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ABSTRACT
In this paper, we develop a time series approach, based on
Dynamic Linear Models (DLM), to estimate the impact of
ad impressions on the daily number of commercial actions
when no user tracking is possible. The proposed method
uses aggregate data, and hence it is simple to implement
without expensive infrastructure. Specifically, we model the
impact of daily number of ad impressions in daily number of
commercial actions. We incorporate persistence of campaign
effects on actions assuming a decay factor. We relax the
assumption of a linear impact of ads on actions using the log-
transformation. We also account for outliers with long-tailed
distributions fitted and estimated automatically without a
pre-defined threshold. This is applied to observational data
post-campaign and does not require an experimental set-
up. We apply the method to data from one commercial ad
network on 2,885 campaigns for 1,251 products during six
months, to calibrate and perform model selection. We set
up a randomized experiment for two campaigns where user
tracking is feasible. We find that the output of the proposed
method is consistent with the results of A/B testing with
similar confidence intervals.

Categories and Subject Descriptors
J.4 [Computer Applications]: Social and Behavioral Sci-
ences—Economics; G.3 [Mathematics of Computing]:
Probability and Statistics—Time Series Analysis
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1. INTRODUCTION
Display advertising represents a significant percentage of

the online advertising market and it is comparable to that
of sponsored search [7]. This often triggers online users
to search for information about commercial products [1].
Therefore, evaluating the effectiveness of display advertis-
ing campaigns in all possible respects is increasingly impor-
tant to allocate a given budget effectively. Recent research
on campaign evaluation has focused primarily on two ap-
proaches: running randomized experiments (A/B testing),
and bias correction based on user features for observational
data. Lewis et al. corrects over-estimation issues due to
user activity bias using A/B testing [8]. However, this ap-
proach demands the instrumentation and expensive use of
unexposed users. Chan et al. propose to correct the bias
in the user selection for ad exposure in observational stud-
ies [4]. This approach relies heavily on user features which
are often incomplete and their collection is biased toward ac-
tive users. Dekimpe and Hanssens demonstrate the presence
of long term and transient impact of campaigns on actions
[5]. They suggest the concept of persistence as the true im-
pact. Since A/B testing do not consider the time lag between
ad exposure and conversions, the persistence impact is not
properly measured. A key requirement for the methods dis-
cussed is the use of reliable tracking cookies. In practice, a
significant number of web users either reject tracking cook-
ies outright or frequently delete them. We have identified
approximately 17% of users not tracked via cookies. Thus,
developing a time series approach to incorporate persistence,
and to relate commercial actions to ad impressions shown to
users with unreliable cookies is very valuable.

We propose an approach to estimate the effects of display
marketing campaigns that differs from recent literature in
three respects. We focus on commercial actions rather than
surrogates such as search terms or clicks. We consider the
context where user tracking is not available. The proposed
method is simple to implement based on aggregated data.
We develop a time-series approach to model the impact of ad
impressions on actions. In the absence of user tracking, we
account for confounding effects by a base time series model.
We rely on the prediction power of this model to capture the
effects attributed to other factors. In prior work, we devel-
oped this base model incorporating weekly seasonality [2].
We incorporate a decay factor to model impression effects



Figure 1: Time distribution of latest impression shown to

a converting user. Dotted line shows 95% cumulative proba-

bility. x-axis is in days and y-axis is the probability mass.

on actions that automatically provides different lags. Our
approach process outliers and account for non-linear impact
of impressions using a logarithmic model.
This paper is organized as follows. In section 2, we present

the proposed model. We also define the measures to evalu-
ate campaigns. In section 3, we provide results for several
variants of the method under different assumptions. We
compare our results with A/B testing for two campaigns. In
section 4 we discuss the main findings and future work.

2. METHODOLOGY

2.1 Notation and Definitions
Let T be the total number of days we observe commercial

actions and impressions, and N the number of advertising
campaigns running during the observed time period. The in-
dices: t denotes discrete time in days, c denotes a particular
campaign, and k refers to the number of forecast look ahead

steps. Let X
(c)
t be the number of ad impressions at time t

for campaign c, and Yt be the number of actions at time t for
a given product. Y1:t represents the vector of [Y1, . . . , Yt].
We define a latent state θt to be a stochastic process de-

scribing the behavior of the series. Let Yt be normally dis-
tributed given θt, and θt be normally distributed given θt−1:

Yt = F ′
tθt + νt νt ∼ N(0, Vt)

θt = Gtθt−1 + wt wt ∼ N(0,Wt)
(1)

Gt is the evolution matrix, Ft is the observation matrix, νt is
the observational noise with variance Vt, and wt is the state
evolution with covariance matrix Wt. This is denoted as a
Dynamic Linear Model (DLM) [12]. By choosing Gt and Ft,
we can model different types of behavior of the series.

2.2 Modeling Campaigns
To model the effect of impressions on the actions, we as-

sume a persistence component as suggested in previous work
[5]. To verify this effect, we estimate the distribution of the
number of days before the last impression is delivered to a
user who performs a commercial action. Fig 1 shows this
distribution for two campaigns.

Let ξ
(c)
t be the effect of ad impressions on the number

actions at time t for campaign c. λ(c) represents the constant

rate of decay of this effect. ψ
(c)
t is the dynamic impact per

impression. For N campaigns we have:

Yt =

N∑

c=1

ξ
(c)
t + νt

ξ
(c)
t = λ

(c)
ξ
(c)
t−1 + ψ

(c)
t X

(c)
t + w

(ξ,c)
t , ψ

(c)
t = ψ

(c)
t−1 + w

(ψ,c)
t

(2)

By defining ξ
(c)
t , we automatically fit the number of previous

days with impact on Yt through λ
(c) unlike modeling a fixed

lag in autoregressive models [5]. We incorporate indepen-

dent λ(c) and ψ
(c)
t for each campaign. Then, we write this

model as a DLM, based on the definition of Eq 1, as follows:

(a) (b)

Figure 2: (a) Graphical model for multiple campaigns and

a base model, M(0:N). (b) Model for multiple campaigns with

outliers processing Mω(0:M).
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Figure 3: (a) Commercial actions and (b) number of im-

pressions through time. X-axis is time in dates.
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(3)
We define the above DLM model as M (1:N) where:

M
(1:N)

= DLM
(
F

(1:N)
, G

(1:N)
t , V

(1:N)
,W

(1:N)
t , θ

(1:N)
t , w

(1:N)
t

)

(4)
This model incorporates the effects of all N campaigns

on the number of actions. However, there is no base model
to describe the number of actions when no impression is
displayed. This is highly relevant to separate the actions
attributed to external factors. Let M (0) be a base model
and M (0:N) be the full model. Thus, we define:

F̃ ′ = [F ′(0), F ′(1:N)] G̃t = diag[G(0), G
(1:N)
t ]

w̃′
t = [w

′(0)
t , w

′(1:N)
t ] W̃t = diag[W (0),W

(1:N)
t ]

θ̃′t = [θ
′(0)
t , θ

′(1:N)
t ] M(0:N) = DLM

(
F̃ , G̃t, Ṽ , W̃t, θ̃t, w̃t

)

(5)

A key advantage of the model M (0:M) is that it allows us
to incorporate any DLM to attribute the time series of the
actions. Thus, we can include any assumption about the
dynamics of the actions and model the remaining variability
by the impressions. Fig 2(a) shows the graphical model for

the model M (0:N). We test two base models: a random
walk and a seasonal weekly model. The random walk model

[10] is defined as: M
(0)
b = DLM(1, 1, Vb,Wb, θb,t, wb,t). Fig 3

depicts a seasonal component on the number of actions that
is synchronized with the day of the week [2]. To model this
seasonality, we use the Fourier representation of DLMs [12]

and denote it as M
(0)
s .



Algorithm 1 Generative Model to Handle Outliers

Draw p|α ∼ Dir(α)
for t← 1 to T do

Draw ηt|p ∼Mult(1, p)
Draw ωt|ηt ∼ Γ(

ηt
2 ,

ηt
2 )

Set V ∗
t = ω−1

t V
end for

Algorithm 2 Gibbs Sampling Algorithm

Define D1:T =
{
Y1:T , X

(1:N)
1:T

}

Initial guess Φ0 =
{
λ(1:N),W

(1:N)
ψ

,W
(1:N)
ξ

,W (0), Ṽ
}0

,

Initial guess Ω0 = {ω1:T , η1:T , p}
0

for s← 1 to N0 +Ns do
Draw θs1:T ∼ p

(
θ1:T |Φ

s−1,Ωs−1, D1:T

)
using FFBS

Draw Φs ∼ p
(
Φ|θs1:T ,Ω

s−1, D1:T

)
using Eqs from Appx B.

Draw Ωs ∼ p (Ω|θs1:T ,Φ
sD1:T ) using Eqs from Appx C.

end for

2.3 Log-Transformation and Outlier Handling
To relax the assumption of a linear impact of ad impres-

sions on actions, we use the log transformation for both vari-
ables. We consider the following model for one campaign:

Zt = log(Yt), X∗
t = log(Xt)

Zt = θ
(0)
t + ψtX

∗
t + ν̃t Yt = exp

{
θ
(0)
t + ν̃t

}
X
ψt
t

(6)

If ψt < 1, the effect of ad impressions on actions decreases
as more of them are shown. As depicted in Fig 5, the daily
number of impressions is more dynamically changing than
the number of commercial actions. By assuming this model,
we smooth these changes of the time series of impressions.
Since this is a monotonic function f(Yt), the cumulative dis-
tribution for Yt is the same as the cumulative distribution of
the inverse transform of the Zt, cdf(Yt) = cdf(f(Yt)). Thus,
for model fitting we transform X1:T , Y1:T to the new space
X∗

1:T , Z1:T for all campaigns and model Z1:T with M (0:N).
Given that commercial action data is collected by adver-

tisers, there is no control over this process by the Ad net-
work [9]. Then, we often observe drastic changes in the daily
number of actions that can increase the estimation variance.
One approach to handle outliers is to weight the observations
based on the variance modeled for each output Yt [12]. For
this analysis, we use a simplification of the model presented
in [10]. We switch from using the Normal distribution for
Yt to using a t-distribution with a set of degrees of free-
dom to choose from. We use the Normal-Gamma mixture
to represent this t-distribution.
Fig 2(b) shows the graphical model for all campaigns with

outliers handling. Main changes are introduced at the ob-
servation level with a hierarchical model to handle individ-
ual number of degrees of freedom for each Yt. Algorithm 1
shows the generative model for the observational variance
when we process the outliers. We now have independent
variances for each observation. Given on ω1:T , we have a
DLM model M (0:M) with V ∗

t = ω−1
t V for t = 1, . . . , T . The

possible ηt values are predefined a priori.

2.4 Inferring the Model Parameters
We assume all parameters to be random variables and fol-

low a Bayesian approach. Observations are the daily number
of actions and impressions for each campaign. Algorithm 2
defines the Gibbs sampling approach to fit the model. We
sample θ1:T |Φ,Ω, D1:T based on Forward Filtering Backward
Sampling (FFBS) method explained in Appendix A. To find

Table 1: Model variants used for experimentation.
Model Process

Outliers
Aggregate
Camp

Log
Transform

Positively
Constrained

Mω X
MωAgg X X
Mω+ X X

Mω+Agg X X X
Mω log X X

Mω logAgg X X X
Mω log+ X X X
Mω log+Agg X X X X

the percentage of actions attributed to a campaign, we con-
strain the campaign effects to be positive ψt, ξt > 0 and the
base model trend [2]. We constrain these components when
they are sampled following the method from [11].

To evaluate the model fitting, we use the median and 90%
credible intervals. We also evaluate model prediction based
on one step ahead forecasting, Y k=1

t |Dt−1, estimated from
the samples we generate in FFBS at the filtering stage.

Ŷt|M
(0:N) ≈ Median(F ′θst ), Ŷt|M

(0:N)
log ≈ Median(exp(F ′θst )),

ω̂t|ωM
(0:N) ≈ Median(ωst ), Ŷ k=1

t |M(0:N) ≈ Median(Y k=1,s
t )

(7)

2.5 Campaign Evaluation
We present two campaign evaluation approaches. We in-

terpret the model and find dynamic campaign performance,
and we use the variability attributed to a campaign as a
whole. To interpret the model for campaign evaluation, we
find the proportion of actions attributed to a campaign:

Y
(c)s
t |M(0:N) = F ′θst − F

′¬cθ¬cst , π
(c)s
t = Y

(c)s
t /Yt,

Y
(c)s
t |M log(0:N) = exp(F ′θst )− exp(F ′¬cθ¬cst )

(8)

where θ¬cs are the state attribution samples from the full
model except campaign c. This measure provides the ex-
pected difference attributed to campaign c, with respect to
other ones and the confounding effects. Daily samples of the

campaign effects π
(c)s
t are estimated by this metric.

We also estimate the variability attributed to a given cam-
paign, R2(c), by fitting the model without campaign c and
finding the difference with the full model. This measures
the improvement in model fitting by campaign impressions.
We measure this variability with respect to: the data vari-
ance var(Y ), the base model M (0), and full model without

campaign c, M (0:N¬c).

R2(c|var(Yt)) =
MSE(M(0:N¬c))−MSE(M(0:N))

var(Yt)

R2(c|M (0)) =
MSE(M(0:N¬c))−MSE(M(0:N))

MSE(M(0))

R2(c|M (0:N¬c)) = 1−
MSE(M(0:N))

MSE(M(0:N¬c))

(9)

where MSE stands for mean squared error. For these mea-
sures, we do not process outliers since this process weights

the observations based on how they deviate from the others.
As the model is run multiple times to estimate these outliers
are estimated differently.

3. VALIDATION AND RESULTS
To evaluate model fitting, we measure the mean relative

squared error (MRSE). Given model M , we have:

MRSEf (M) = 1
T

∑
t ω̂t|M

(
Yt−Ŷt|M

Yt

)2
, Yt > 0

MRSEfω=1 (M) = 1
T

∑
t

(
Yt−Ŷt|M

Yt

)2 (10)

We provide two metrics as our model processes outliers. If
some outliers produce large errors for MRSEω=1, we might



Table 2: Model evaluation results averaged over products with 95% confidence intervals. Estimates scaled by 10−2.

Random Walk Base model M
(0)
b

, MRSE Weekly Seasonal Base model M(0)
s , MRSE

Model Fitted Forecast Fitted Forecast Fitted Forecast Fitted Forecast
ωt = 1 ωt = 1 ωt = 1 ωt = 1

Mω 7.91± 1.85 61.77± 7.13 14.87± 2.40 72.13± 7.58 8.26± 2.13 61.13± 7.34 12.65± 2.11 70.75± 7.67
MωAgg 9.79± 2.73 57.65± 8.75 16.63± 3.60 68.21± 9.31 8.06± 2.00 58.56± 7.05 13.40± 2.47 71.47± 7.87
Mω+ 15.78± 3.15 59.99± 8.06 21.79± 3.56 65.97± 7.89 13.69± 3.23 62.11± 7.85 16.34± 3.10 68.55± 8.11
Mω+Agg 14.86± 2.74 53.41± 6.53 21.44± 3.15 62.03± 6.55 10.32± 2.15 59.39± 7.06 14.18± 2.47 66.14± 7.33
Mω log 1.33± 0.32 13.25±2.21 5.49± 1.02 20.00± 2.57 0.72±0.14 15.51± 2.81 3.92±0.92 21.20± 3.12
Mω logAgg 1.48± 0.32 11.76±2.42 5.75± 1.03 18.52± 2.76 0.64±0.13 12.45± 2.20 4.43±1.05 19.14± 2.83
Mω log+ 1.87± 0.37 13.87± 2.77 5.70± 1.15 19.39± 3.08 1.48± 0.27 15.07± 2.44 4.22± 0.95 19.39± 2.79
Mω log+Agg 1.84± 0.42 12.70± 2.87 7.33± 1.52 21.10± 3.61 1.20± 0.22 15.31± 2.43 3.24±0.74 19.16± 2.81

(a)

(b)
Figure 4: (a) Model fitting and (b) proportion of actions

attributed to campaign in Fig 3. X-axis is time in dates.

under-estimate the model fitting. To evaluate model pre-
diction, we use one-step-ahead forecast estimates Ŷ k=1

t to
calculate MRSE, denoted as MRSEk=1.
We analyze all the transactions for 2, 885 campaigns asso-

ciated with 1, 251 products during six months, from January
1st to June 31st, 2011. We measure campaign performances
for each product independently. We use N0 = 1000 samples
for burn-in and Ns = 4000 for the posterior distribution.

3.1 Experimental Results
We show qualitative results to analyze the model perfor-

mance and the outlier handling. We test different variants,
displayed in table 1. MAgg is the model where impressions
from all campaigns are aggregated. Our goal is two fold:
1)Modeling the impact of the set of campaigns as a whole.
2)Hierarchically disaggregating campaigns to evaluate the
impact in detailed. Finally, we evaluate the fitting improve-
ment provided by campaigns using R2.
Fig 4 shows the model fitting and proportion of actions

attributed to the campaign shown in Fig 3 using Msωlog.
The seasonal base model seems to be a good choice given
the weekly periodicities in the action series. Fig 5 shows the
actions and impressions with the model fitting for a prod-
uct with outliers Yt is likely to be an outlier when ω̂t is
low. If sudden changes are observed in the daily actions,
the outlier handling weights these changes automatically.
Table 2 shows the fitting and prediction results. Perfor-
mance estimates based onMRSE instead ofMRSEω=1 are
better because they diminish the effect of the outliers on
the measure. We observe better performance when we in-
clude the log transformation consistently. We observe that
weekly seasonal base model results show significantly better
fitting than the random walk. The predictive power of both
models is equivalent. The fitting performance of the con-
strained models is lower than without this constraint. This
is expected as the imposed constraint might not be optimal
for the MRSE. Table 3 shows the campaign performance.

(a)

(b)

(c)

Figure 5: (a) Commercial actions. (b) Median weights fit-

ted for outliers. (c) Model fitting with 90% credible intervals.

X-axis is the time in dates.

Table 3: Averaged campaign evaluation results π̄(c). Distri-

bution of campaign effect significance (%).

Model % attributed Campaign Significance
(+) (-) (±)

Random Walk Base model
Mω 14.07± 1.36 23.13 0.71 76.09
MωAgg 19.07± 2.63 40.96 2.01 57.03
Mω log 21.31± 1.63 18.65 0.58 80.71
Mω logAgg 24.75± 2.40 34.44 1.31 64.25

Weekly Seasonal Base model
Mω 10.39± 1.23 19.66 1.31 78.96
MωAgg 16.10± 1.91 34.33 1.56 64.11
Mω log 19.84± 1.64 14.83 0.60 83.98
Mω logAgg 21.09± 2.28 25.24 0.36 73.18

Table 4: Attributed variability results.

RandWalk M
(0)
b

WeekSea M(0)
s

Measure Mean Std Dev Mean Std Dev

R2(c|var(Yt)) 0.1241 0.2704 0.0667 0.1750

R2(c|M(0)) 0.2804 0.3827 0.3002 0.3701

R2(c|M(0:N¬c)) 0.4967 0.4114 0.4703 0.3729

Models with best fitting results show the largest percentage
of campaigns without statistically significant effect illustrat-
ing the challenge of this signal in evaluation. Table 4 depicts
the mean and variance over all the campaigns for variability
attribution. Here, attribution with respect to the data vari-
ability is lower for the weekly seasonal model because actions
are attributed to the day of the week and to campaigns.

3.2 Comparison with A/B Testing
We compare our results with A/B testing for two indepen-

dent campaigns during 27 days. We count the users who are
first exposed and later perform an action (exposed and ac-



Table 5: A/B testing comparison with the attribution given

by Mωlog and Mωlog+ for the RandWalk model.
Method Campaign 1 Campaign 2

Low Med High Low Med High
A/B 0.009 0.199 0.458 -0.034 0.115 0.312
Mωlog 0.076 0.289 0.421 -0.049 0.347 0.809
Mωlog+ 0.133 0.272 0.623 0.094 0.180 0.519

tor) or not (exposed and non-actor). For the control group,
we select the users who are targeted first but are not se-
lected for exposure randomly. We find if the user performs
an action (actor and non-exposed) or not (non-actor and
non-exposed). We use standard Beta conjugate prior dis-
tribution to find the probability of action by sampling. We
estimate the change in action probability respect to the con-
trol group (lift). For our method, we find the mean increase
of actions attributed to the campaign respect to those at-
tributed to other components. Table 5 shows the compari-
son. Even when a controlled experiment is run, sparsity of
actions is an issue. We have one positive significant cam-
paign at the 90% confidence level and one leaning towards
positive effect for both A/B testing and Mωlog. For posi-
tively constrained contributions, we have similar estimates
but with larger confidence interval. The median estimates
for the two variants tested fall in the confidence interval of
A/B testing, except Mωlog for campaign 2. Similarly, the
median estimates for A/B testing fall in the confidence in-
tervals of the proposed method.

4. DISCUSSION AND FUTURE WORK
We have presented a time series based approach to mea-

sure the effects of online display marketing campaigns when
user tracking is not available. We have modeled the effect of
ad impressions on commercial actions through a DLM, and
provided daily effect estimates. We have incorporated per-
sistence of campaign effects, through a decay factor, and
accounted for outliers automatically without any thresh-
old. We have presented several different campaign evalu-
ation measures. These are intended to provide a spectrum
of choices at the time of evaluating a campaign. We have
found that a model in the log-scale is more effective to de-
scribe the relationship between ad impressions and commer-
cial actions. Results indicate that a seasonal base model
will give less attribution to campaigns. We observed several
campaigns where the effect is not statistically significant.
This is consistent with A/B testing results. We consider
this challenge as future work for commercial actions. Com-
bining A/B testing and the dynamic analysis of campaign
effects is a direction for improvement when user tracking is
available. Our ultimate goal is to provide daily significant
estimates of the campaign effects on commercial actions.
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APPENDIX
A. FFBS ALGORITHM

FFBS is a method to sample the hidden states θt given the
parameters in a DLM [10, 3]. Here, samples are generated back-
wards after filtering given the generated states:

1. Estimate p(θt|Φ, D1:t) = N(mt, Ct) for t = 1, . . . , T using
Kalman Filtering equations (Forward Filtering)

2. Draw θT |D1:T ∼ N(mT , CT )
3. For t = T−1, . . . , 1 draw θt|θt+1, D1:T ∼ N(ht, Ht) (Backward

Sampling)

ht = mt + CtG
′
t+1R

−1
t+1(θt+1 − at+1)

Ht = Ct − CtG
′
t+1R

−1
t+1Gt+1Ct

Rt+1 = Gt+1CtG
′
t+1 +Wt at+1 = Gt+1mt

(11)

B. SAMPLING DISTRIBUTIONS FOR Φ
IG(α, β) represents Inverse Gamma distribution with shape

α and rate β. TN(m,C, a, b) refers to the Normal distribution
truncated at [a, b]. T c0 and T c

f
represent the start and end times

of campaign c. T c=T c
f
−T c0 +1. [αv0, α

(0)
w0 , (αξ0, αψ0)

(1:N)]=0.5;

[βv0, β
(0)
w0 , (βξ0, βψ0)

(1:N)]=10−6.

Ṽ ∼ IG(αv, βv), αv = αv0 + T−1
2 ,

SSy =
∑T
t=1 ωt(Yt − F̃

′θt)
2, βv = βv0 + 1

2SSy
(12)

W (0) ∼ IG(α0
w, β

0
w), α0

w = α0
w0 + T−2

2 ,

β0
w = β0

v0 + 1
2

∑T−1
t=1 (θ

(0)
t+1 −G

(0)θ
(0)
t )2

(13)

W
(c)
ξ
∼ IG(α

(c)
ξ
, β

(c)
ξ

), α
(c)
ξ

= α
(c)
ξ0 + Tc−2

2 ,

ξ̂
(c)
t+1=λ

(c)ξ
(c)
t +ψ

(c)
t+1X

(c)
t+1, β

(c)
ξ

= β
(c)
ξ0 + 1

2

∑Tc
f
−1

t=Tc0
(ξ

(c)
t+1 − ξ̂

(c)
t+1)

2

(14)

W
(c)
ψ
∼ IG(α

(c)
ψ
, β

(c)
ψ

), α
(c)
ψ

= α
(c)
ψ0 + Tc−2

2 ,

β
(c)
ψ

= β
(c)
ψ0 + 1

2

∑Tc
f
−1

t=Tc0
(ψ

(c)
t+1 − ψ

(c)
t )2

(15)

λ(c) ∼ TN
(
m(c), C(c), 0, 0.88

)

m(c) =

∑Tcf−1

t=Tc0
(ξ

(c)
t+1

−ψ
(c)
t+1

X
(c)
t+1

)ξ
(c)
t

∑Tcf−1

t=Tc0
(ξ

(c)
t

)2+1

, C(c) =
W

(c)
ξ

∑Tcf−1

t=Tc0
(ξ

(c)
t

)2+1

(16)

λ ∈ {0, 0.88} is equal to {0, 5.44} days for 50% effect decay.

C. SAMPLING DISTRIBUTIONS FOR Ω
We sample Ω|θ1:T ,Φ, D1:T using Algorithm 1. Γ(α, β) is the

Gamma distribution with shape α and rate β. We use a Dirichlet
prior, α=1, for p.

ωt ∼ Γ(αω, βω), αω =
ηt+1

2 , βω = 1
2 Ṽ

−1(Yt − F̃
′θt)

2 (17)

ηt ∼ p(ηt = i), p(ηt = i) ∝ Γ(ωt|
i
2 ,

i
2 )pi (18)

p ∼ Dir(α+Ny), Ny = [Ny1, . . . , NyL]
′, Nyi =

∑T
t=1(ηt = i)

(19)

We set ηt to be {1, 2, . . . , 10, 20, . . . , 50} with cardinality, L. We
sample ηt from Eq 18 using inverse transform sampling [6].


