equation (7)).

Table 12 shows the results of testing four selection
policies. Our benchmark is the optimization of conver-
sion probability ((d) Y = 1 vs. Y = 0, wsig = 8111119).
This selection policy is the standard industry prac-
tice given observational data. Results show that this
practice is reasonably effective compared with other
policies ((d) 11.72% versus (b) 11.93% or (a) 9.86%
average liftD=1

Camp).17 However, the highest performance
is achieved when we optimize (c) Per+ versus ¬Per+

given wsig = 8111119 (14.28% liftD=1
Camp). Note that user

selection of the current CPM campaign is exploratory;
consequently the selection effect is significantly smaller
than the one for CPA campaigns. Hence, the perfor-
mance of the standard practice (d) is likely to be inferior
to the one we report when CPA campaign data is
used to fit the prediction model. We test three weight-
ing frameworks based on the 90% credible intervals
of ATED=1

Camp � Xi. Intuition suggests that eliminating
segments with negative-only intervals and boosting
segments with positive-only intervals would dramati-
cally increase the performance. However, we find that
a modest decrease of negative-only and an increase of
positive-only segment intervals are more effective. We
find that wsig = 80081111019 shows the highest perfor-
mance of the weighting frameworks we test ((c) 14.89%
average liftD=1

Camp). Optimizing wsig represents a line for
further research.

The current analysis demonstrates the value of the
experimental design and the effect estimation to opti-
mize the user selection in Figure 1. Limitations of this
study include: the quality of the cookie-based user
features, the percentage of users with missing features
estimated to be at 75%, and the assumptions of the
selection policy simulation.

6. Conclusion and Managerial
Implications

We have shown that evaluating an online advertising
campaign involves more than evaluating just the ad.

17 Credible intervals are in the range of ±20% for all selection
functions evaluated. The short evaluation time, seven days, and
the observed budget, which is kept constant in the simulation, are
among the reasons.
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Table 12 Averaged Campaign Effect Results, liftD=1
Camp (%), for Different Selection Functions Based on Algorithm 3 Using the First Half of Campaign 3 as

Training and Testing in the Second Half

Selection function, Fsel 4Xi 5 wsig = 8111119 wsig = 80061111019 wsig = 80081111029 wsig = 80081111019

(a)
P 4Ui = Per+

� Di = 11Xi 5

P 4Ui = Per−
� Di = 11Xi 5

9086 8053 11049 14042

(b)
P 4Ui = Per+

� Di = 11Xi 5

P 4Ui = Per−
∪ AB � Di = 11Xi 5

11093 10080 12052 12063

(c)
P 4Ui = Per+

� Di = 11Xi 5

1 − P 4Ui = Per+
� Di = 11Xi 5

14028 13040 14074 14089

(d)
P 4Yi = 1 � Di = 11 Zi = S1Xi 5

P 4Yi = 0 � Di = 11 Zi = S1Xi 5
11072 — — —

Notes. Selection policies: (a) Per+ vs. Per−, (b) Per+ vs. {Per−∪ AB}, (c) Per+ vs. ¬Per+, (d) Y = 1 vs. Y = 0. Second half campaign duration, 7 days.

Marketplace interactions imply that the final decision
to display the campaign/placebo ad is not entirely
controllable (i.e., endogenous) in the randomized exper-
iment. We have discussed (§2.3) and demonstrated
this endogeneity with the evaluation of a campaign
using placebo ads in §4.4. We do not expect that an
ad tested in a controlled environment, as assumed by
the exploratory evaluation of CPM campaigns, will
yield the same performance in a real marketplace. As
demonstrated in §2.3 and supported with the results
in §4.4, the effects of being in the marketplace are
ineluctable if the ad is to be displayed. Consequently,
the right placebo is the complete absence of the cam-
paign. Given the difficulty of predicting the ad effect in
marketplaces, the most suitable approach is to assign
credit to the overall campaign for the time it is run
and rely on short-term effect predictions. Therefore,
the randomized experiment and the effect estimation
together become a measuring tool. Further research
involves determining the optimal time span of these
effect predictions.

We have illustrated how the strategic campaign
presence effect reveals other competing campaigns
effects on the focal brand sales. We have analyzed
a particular instance where the standing brand cam-
paigns are more beneficial than the new focal campaign.
These potentially significant spillover effects provide
evidence to determine the right strategic settings to
run the campaign. These settings include moderating
campaign interactions, adjusting the user reach of the
focal campaign, and defining the user selection policy.
Explicitly accounting for competitors ad exposures is a
further line of research.

By characterizing the user population selected for ad
exposure in the CPM and CPA campaigns in §4.5, we
have demonstrated that the purported external validity
of ad effects tested under CPM selection policy to
CPA selection may be invalid. In CPA campaigns, the
decision to select users for ad exposure is often driven
by the user propensity to convert. As a result, we have
found evidence that CPA campaigns incentivize the

selection of users who would buy in any case. Selecting
these noninfluenceable users does not add any value
to the advertiser. We note that ad networks obtain
revenue based on user conversions, as in the case of
Last-Touch or Multitouch Attribution. On the other
hand, purely nonoptimized CPM campaigns are less
effective than CPA campaigns in selecting users with
positive effect. The current results provide a potential
opportunity for advertisers to act on and improve the
user selection policy to improve causal estimates.

We have demonstrated the value of characterizing the
user selection for ad exposure, and the leverage of user
features to improve this selection. In a measurement-
optimization cycle, the proposed randomized design
may enable the transfer of learning from attribution
to user targeting and ex-ante optimization. However,
the dynamic campaign effects must be analyzed and
understood to achieve an effective fast in-flight cam-
paign optimization. Overall, this assessment takes us
a step closer to a commercially valuable use of the
experimental data in the user targeting and bidding
processes.

Acknowledgments
The authors thank the anonymous reviewers and the associate
editor for their constructive comments and the patience to
improve this paper. The authors also thank Jaimie Kwon,
Victor Andrei, Professor Philip B. Stark, and James G.
Shanahan for their contribution to this paper. This work is
partially funded by CONACYT UC-MEXUS [grant 194880],
CITRIS, and AOL Faculty Award.

Appendix A: Effect of the Campaign Presence in the
Marketplace Analysis
Based on the three-arm design in Figure 3(d), Zi ∈ 8Control1
Placebo1Study9= 8C1P1S9, we define �i4Zi5 as the competi-
tors’ selection for ad exposure policy. Let �01 i denote the
competitors policy if the focal campaign does not exist
4�i4C5=�01 i5. Let �11 i be the alternative policy competitors
execute with probability � as a consequence of the campaign
presence in the marketplace. If competitors are not interested
in user i with probability 1 −�, they will not compete to
select this user and �i4Zi5=�01 i3 Zi ∈ 8P1 S9. Let � represent
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the probability that competitors would win the opportunity
to advertise in the control group but lose against the focal or
placebo campaigns, and their ads have an effect on Yi. These
definitions lead to the distributions

P4�i4Zi5=�01 i �Zi5=

{

1 if Zi =C

1 −� if Zi ∈ 8P1S9
1

P4�i4Zi5=�11 i �Zi5= 1 − P4�i4Zi5=�01 i �Zi51

P8E6Yi4C5 ��i4C5=�01 i7

−E6Yi4P5 ��i4P5=�11 i7 6= 09= �0

(A1)

The parameter � ∈ 60117 is related to � ∈ 60117 through
a competitors policy change function, � = f�4�5 ∈ 60117.
Similarly, the effect ATEMarket1 i is related to � based on a
competitors effect function, ATEMarket1 i = fATE4�5 ∈ 6−1117.
Some individual cases include (proof of these cases is trivial
based on Equation (A1)):

• �= 0 ⇒ �= f�405= 0 ⇒ ATEMarket1 i = 0: average com-
petitors policy is not affected by the campaign.

• � > 0 ∧ � = f�4�5 = 0 ⇒ ATEMarket1 i = 0: competitors
advertising will not have any effect on Yi.

• �= f�4�5 > 0 ⇒ �> 0: A competitors effect greater than
zero is likely only if the focal campaign is likely to affect
their average ad delivery policy.

• �= f�4�5 > 0 ⇔ ATEMarket1 i 6= 0: An average campaign
presence effect implies a non-zero probability of competitors
effect on Yi and vice versa.

Appendix B: The Cost of the Randomized Design
We analyze the cost of the proposed design of Figure 3(c)
where no placebo ad is displayed, and Zi ∈ 8Control1Study9=

8C1S9. Let ND=1 be the number of users for whom the
opportunity to advertise is won. For the control group, there
is a potential revenue loss, proportional to the campaign
effect value on this subpopulation (Val4ATED=1

Camp1 i5), if these
users were exposed to the ad. Because no ad impression is
displayed to these users, a campaign budget surplus remains
from not displaying these ads (Cost4AdDisplay5). Thus, the
design cost (Cost4Design5) becomes

Cost4Design5 = P4Zi =C5×ND=1

×6Val4ATED=1
Camp1 i5−Cost4AdDisplay570 (B1)

Note that P4Zi =C5×ND=1 ×Cost4AdDisplay5 represents a
budget surplus for not showing the campaign ad to the
users of the control group. If this budget surplus is used to
display campaign ads to a larger population in the study

Table C.1 Prior Rate Effect on the liftD=1
Camp (%) Estimation Given a Prior Sample Size: a0 + b0 = 1, Based on Algorithm 1, Compared with the Method of

Moments of Equation (C1) (Moments)

Campaign 1 Campaign 2 Campaign 3
Prior rate
a0/4a0 + b05 Low Med High Low Med High Low Med High

0.5 2015 21015 46051 −2064 12010 31010 −19009 −9032 2079
0.01 2063 21089 47020 −2026 12099 31086 −18098 −9001 3010
0.001 2051 21053 47055 −2034 12057 31037 −19058 −9048 2051
Moments — 20055 — — 11099 — — −9059 —

Notes. Nburnin = 21000. Ns = 101000. 8Low 1Med 1High9 are the 800051005100959 quantiles.

group, we have ATED=11ã
Camp1 i as the average campaign effects

on these additional exposed users. As a result, the design
cost (Cost4Designã5) results in

Cost4Designã5 = P4Zi =C5×NExp

× Val4ATED=1
Camp1 i − ATED=11ã

Camp1 i50 (B2)

Let ATED=1
Camp1 i −ATED=11ã

Camp1 i = �. Given an optimal user selection
policy, where the users with highest potential causal impact
are most likely to be selected, then � > 0 and � � ATED=1

Camp1 i.
Therefore, the cost of experimentation is reduced to a function
of a small number: �. Note that the larger P4Zi = C5, the larger
the effect difference �.

Appendix C: The Prior Probability and a
Method of Moments: Robustness Checks
Given the Bayesian method from §3, we analyze the effect of
different Beta prior parameters and compare them with a
method of moments that is derived now. Since Di is observed
for the study group, the estimation of psel and �1S in the
study group is straightforward based on the method of
moments. Similarly, �0 is approximated using the observed
conversions of the nonselected users for ad exposure in the
study group. As the observed conversion probability of the
control group is a mixture of �0 and �1C weighted by 1 − psel
and psel, respectively, and 8�01 psel9 are shared by both arms
(approximation), the estimation of �1C becomes

p̂sel =
N 1

1S +N 0
1S

N 1
1S +N 0

1S +N 1
0S +N 0

0S

1 �̂1S =
N 1

1S

N 1
1S +N 0

1S

1

�̂0 =
N 1

0S

N 1
0S +N 0

0S

1 �̂1C =
1
p̂sel

[

N 1
80119C

N 1
80119C +N 0

80119C

− �̂041 − p̂sel5

]

0

(C1)
This approach does not account for the data sample size and
requires several approximations. Despite these limitations, we
provide a robustness check based on this estimator. Table C.1
compares this point estimator with the Bayesian method
from §3 for different prior rates: a0/4a0 + b05; assuming a prior
sample size: a0 + b0 = 1. Results show that more intuitive
prior rate choices for low conversion rates 800011000019 do
not affect results more than 0.9% in median liftD=1

Camp and its
credible interval. We use the Jeffreys prior 8a0 = 0051 b0 = 0059
because increasingly skewed prior distributions are more
likely to be numerically unstable in the Gibbs sampling. The
method of moments of Equation (C1) shows discrepancies
of less than 1% liftD=1

Camp when compared with this prior
choice.
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Figure D.1 (Color online) Estimation Power as a Function of (a) Total User Population in Millions, (b) User Selection Probability, (c) Campaign Lift on the
Users Selected for Ad Exposure (%)
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Source. Lewis et al. (2011).

Appendix D: Estimation Power Analysis
We have observed in major firms that the proportion of users
used as a control group is intuitively determined based on
the belief that large user populations are readily available.
However, in the targeted advertising framework we study in
this paper, poorly designed experiments lead to wide credible
intervals containing the zero effect. Given the parameter
values in Figure D.1, we estimate liftD=1

Camp as a function of
the total user population, the user selection probability psel,
and a set of true liftD=1

Camp values. We generate the counts in
Table 3 assuming that the point estimate from Equation (C1)
is perfect. Given these count sets, we fit the model using the
Bayesian approach from §3. Figure D.1(a) shows that even
when the user population is 40 million, the credible interval
includes zero for all of the randomized designs analyzed,
P4Zi = S5= 800951009210089100869. If we naïvely set 5% of

Algorithm 2 (Gibbs sampling algorithm based on the joint distribution of Equation (14))
1: Input: Nobs �Xi = 8N

y

dS �Xi1N
y

80119S �Xi3 d ∈ 801191 y ∈ 801199 from Table 3,Xi ∈ 8X9

2: Define Nsamp �Xi = 8N
y

dC �Xi3 d ∈ 801191 y ∈ 8011991 Xi ∈ 8X9
3: Initial guess ä0

X = 8�01�1z1�sel9
0, z ∈ 8C1S9

4: for i ← 1 to Nburnin +Ns do
5: Set P4Di = d � �sel1Xi5= 4ê4��

i 55
d41 −ê4��

i 55
1−d, ��

i =X ′
i�sel, Xi ∈ 8X9

6: Set P4Yi4Zi5= y �Dz
i = d1Zi = z1�dz1Xi5= 4ê4�

�dz
i 55y41 −ê4�

�dz
i 551−y , �dz

i =X ′
i�dz, Xi ∈ 8X9

7: Set P4DCy
i = 1 �äX1D

s1Y 1Z1Xi5=
P4Di = 1 � �sel1Xi5P4Yi4C5= y �Di = 11Zi =C1�dz1Xi5

∑

d∈80119 P4Di = d � �sel1Xi5P4Yi4C5= y �Di = d1Zi =C1�dz1Xi5
, Xi ∈ 8X9

8: Draw N
y
1C �äX1Nobs1Xi ∼ Binomial4N y

80119C �Xi1P4D
Cy
i = 1 �ä1Nobs1Xi55, y ∈ 80119, Xi ∈ 8X9

9: Set N y
0C �Xi =N

y

80119C �Xi −N
y
1C �Xi, y ∈ 80119, Xi ∈ 8X9

10: Set 8�̂1z1 è̂1z9= glmfit46N 1
1z �Xi1N

0
1z �Xi71 Xi ∈ 8X95, z ∈ 8C1S9

11: Set 8�̂01 è̂09= glmfit46N 1
0C +N 1

0S �Xi1N
0
1C +N 0

0S �Xi71 Xi ∈ 8X95

12: Set 8�̂sel1 è̂sel9= glmfit46
∑

z∈8C1S91y∈80119N
y
1z �Xi1

∑

z∈8C1S91y∈80119N
y
0z �Xi71 Xi ∈ 8X95

13: Draw �
4i5
1z �äX1−�1z

1Nsamp1Nobs1X ∼ MVN4�̂1z1 è̂1z5, z ∈ 8C1S9

14: Draw �
4i5
0 �äX1−�0

1Nsamp1 Nobs1X ∼ MVN4�̂01 è̂05

15: Draw �
4i5
sel �äX1−�sel

1 Nsamp1Nobs1X ∼ MVN4�̂sel1 è̂sel5
16: end for
17: return ä

Nburnin+12 Ns
X

the users as the control group (P4Zi = S5= 0095), a typical
industry practice, the experiment will be useless. When the
user selection probability is psel = 004, we observe that the
zero effect is discarded of the 90% credible interval when
11% (P4Zi = S5 = 0089) or higher user population is used
as the control group, which is depicted by Figure D.1(b).
Figure D.1(c) shows that true liftD=1

Camp values as low as 6% are
detected when 14% (P4Zi = S5= 0086) of users are assigned to
the control group. This analysis indicates the need to perform
a similar analysis at the time of designing the experiment.

Appendix E: Model Fitting Based on User Features
To estimate the model of Equation (14), we provide a variant
of the Gibbs sampling of Algorithm 1 depicted by Algorithm 2.
We obtain the user counts in Table 3 for all user feature
combination segments, assumed to be finite and countable
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(step 1: Nobs �Xi3 Xi ∈ 8X9; whose cardinality #8Nobs �Xi3 Xi ∈

8X99= 6 × #8X9). We sample the missing selection indicator,
DC

i �Xi3 Xi ∈ 8X9, following a similar logic to that of Algo-
rithm 1 (steps: 5–9). We fit binomial probit regression functions
based on these counts using a standard fitting function. We
calculate the maximum-likelihood estimate (MLE) of the
regression coefficients and its covariance matrix (steps 10–
12: 8�̂1 è̂9= glmfit46N 1 �Xi1N

0 �Xi73 Xi ∈ 8X95). This fitting
strategy avoids the fitting of probit regressions with mil-
lions of data points. Based on these estimates, the regression
parameters are sampled from multivariate normal distribu-
tions (steps 13–15: MVN(�̂1 è̂)) by Laplace approximation
(Geisser et al. 1990). We use ä

412Ns 5
X samples to generate cred-

ible intervals for the effect estimates conditional on user
features Xi.

Appendix F: User Selection Response Simulation

Algorithm 3 (User selection response simulator for campaign
effectiveness optimization)
1: Input: Selection function Fsel4Xi5, Non-zero Effect Indicator

function Fsig4Xi5, ATED=1
Camp Sign function F ATE

sign 4Xi5,
Sign Certainty weights wsig = 8w−1w±1w+9, User
Counts N obs

Camp as defined by Equation (15).
2: // Set segment weighting function Dsel

w 4Xi5, based on inputs:
Fsel4Xi5, Fsig4Xi5, F

ATE
sign 4Xi5, wsig

3: Define Dsel
w 4Xi5

=











w± × Fsel4Xi5 if Fsig4Xi5= false
w+ × Fsel4Xi5 if Fsig4Xi5= true and F ATE

sign 4Xi5= +

w− × Fsel4Xi5 if Fsig4Xi5= true and F ATE
sign 4Xi5= −

4: Set N new
S1agg to the output of Algorithm 4 with inputs:

Fsel4Xi5=Dsel
w 4Xi5, N obs

z =N obs
S �Xi1 Xi ∈ 8X9

// Simulate Campaign Selection, Zi = S
5: Set N new

Camp1 agg = 8
∑

Xi∈8X9N
obs
C �Xi1N

new
S1 agg9

// Aggregate User Counts
6: return N new

Camp1 agg

Algorithm 4 (User selection response simulator)
1: Input: Selection function Fsel4Xi5, User Counts

N obs
z = 8N

y
dz �Xi3 d ∈ 801191 y ∈ 801191 Xi ∈ 8X99.

2: Output: Aggregated User Counts After Selection
N new

z1agg = 8N
y1new
dz 3 d ∈ 801191 y ∈ 801199

3: Set 6�̂0z1 �̂1z7= 6glmfit46N 1
0z �Xi1N

0
0z �Xi71 Xi ∈ 8X95,

glmfit46N 1
1z �Xi1N

0
1z �Xi71 Xi ∈ 8X95]

// Probit Approximation
4: Set 6�̂0z1 �̂1z7 �Xi = 6ê4X ′

i �̂0z51ê4X ′
i �̂1z571 Xi ∈ 8X9

// Observed Conversion Propensity
5: Set NVisit

z �Xi =N 1
1z +N 0

1z +N 1
0z +N 0

0z �Xi1 Xi ∈ 8X9
// Audience per Segment Xi

6: Set N budget
1z =

∑

Xi∈8X94N
1
1z +N 0

1z5 �Xi // Observed Budget
7: Set N 11new

1z �Xi =N 01new
1z �Xi = 01 Xi ∈ 8X9 // Set Counts

8: Set N budget
remain =N

budget
1z // Initialize Remaining Budget

9: while N
budget
remain > 0 do

10: Set P4Xi5=NVisit
remain �Xi/

∑

Xi∈8X9N
Visit
remain �Xi1 Xi ∈ 8X9

11: Set �=N
budget
remain /4

∑

Xi∈8X9N
budget
remain × Fsel4Xi5× P4Xi5 �Xi5

// Budget Multiplier
12: Set 6N 11new

1z 1N 01new
1z 7 �Xi = 6N 11new

1z 1N 01new
1z 7 �Xi

+ min4�× Fsel4Xi5×N
budget
remain × P4Xi51N

Visit
remain �Xi5

× 6�̂1z11 − �̂1z7 �Xi1 Xi ∈ 8X9
// User Selection for ad exposure

13: Set NVisit
remain �Xi =NVisit

z − 4N 11new
1z +N 01new

1z 5 �Xi1
Xi ∈ 8X9 // Remaining Audience

14: Set N budget
remain =N

budget
1z − 4

∑

Xi∈8X96N
11new
1z +N 01new

1z �Xi75
// Remaining Budget

15: end while
16: Set 6N 11new

0z 1N 01new
0z 7 �Xi =NVisit

remain × 6�̂0z11 − �̂0z7 �Xi,
Xi ∈ 8X9 // Nonselected User Counts

17: Set N new
z1agg = 8

∑

Xi∈8X9N
y1new
dz �Xi3 d ∈ 801191 y ∈ 801199

// Aggregate User Counts

To simulate a given selection function, we execute Algo-
rithm 3, which aggregates the user counts of the study
group (Zi = S) given: (1) a selection function Fsel4Xi5; (2) a
non-zero effect indicator function Fsig4Xi5; (3) ATED=1

Camp sign
function F ATE

sign 4Xi5; and (4) a sign certainty weighting set
wsig = 8w−1w±1w+9. These functions are combined into a
segment weighting Dsel

w 4Xi5 (steps: 1–3). We use Dsel
w 4Xi5 as

compound selection function (step: 4). We simulate this user
selection for the users of the study group, N obs

S �Xi1Xi ∈ 8X9,
by executing Algorithm 4. We aggregate the user counts of
the control group over Xi, N obs

C �Xi, and concatenate them
to the aggregated study user counts after selection, N new

S1 agg
(step: 5).

We model the user response of the selected and nonselected
populations for a given treatment arm, (�0z �Xi1 �1z �Xi3Xi ∈

8X9), using a probit transformation as illustrated by steps
3–4 of Algorithm 4. We consider the audience-by-segment
constraint NVisit

z �Xi, and the observed ad-exposed users as a
fixed campaign budget N budget

1z (steps: 5–6). We define a budget
multiplier � to guarantee that all this budget is consumed by
the user selection, which includes the probability of user
segments P4Xi5 (steps: 10–11). The min function enforces
the visiting population segment constraints (NVisit

remain �Xi). The
while loop of steps 9–15 redistributes the remaining budget
in case NVisit

remain �Xi is exhausted for any segment. We aggregate
the user counts over Xi to generate the four counts given
Zi = z: N new

z1 agg = 8N
y1new
dz 3 d ∈ 801191 y ∈ 801199 (steps: 16–17).
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