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Introduction Methodology Results
• Online display advertising is an area of rapid growth and 

consequently of great interest as a marketing channel. 
• Eventually, many of these users perform either online 

conversions at the advertiser's website or offline conversions at 
a physical store.

• Our goal is to measure the effectiveness of display advertising 
when users are exposed to multiple advertising channels.

• This is particularly important for the Cost-Per-Action CPA
business model when deciding how to allocate resources 
across advertising channels.

Online Display
Ad shown to 

a user

User is exposed to 
multiple advertising 

channels in time

Eventually, the user 
performs commercial 

actions

Estimates from the advertising.com ad 
networks show around 15% of users with 

unreliable cookies.
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• A key difference in CPA is that commercial actions
are collected by advertisers.

• In CPA, it could be several days before a commercial 
action is performed after showing an impression 
1. Restructuring of the website
2. Merging of products to a single ID
3. Disaggregation of products to create a new ID

Related Work
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• We develop an interpretative method, based on Dynamic Linear 
Models (DLM)[3], to estimate the impact of ad impressions on 
actions without cookies.

• Our method is scalable for millions of users and thousands of 
campaigns using aggregate data.

Discussion and Current Work

References

Advertisers Impressions Actions
users

• Time series model accounts for multi-channel effect and
confounders

• Decay Rate Accounts For user persistence
• Multi-campaign model. If multiple channels are observed, each

channel is represented by a campaign
• Dynamic effect of impressions on commercial actions

Model Fitting
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• This model can be written as a DLM as follows:

• We follow a Gibbs sampling approach detailed in Algorithm 2.
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• We observed several campaigns with non-significant average effect 
on actions, which is consistent with A/B testing results.

• When experimentation is possible and we can track users, can we
combine A/B testing with time series? 

• A/B testing as described in [2] is expensive. Can this 
experimentation be less costly?

• Achieving statistical significance for campaign lifts is non-trivial for 
commercial actions. Can we aggregate prior information to improve 
these estimations

TT D :1:1 ,,|  ‒ We sample the latent state based on Forward
Filtering Backward Sampling FFBS [3].

TT D :1:1 ,,|   ‒ To sample the variances, we assume standard
Inverse Gamma conjugate priors, and truncated 
Normals for the decay rate λ

TT D :1:1 ,,|   ‒ We sample the outlier processing variables based
on Algorithm 1. 

• We test two base models:
1. Random Walk (simplest dynamic model)
2. Weekly Seasonal model [4]

• We test the model with the number of actions and
impressions, (Mω) and using the log-transformation to 
relax the linear relationship between actions and
impressions (Mωlog).

• We analyze 2,885 campaigns associated with 1,251 products 
during 6 months.

• We test our method with the PROMO dataset to compare with a 
ground truth [4].

• We use products with less than 6 relevant campaigns for 365 days. 
• We detect 84.6% of effective campaigns correctly, and 73.2% of the 

days a campaign is effective per product.

Figure 1: From top to bottom: model fitting results, daily number of impressions,
proportion of actions attributed to impressions. X-axis is time in dates.

Table 1: Model evaluation results, scaled by 0.01, averaged over products. 95% 
confidence intervals are shown. Mean relative squared error, MRSE

Table 2: Averaged campaign evaluation results. Distribution of campaign effect 
significance (%).

Comparison with A/B Testing

• Higher performance is reported when the log transformation is included 
suggesting a non-linear relationship between actions and impressions.

• This model reports the highest campaign percentage with non-
significant effect

Table 3: A/B testing results compared to the attribution given by Mωlog for the 
Random Walk base model.

• Confidence intervals for A/B testing are not tight due to the sparsity 
of actions. Both methods report one positive significant campaign at 
90% confidence level and one leaning towards positive effect.

Comparison with Ground Truth

• For reliable cookies, running experiments (A/B testing) has been 
proposed recently in [2].
–This is expensive as public service announcements (PSA) should
be displayed to a percentage of audience.
–There is an advertising opportunity cost in addition to PSAs 
impression cost
–This requires significant human intervention to track and randomize
properly the control group of users

• On the other hand, correcting observational data have been 
proposed to evaluate campaigns in [1].
–This method relies heavily on fully observed features
–With high percentage of users deleting and creating tracking
cookies, user features collection becomes challenging.

• In general, these methods rely heavily on cookies, and time is not 
addressed properly as a confounder.

• In contrast, we model the impact of ad impressions on actions to 
provide daily estimates without cookies or user features.

• We account for time and seasonal confounders for attribution
• This is easily scalable to thousands of campaigns
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