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Introduction and Motivation 

User Clicks and Causality:  

Why We Care about Them 
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Online Display Advertising Framework 
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• In performance-based online advertising (CPA campaigns), visiting 

users are targeted based on how likely they are to convert. 

 

• Targeted and non-targeted users convert in the advertiser’s website 

potentially (observed by tracking cookies) 

 

• Converting users regardless of the ad exposure have motivated the 

causal analysis of campaign effect 
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Introduction and Motivation 

• Are user clicks to online ads informative of campaign success? 

• Advertiser: “All I care about are user conversions” 

 

• Is it a good idea to target users based on user clicks? 

• Issues: low click-through-rates, noisy clicks 

• Benefits: conversion rates are even lower 

 

• Dalessandro et al. 2012: “Evaluate” click-based user targeting 

using prediction metrics (e.g. Area Under the Curve AUC) 

• Conclusion: User targeting based on clicks is statistically 

indistinguishable from random guessing 

• Consequence: User clicks are often ignored in the user targeting unless 

they appear to be “effective” to Machine Learning techniques (conversion 

prediction) 
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Our Proposal 
• Use randomized experiments to measure the ad exposure 

effect on the user conversion probability of the clickers 

• Running randomized experiments (a.k.a A/B testing) is becoming the 

standard practice to measure the causal ad attribution effectively 

 

• Is it possible to do design a clean focused randomized 

experiment? 

• Unfortunately NO!!  

• Reason: We need to show the ad to know the population of interest 

 

• We use the standard Ad evaluation practice and find the Local 

Average Treatment Effect on the clicker conversion probability 

• Even though we design an experiment, we need causal modeling to find 

this effect 

• Reason: We do not observe the user clicks in the control group 

 

5 5/2/2015 Barajas et al, SIAM Data Mining 2015, All Rights Reserved 5 



6 

Randomized Design 

Use A/B Testing: what’s the big deal? 
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Ideal Experimental Design 

BY THE TIME WE KNOW THE POPULATION OF 

INTEREST, WE HAVE SHOWN THE AD ALREADY!! 
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• We can not design a 

parallel placebo campaign 

for the control group 
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Experimental Design: Ad Evaluation  

WE FIND THE LOCAL AD EFFECT ON THE SUB-

POPULATION OF CLICKERS 
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• Targeted user sub-population 

is possible to replicate (under 

certain conditions) 
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Experimental Design Data  

FIND THE AD EFFECT CONDITIONAL ON THE 

CLICKER POST-TREATMENT VARIABLE 
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• Nobody click on the ad in the 

control group by definition. 
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Effect Estimation 

Wait a minute: you ran an experiment, 

why you need to infer causality? 
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Effect Estimation 

Because the effect is conditional on a 

post-treatment (non-ignorable) variable 
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• Pre-treatment variable: Observed before the 

treatment assignment is made (e.g. demographics) 

• Post-treatment variable: Observed after the 

treatment assignment is made (e.g. behavioral 

features, and user clicks) 

 

 



Causal Estimation: Potential Outcomes 

• We use the Principal Stratification framework, 
developed in Potential Outcomes Causal Model, to 
model the user selection as a post-treatment 
variable.  

 

• In Potential Outcomes, everything framed in terms of: 
Units, Treatments, and Potential Outcomes. 

 

• In Principal Stratification, the effect estimation is 
conditioned on user classes characterized by the 
value of the post-treatment variable under both 
treatment groups, control and study. 

5/2/2015 Barajas et al, SIAM Data Mining 2015, All Rights Reserved 12 



The Estimation Model: Mechanics 
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• 𝑍𝑖 ∈ 0,1 : Treatment assignment {control,study} 

• 𝑆𝑖 ∈ 0,1 : Non-clicking/clicking ad user 

• 𝑌𝑖 ∈ 0,1 : Non-converting/converting user 

 

 

Define 

 

 

𝐶𝑖 = 1 defines the principal stratum of users who click on the 

ad when assigned to the study group (clicker-if-assigned) 

 

𝐶𝑖 = 0 defines the principal stratum of users who never click 

on the ad regardless of the treatment group (never-clicker) 



What we do and do not Know 
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We know all 

necessary data of 

the study group 



What we do and do not Know 
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We need to infer the 

principal stratum of 

the control group 



The Inference Problem 
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• By randomization, the probability of clicker-if-

assigned (the principal stratum) is the same for 

both treatment groups 

 



The Inference Problem 
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• By randomization, the probability of clicker-if-

assigned (the principal stratum) is the same for 

both treatment groups 

 

• The user conversion probability for both 

principal strata in the control group is not 

identifiable 

 



The Inference Problem 
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• By randomization, the probability of clicker-if-

assigned (the principal stratum) is the same for 

both treatment groups 

 

• The user conversion probability for both 

principal strata in the control group is not 

identifiable 

 

• We assume POSITIVE campaign effect 
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• By randomization, the probability of clicker-if-

assigned (the principal stratum) is the same for 

both treatment groups 

 

• The user conversion probability for both 
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The Inference Problem 
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• By randomization, the probability of clicker-if-

assigned (the principal stratum) is the same for 

both treatment groups 

 

• The user conversion probability for both 

principal strata in the control group is not 

identifiable 

 

• We assume POSITIVE campaign effect 



Causal Effect Metrics 

•
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Causal Effect Metrics 
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Confidence intervals are 
trivial to obtain from the 

posterior distribution 
Gibbs samples 
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Results 

OK, OK, …, but show me the money 
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Results: Validation 
• Given the model parameters 

• We generate 100 count sets 

• We fit our model: 3000 samples 

• Concatenate the posterior 

samples or each run 

• Settings: 

• Population: 23 Million Users 

• P(Z=1)=0.5 

• P(Y=1|C=1,Z=1)=1e-3 

• P(Y=1|C=1,Z=1)=9.82e-5 

• Lift LATE_click = 14% 

• Lift LATE_NoClick = 14% 

• Clicker Rate = 0.068% 
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BOTTOM LINE: WE RECOVER THE TRUE EFFECT 

ON THE CLICKER CONVERSION RATE 



Large-Scale Randomized Experiment Data 

• Pre-processing: 
• Use tracking cookies (users) 

• Randomize users based on the timestamp the cookie was born 

• Focus on the user cookies born before the campaign started 

• CPM (non-optimized) campaigns for the same advertiser  

• Use a placebo campaign to target users in the control group 

• Objective: perform an exploratory campaign effectiveness analysis 
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Total Population:| 7.16 Million | 22.7 Million 



Total Population:| 7.16 Million | 22.7 Million 

Large-Scale Randomized Experiment Data 

• Pre-processing: 
• Use tracking cookies (users) 

• Randomize users based on the timestamp the cookie was born 

• Focus on the user cookies born before the campaign started 

• CPM (non-optimized) campaigns for the same advertiser  

• Use a placebo campaign to target users in the control group 

• Objective: perform an exploratory campaign effectiveness analysis 
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Clicker conversion rate in 

the study group is almost 

10 times higher!! 

8.27e-4 vs  

9.81e-5 

8.16e-4 vs  

8.95e-5 



Analysis of Results 
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Biased effects similar to the 

prediction based “effectiveness” 

SEVERE OVER-ESTIMATION: UPPER BOUND 

LARGER THAN 1,400% 



Analysis of Results 
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Very large confidence intervals due to 

low clicker rates and non-optimized 

CPM campaigns: 0.0683%, 0.0865% 

EVEN IN A PESSIMISTIC ANALYSIS THE CLICKERS 

ARE MORE VALUABLE THAN THE NON-CLICKERS 

3.50e-5 vs 2.00e-5 = 

75% increase 

4.30e-5 vs 1.22e-5 = 

252% increase 



Analysis of Results 
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Small number of attributed converting users are clickers. 

Reason: more than 900 times larger non-clicker volume!! 

EVEN THOUGH THE AD EFFECT IS HIGHER FOR 

CLICKERS, FEW CLICKERS ARE OBSERVED!! 

Non-clickers: 0.32% vs 

Campaign: 12.17%  

Non-clickers: 0.45% vs 

Campaign: 6.62%  



Analysis of Results 
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A click-to-conversion attribution (C2C), where a user 

conversion is attributed to the last user click, tends to 

under-estimate the true campaign value. 

MOST OF THE USERS WHO ARE AFFECTED BY 

THE CAMPAIGN DO NOT CLICK ON THE AD!! 

C2C: 0.57% vs 

Campaign: 12.17%  

C2C: 0.78% vs 

Campaign: 6.62%  
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Conclusion 

Fine, this is too much detail… give me 

your recommendation 
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Business Implications 
• Optimizing user clicks optimizes the causally 

generated conversions. 

• Positive correlation of clicks with incremental conversions 

 

• Clicks must be a component of a combined user 

targeting policy, but not the only objective 

• Many positive affected users do not click on the ad 

 

• C2C business model under-estimates the causal 

attribution, contradicting the general industry belief 

that C2C over-estimates the value 

• C2C does not consider the ad effects on the non-clickers 
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Conclusion 
• We proposed a method to find the causal ad effect on 

the clicker conversions based on randomized 

experiments 

• The average campaign effect must not be negative. 

 

• We found evidence suggesting a higher ad effect on 

the user conversion probability of the clickers 

• A pessimistic analysis supports this hypothesis 

 

• Our method and analysis open a path for more studies 

of the user clicks 

• Why many users affected by the ad do NOT click on the ad is 

an open research problem 
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Thank you!! 
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