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Introduction and Motivation
User Clicks and Causality:
Why We Care about Them
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Online Display Advertising Framework

Decisi S - -an - . User conversions
ecision Targetl ng IYeS Campaign occur at the
' & Ad Shown Advertiser’s website

.Chance:Englne

- In performance-based online advertising (CPA campaigns), visiting
users are targeted based on how likely they are to convert.

- Targeted and non-targeted users convert in the advertiser’'s website
potentially (observed by tracking cookies)

- Converting users regardless of the ad exposure have motivated the
causal analysis of campaign effect
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Introduction and Motivation

- Are user clicks to online ads informative of campaign success?
- Advertiser: “All | care about are user conversions”

- Is it a good idea to target users based on user clicks?
- Issues: low click-through-rates, noisy clicks
- Benefits: conversion rates are even lower

- Dalessandro et al. 2012: “Evaluate” click-based user targeting
using prediction metrics (e.g. Area Under the Curve AUC)

- Conclusion: User targeting based on clicks is statistically
Indistinguishable from random guessing

- Consequence: User clicks are often ignored in the user targeting unless
they appear to be “effective” to Machine Learning techniques (conversion
prediction)
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Our Proposal

- Use randomized experiments to measure the ad exposure
effect on the user conversion probability of the clickers

- Running randomized experiments (a.k.a A/B testing) is becoming the
standard practice to measure the causal ad attribution effectively

- Is it possible to do design a clean focused randomized
experiment?
- Unfortunately NO!!
- Reason: We need to show the ad to know the population of interest

- We use the standard Ad evaluation practice and find the Local
Average Treatment Effect on the clicker conversion probability

- Even though we design an experiment, we need causal modeling to find
this effect

- Reason: We do not observe the user clicks in the control group
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Randomized Design
Use A/B Testing: what’s the big deal?
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ldeal Experimental Design
QJAdvertiser’ s
- We can not design a
parallel placebo campaign
for the control group

Study < Ad Shown
Shown
Ad Shown
BY THE TIME WE KNOW THE POPULATION OF

Other
Rand icking User?
Decision .Chance < End
INTEREST, WE HAVE SHOWN THE AD ALREADY!!!
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Experimental Design: Ad Evaluatlon
Study < Ad Shown
Shown

Ad Shown

Decision .Chance < End

- Targeted user sub-population
IS possible to replicate (under
certain conditions)

WE FIND THE LOCAL AD EFFECT ON THE SUB-
POPULATION OF CLICKERS
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Experimental Design Data

Y < |2-1, 5=1, Y=1
Yes Converting
Targeted 2 = 12=1, S=1, Y=0
Population .
_. e
Study _ = No Y &l Z=1, 5=0, Y=1
Converting | INo
Jz-1, 570, v=0
Converting

Control
User?

Decision .Chance < Enc

- Nobody click on the ad in the
control group by definition.

FIND THE AD EFFECT CONDITIONAL ON THE
CLICKER POST-TREATMENT VARIABLE
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Effect Estimation
Walt a minute: you ran an experiment,
why you need to infer causality?
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Effect Estimation
Because the effect Is conditional on a
post-treatment (non-ignorable) variable

- Pre-treatment variable: Observed before the
treatment assignment is made (e.g. demographics)

- Post-treatment variable: Observed after the
treatment assignment is made (e.g. behavioral
features, and user clicks)
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Causal Estimation: Potential Outcomes

- We use the Principal Stratification framework,
developed in Potential Outcomes Causal Model, to
model the user selection as a post-treatment
variable.

* In Potential Outcomes, everything framed in terms of:
Units, Treatments, and Potential Outcomes.

- In Principal Stratification, the effect estimation is
conditioned on user classes characterized by the
value of the post-treatment variable under both
treatment groups, control and study.
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The Estimation Model: Mechanics

- Z; € {0,1}: Treatment assignment {control,study}
- S; € {0,1}: Non-clicking/clicking ad user
- Y: € {0,1}: Non-converting/converting user

=)} = 1) G}

- {0 if S§'=(0,0)
o Lif s =(01)

»C; = 1 defines the principal stratum of users who click on the
ad when assigned to the study group (clicker-if-assigned)

Define

»C; = 0 defines the principal stratum of users who never click
on the ad regardless of the treatment group (never-clicker)
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What we do and do not Know

We know all
necessary data of
the study group

User Potential Outcomes Treatment Principal
Counts Control Study Assignment Stratum

NZ S;(0)  Y5(0) | S:(1) Yi(1) Zi (5:(0),5:(1) | &
N{o.130 0 0 * * 0 (0,*) *
N{o.130 0 1 * * 0

N, 0 * 0 0 1

N3 0 * 0 1 1

NY, 0 * 1 0 1

N}, 0 * 1 1 1
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What we do and do not Know

User Potential Outcomes Treatment Principal
Counts Control Study Assignment Stratum
NZ S;(0)  Y5(0) | S:(1) Yi(1) Zi
N{o.130 0 0 * * 0
N{o.130 0 1 * * 0
N, 0 * 0 0 1
N3 0 * 0 1 1
NY, 0 * 1 0 1
N}, 0 * 1 1 1

We need to infer the
principal stratum of
the control group



5/2/2015 Barajas et al, SIAM Data Mining 2015, All Rights Reserved

The Inference Problem

By randomization, the probabillity of clicker-if-
! assigned (the principal stratum) is the same for

both treatment groups

P(Y,Z,D,0) = P(®
X ‘@ (ZI)P(Yllcl — C,Zi — Z, QCZ)
Vi
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The Inference Problem

By randomization, the probabillity of clicker-if-
! assigned (the principal stratum) is the same for

both treatment groups

' - The user conversion probability for both
e principal strata in the control group is not
identifiable

P(Y,Z,D,0) = P(0)
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The Inference Problem

By randomization, the probabillity of clicker-if-
! assigned (the principal stratum) is the same for

both treatment groups

' - The user conversion probability for both
e principal strata in the control group is not
identifiable

We assume POSITIVE campaign effect

P(Y,Z,D,0) = P(&@}0,6,,)(G00)I[0,6,,)(B10)

‘Lvi“
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The Inference Problem
By randomization, the probabillity of clicker-if-

X

0.4 = 0.0 Vc € {0,1}

assigned (the principal stratum) is the same for

P(Y,Z,D,0) = P(@/0,6,,)(000)[0,6,,)(010)

F 9 -
Vi
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The Inference Problem

X

By randomization, the probability of clicker-if-

~rTE {01}

D for

P(Y,Z,D,0) = P(@/0,6,,)(000)[0,6,,)(010)

F 9 -
Vi
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Causal Effect Metrics

» Causal average ad effect
on conversion rate

* Observational and post-
treatment biased effects

« ATE2[S, is similar to a
prediction “evaluation”

* Attributed converting
users respect to the
observed study
conversions

LATE .= EY;|C; = 1,2, = 1,044]
—E[Yi|Ci=1,2Z; =0,010] = 811 — o

LATE JoC lick — E[ﬂlct — 'D.,E.!-_ — 1'.'?1]]]
—E[Y;|C; =0,Z; =0, 8p0] = o1 — oo

ATEg = E[Y:|Si(1) = 1,Z: = 1]

—E[Y;|5:(1) =0,Z; = 1]

ATEZ, = EIYIS.() = 1.2 = 1

ATREBciick = LATEciick

= [f\rﬂ + f"l'T111},.'{ U""'TIE}I + P""Tlll}

ATRBy sotiek = LATDE;"-.’GE'H.IEI: 1 1
x (Nopy + Noi ) / (Ngy + Niy)




5/2/2015 Barajas et al, SIAM Data Mining 2015, All Rights Reserved

Causal Effect Metrics

 Causal average ad effect
on conversion rate

LATEcji=EY;|C; = 1,2, = 1,044]
—E[Yi|Ci=1,2Z; =0,010] = 811 — o

LATENoclick = E[YF: =0, E —1'5'*]1]

Confidence mtervals are

b trivial to obtain from the

arfic sl posterior distribution
Gibbs samples

* Attributed converting
users respect to the ATEBy octick = LATE nociick

a0 Al arl arl
observed study < (Ngi + Nag) / (Nog + N1y
conversions
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Results
OK, OK, ..., but show me the money
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Results: Validation

(2]

-A-True LATE lic

N
T

Inferred LATECIK:k
FS »
I_-lllﬂ*l —
(B [ s
B [ ——i -
= — -
= —
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0.6 1.0 1.4 1.8 2.2 2.6 3.0 3.4
Conversion Rate given Clicker and Study (811) in 1x1073

- Given the model parameters

- We generate 100 count sets
- We fit our model: 3000 samples

- Concatenate the posterior
samples or each run

6% 0.10% 0.14% 0.18% 022% 0.26% 0.30% 034/oSett|ngS

- Population: 23 Million Users
- P(Z=1)=0.5

- P(Y=1|C=1,Z=1)=1e-3

- P(Y=1|C=1,Z=1)=9.82e-5

- Lift LATE click = 14%

- Lift LATE_NoClick = 14%

- Clicker Rate = 0.068%

BOTTOM LINE: WE RECOVER THE TRUE EFFECT
ON THE CLICKER CONVERSION RATE
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Large-Scale Randomized Experiment Data

Treatment Principal User

Assignment Stratum Counts
Z; (5,001, 8(1)) | €; | Nv Campaign 1 | Campaign 2
0 (0,%) | N 3,621,400 11,431,495
0 (0,%) * | Moy 314 061
1 (0,0) 0 | N 3,535,571 11,328,649
1 (0,0) 0 | N 347 1,014
1 (0,1) 1 || NY 2,414 9,799
1 (0,1) 1 || N 2 8

* Pre-processing:
- Use tracking cookies (users)
- Randomize users based on the timestamp the cookie was born
« Focus on the user cookies born before the campaign started
- CPM (non-optimized) campaigns for the same advertiser
- Use a placebo campaign to target users in the control group
- Objective: perform an exploratory campaign effectiveness analysis

Total Population:| 7.16 Million | 22.7 Million
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Large-Scale Randomized Experiment Data

Treatment Principal User
Assignment Stratum Counts
Z (S:(0), S:(1)) | C: || N2
0 (0.%) ’ NE]M 10
r1

Clicker conversion rate in

the study group is almost
10 times higher!!

1 (0,1) 1 || N
* Pre-processing: ‘Total Population:
- Use tracking cookies (users)

- Randomize users based on the timestamp the cookie was born

« Focus on the user cookies born before the campaign started

- CPM (non-optimized) campaigns for the same advertiser

- Use a placebo campaign to target users in the control group

- Objective: perform an exploratory campaign effectiveness analysis
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Analysis of Results

Campaign 1 Campaign 2

Measure Low Med High Low Med High
Clicker Rate, m (%) 0.0851 oty
i'LTEEﬂj‘_Ck (naive) || (le-d) 2.54
laft i‘:.TEuh.;‘ (%) 282
ATEES, (biased) || (Te-d) 2.54
laft i'LTEEﬁd (%) 306
ATEcamp (le-5) -0.33
hft ATEcamg (%o)
ATRBoymp (%)
LATE yociick (le-5)
hft LATEN oClick (%) . ! .
ATRByNocick (%) 3.48 11.?’8 QD.EQ {E"E.] [I' EEI'E‘ E]:-ia 13 ha
LATEtich (le-4) [ 0.35 4.61 13.72 || (1le-4) | 0.43 4.65 11.04
hft LATE~;. (%) 7.28 150,77 | 874.20 || (%) 7.21 145.85 | 813.12
ATRB ik (%) 0.02 0.32 0.95 (%) 0.04 0.45 1.06
C2C ATRB (%) - 0.57 - (%) - 0.78 -

SEVERE OVER-ESTIMATION: UPPER BOUND

LARGER THAN 1,400%
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Analysis of Results

Eampalgn 1 Eﬂmpﬂlgn 2

High
0.0830

Measure

E'hcker Rate, w

Very Iarge confidence intervals due to Jx
low clicker rates and non-optimized
CPI\/I campalgns 0.0683%, 0.0865%

lift ATE o
ﬂlLTF:Bﬂ fmp "1 3.50e-5 vs 2.00e-5 =
75% Increase

LATE yoclick

lift LATExoch . (%) 6.07 |
ATRByoClick o7 1178 | 20.22 || L% wola | 6.45 | 13.53
LATEciick « 161 | 13.72 fm 165 | 11.04
lift LATE ;.1 ks | 150.77 | 874.20 || (% : 145.85 | 813.12
ATRBcrick (%) 0.02 | 0.32 | 095 | (%) 0.04 | 0.45 | 1.06
C2C ATRB (%) i 0.57 i (%) - 0.78 i

EVEN IN A PESSIMISTIC ANALYSIS THE CLICKERS
ARE MORE VALUABLE THAN THE NON-CLICKERS
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Analysis of Results

Campaign 1

Campaign 2

Measure

Small number of attributed converting users are clickers.
Reason: more than 900 times larger non-clicker volume!!

High

AlEES  (hasedl (e d) | 0] Sl I S 5 N G ol T 0O
! Non-clickers: 0.32% vs Non-clickers: 0.45% vs | 1400
|__Campaign: 12.17% __Campaign: 6.62% __| >
ATRB (%) | 374 ( 2020 || (%) | 0.37 13.87
LATE yociio: (Te5) | 031 | =t [ 2.00 || (1c0) =2 [ 12.20
lift LATEnoonee || (%) | 3.81 Lesdmal] 2421 || (%) 25.13
ATRBNociick (%) | 348 2092 | (%) 13.53
LATE i (Ted) | 0.35 |07 | 13.72 || (led) 1104
ift LATEc || (%) | 7.28 874.20 || (%) 813.12
ATRBoicx %) | 002 095 || (%) 1.06
C3C ATRB (%) : %) :
EVEN THOUGH THE AD EFFECT IS HIGHER FOR

CLICKERS, FEW CLICKERS ARE OBSERVED!!
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Analysis of Results

Campaign 1

Campaign 2

Measure

A click-to-conversion attribution (C2C), where a user
conversion iIs attributed to the last user click, tends to
under-estimate the true campaign value.

o =
C2C: 0.57% vs 1| 1346
C ol 11.78

ampaign: 12.17%

1.99

{lﬂ}

-0.33

(Te5) | 037 | 120 .
lift ATEcamp (%) | 406 || 2402 | (%) | -0.38 Lemdag| 1543
ATRB 1y @) | 37 C12.17) 2020 | (%) | 037 13.87

C2C: 0.78% vs

Campaign: 6.62%

T T T35 4.61 . y T
iftt LATE ;. (%) 7.25 . 874.20 || (%) 7.21 ;
ATRBeiick (%) 0.02 .95 (%) 0.04 0.45
C2C ATRE (%) - - (%) - 0.7T8

MOST OF THE USERS WHO ARE AFFECTED BY
THE CAMPAIGN DO NOT CLICK ON THE AD!!
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Conclusion
Fine, this Is too much detail... give me
your recommendation
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Business Implications

- Optimizing user clicks optimizes the causally
generated conversions.
- Positive correlation of clicks with incremental conversions

- Clicks must be a component of a combined user
targeting policy, but not the only objective
- Many positive affected users do not click on the ad

- C2C business model under-estimates the causal
attribution, contradicting the general industry belief
that C2C over-estimates the value
- C2C does not consider the ad effects on the non-clickers
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Conclusion
- We proposed a method to find the causal ad effect on

the clicker conversions based on randomized
experiments

- The average campaign effect must not be negative.

- We found evidence suggesting a higher ad effect on
the user conversion probability of the clickers

- A pessimistic analysis supports this hypothesis

- Our method and analysis open a path for more studies
of the user clicks

- Why many users affected by the ad do NOT click on the ad is
an open research problem
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Joel Barajas’, Ram Akella, Marius Holtan, Aaron Flores

|barajas AT soe.ucsc DOT edu
https://users.soe.ucsc.edu/~jbarajas/

Thank you!!
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