

The Design, Modeling, and Implementation of Group Scheduling for Isolation of
Computations from Adversarial Interference

Terry Tidwell•, Noah Watkins◦, Venkita Subramonian•, Douglas Niehaus◦∗, Christopher Gill•†, Armando Migliaccio‡

◦Department of Electrical Engineering and Computer Science, University of Kansas, Lawrence, KS, USA
•Department of Computer Science and Engineering, Washington University, St. Louis, MO, USA
‡Dipartimento di Informatica e Sistemistica, Universita degli Studi di Napoli Federico II, Italy

Abstract

To isolate computations from denial of service (DoS) at-
tacks and other forms of adversarial interference, it is nec-
essary to constrain the effects of interactions among com-
putations. This paper makes four contributions to research
on isolation of computations from adversarial interference:
(1) it describes the design and implementation of a kernel-
level scheduling policy to control the effects of adversar-
ial attacks on computations’ execution; (2) it presents for-
mal models of the system components that are involved
in a representative DoS attack scenario; (3) it shows how
model checking can be used to analyze that example sce-
nario, under default Linux scheduling semantics and under
our scheduling policy design; and (4) it presents empirical
studies we have conducted to validate our scheduling pol-
icy implementation. Our results show that, with careful de-
sign, scheduling and detailed monitoring of computations’
behavior can be combined effectively to mitigate interfer-
ence of attacks with computations’ execution.

1. Introduction

Society is increasingly dependent on complex mission-
critical systems such as supervisory control and data access
(SCADA) systems for power grid management [1], indus-
trial control systems for automated manufacturing [2], and
medical device systems for patient care [3]. Because attacks
against these systems may cause their failure, and because
of the safety, health, and economic concerns that such fail-
ures would entail, these systems constitute critical infras-
tructures of vital interest, whose survivable operation must
be protected even in the face of malicious attacks.

Recent trends toward tele-operation and monitor-
ing of these systems, and toward connecting them with

∗ Research supported in part by by NSF EHS contract CCR-0311599.
† Research supported in part by NSF CAREER Award CCF-0448562

non-critical systems that can be accessed through pub-
lic networks, have exacerbated their risk of failure due
to adversarial attack. The ability of an attacker to inter-
act even indirectly with the system may allow the attacker
to interfere with the system’s correct operation. We are con-
cerned specifically with adversarial interference involving
sequences of interactions over time that can cause a sys-
tem to violate its behavioral constraints.
Adversarial interference. The central problem the re-
search presented in this paper addresses, is how to
design systems whose computational behavior is sur-
vivable in that it does not violate specified constraints
even in the face of adversarial attack. While techniques
such as network packet filtering [4, 5], have been devel-
oped to deter malicious use of networks, less attention
has been paid to how to handle exploitation of other in-
teraction channels by an adversary. The ability of an
attacker to interfere with the execution of key system com-
putations (e.g., those running control algorithms) that
are responsible for ensuring the system’s correct opera-
tion is frequently not addressed adequately in many sys-
tems, particularly those developed with commercially
available hardware and software. For example, most com-
mon off the shelf (COTS) operating systems are designed
for use as “black box” abstractions, with few opportu-
nities for the system developer to refine the semantics
of crucial features such as thread scheduling and inter-
rupt handling.

This approach often forces the system designer to use in-
direct mechanisms to achieve desired application execution
semantics, often increasing the application’s vulnerability
to interference from other computations subverted by an at-
tacker. For example, semaphores are often used as an in-
direct mechanism for implementing specialized scheduling
semantics when direct manipulation of the OS API features
available (usually priorities) does not have the desired se-
mantics. This approach introduces the system’s semaphore
support mechanisms as an interaction channel that may be
exploited by an attacker.

Group scheduling framework. Our previous research on
precise scheduling in real-time systems [6] has resulted in a
group scheduling framework that is also suitable for spec-
ifying and enforcing isolation among computations. As we
describe in Section 3, we have developed new techniques
within the group scheduling framework to prevent types of
adversarial interference to which COTS systems are vulner-
able due to their inability to control computation behav-
ior precisely. The essential features of the group schedul-
ing model are: (1) the ability to group application com-
ponents with system components supporting them; (2) the
ability to associate customized scheduling decision func-
tions with groups; (3) the ability to compose groups to form
a unified system-wide policy for resource management; (4)
the ability to enforce the specified resource use semantics
as defined in the composed group policy structure; and (5)
the ability to measure system behavior at the same level of
detail at which the application specifies its semantics, and
to use measured performance statistics as feedback to the
scheduling decision functions.
Model and system co-design. System designers, especially
in the context of applications with significant behavioral
constraints, benefit from the ability to model the semantics
of the application, since design verification and implemen-
tation validation are crucial to ensure computations’ behav-
ioral constraints are satisfied, especially in the face of ad-
versarial attack. However, an application’s behavioral se-
mantics depends in part on how the application is supported
by various operating system services. In the driving exam-
ple used for this paper, which we discuss in Section 2.3,
these services include the scheduler and any OS-level com-
ponents such as hard IRQs and soft IRQs that process net-
work packets. A model for each computation must thus in-
corporate models of the behavior of all system components
affecting the application behaviors of interest.

Careful co-design of models and implementations is mo-
tivated by trade-offs among several important issues, in-
cluding: model fidelity, model tractability, enforcement pre-
cision, implementation complexity and performance. The
ease and accuracy with which the system can be modeled
depends on the semantics of the system implementation.
Our experience with the driving problem discussed in this
paper has shown that precise measurements of the system
can inform modeling choices significantly, and modeling
complexity and fidelity concerns can influence system im-
plementation choices strongly. Our goal is to develop sys-
tem implementations capable of meeting their behavioral
constraints, for which we can also build tractable models of
sufficient fidelity that satisfaction of behavioral constraints
can also be verified.
Paper outline. Section 2 introduces our system and attack
models, and presents a denial of service attack scenario that
we use as a driving example. Section 3 describes the de-

sign and implementation of group scheduling policies and
mechanisms for isolation of computations from adversar-
ial interference. Section 4 presents timed automata models
we have developed for relevant system components. Sec-
tion 5 presents an empirical validation of our implementa-
tion that compares modeled behavior to that of the actual
system. Section 6 describes other work related to the re-
search presented in this paper, and Section 7 offers conclud-
ing remarks and summarizes future work.

2. Attack Model and Scenario

While interference among components of a computation
is entirely possible due to poor design or to operating condi-
tions that exceed design specifications, in this section we fo-
cus on the specific problem of adversarial interference, and
in particular on the ways in which an attacker can or can-
not use subverted computations to interfere with other com-
putations that have not been subverted. To examine in de-
tail the problems that can arise with these approaches in
the face of adversarial attack, Section 2.1 describes a sys-
tem model that defines more precisely how computations
can interact and potentially interfere with each other’s exe-
cution. Section 2.2 describes an attack model based on that
system model. Section 2.3 then describes an attack scenario
that we use as a driving example throughout this paper.

2.1. System Model

We first describe four basic elements of our sys-
tem model: (1) events that denote relevant asynchronous
changes in the state of the system (e.g., a thread block-
ing on an operating system call); (2) actions that mod-
ify the state of the system (e.g., making a function call
in user-space, or changing which thread is currently ex-
ecuting on the CPU) – we assume that each action takes
a non-zero time interval to complete and that an ac-
tion’s initiation and completion may be tagged by events if
they are relevant; (3) decisions that determine which ac-
tions are taken and when; and (4) contexts, which record
time-indexed information about all of the other elements
of the system model, and are used to increase the speci-
ficity of actions and decisions (e.g., to which thread a
decision or action pertains).

We also describe six higher level elements of our system
model, which build on the four basic elements, and which
serve as the basis for describing the attack models and the
system services needed to address those attack models in
this paper: (5) application-level programs such as control,
video processing, and data fusion software – these programs
are developed separately from the OS kernel and its associ-
ated libraries, execute entirely in user-space, and make deci-
sions and perform actions during their execution; (6) system

components which provide services to application-level
programs and respond to events such as the arrival of a net-
work packet – some system components (e.g., tasklets, IRQ
handlers, soft IRQs and kernel-level threads) run within
the kernel, while others (e.g., application and middleware
threads) run in user-space; (7) computations which repre-
sent the composed semantics of each program and the sys-
tem components that run on its behalf, and which thus cap-
ture the structure of dependencies among application-level
programs and system components; (8) interaction chan-
nels which are resources and/or system components shared
among computations in ways that can result in the actions
of one computation having consequences for the execution
of another computation; (9) behavioral constraints which
are specified predicates over the order and timing of events
within a computation (e.g., when a result is returned from
a function call) that determine the correctness of its execu-
tion; and (10) interference which is a causal sequence of
actions and events involving one or more computations that
leads to the violation of a behavioral constraint.

2.2. Attack Model

We assume an attack model with the following fea-
tures: (1) each program runs in a separate, protected pro-
cess address space; (2) in general, any individual program
can be subverted by an attacker that can gain access to it
(e.g., through a buffer overflow, “Trojan horse” program, or
virus); (3) any subverted program can take arbitrary ac-
tions; (4) system components in the kernel cannot be sub-
verted, so the semantics of their decisions and actions re-
main consistent across all computations – even ones exe-
cuting subverted programs; and (5) system components that
execute in user space can be subverted by a subverted pro-
gram, but only the copy of the component that is run within
the subverted program’s address space is subverted, which
does not subvert other copies of the component running
within other programs’ address spaces.

The first attack model feature limits the scope of an indi-
vidual subversion act to the process subverted. Making one
program execute in arbitrary ways does not imply the abil-
ity to make another program behave in arbitrary ways, since
for the purposes of this research we assume that the address
space of each process is protected from modification by an-
other process except through explicitly created shared data
areas. Thus, an attacker wishing to subvert multiple pro-
cesses must subvert each one individually.

The second and third features of the attack model mean
that in theory an attacker can cause any program in the sys-
tem to behave in arbitrary ways, though in practice this abil-
ity is significantly constrained by (1) the routes through
which the attacker can subvert a program, (2) process and
endsystem boundaries between computations, and (3) the

limited set of interaction channels through which an at-
tacker can influence other computations in the system. This
limitation is particularly relevant to many complex engi-
neered systems, since the only programs an attacker can
subvert directly are often those on vulnerable endsystems
(e.g., in a business information system that is connected to
a public network) rather those inside the engineered system
itself (e.g., within a SCADA system to which the business
information system is connected). Many systems try to ad-
dress the implications of a subverted program’s ability to
take arbitrary actions by correcting those actions through
fault tolerance, byzantine agreement or other approaches
that are outside the proposed research. The work proposed
here concentrates on limiting the ability of a subverted com-
putation to affect others, not on correcting the fact of sub-
version. The subverted process can, however, tell lies to
schedulers and other system components.

The fourth and fifth features of our attack model mean
that while an attacker can make the entire user-space portion
of a computation perform arbitrary actions, kernel-level re-
sources and system components will maintain their defined
semantics. We make this assumption, in part, because once a
thread executing in kernel mode and with access to the ker-
nel address space is executing subverted code there is lit-
tle that can be done to constrain the attacker’s freedom of
action, and we do not attempt to address those types of at-
tacks in this paper. This distinction has significant impli-
cations for the design of policies and mechanisms for iso-
lation of computations from interference by other computa-
tions, and for the inherent limits on isolation that are achiev-
able in each particular system.

2.3. Denial of Service Attack Scenario

Examples of the kinds of adversarial interference our ap-
proach is designed to address include denial of service at-
tacks such as: process shutdown attacks in which a sub-
verted program attempts to shut down other processes, e.g.,
by sending them kill signals; fork bomb attacks in which
a subverted program recursively duplicates itself to oc-
cupy, and thus deny access of other computations to, sys-
tem resources such as process descriptor tables and the
CPU; and request flood attacks in which a subverted pro-
gram exploits local and network inter-process communica-
tion mechanisms to deny other computations access to net-
work and other resources on the local endsystem, on remote
endsystems, or both. These kinds of attacks fit within our at-
tack model and help to illustrate how interference between
computations can occur in practice.

As the driving example for this paper, we focus on
a request flood attack involving interaction channels that
span multiple system components. In such an attack, a
subverted program exploits inter-process communication

mechanisms to send numerous application-level requests
(e.g., for method invocations) to another target computa-
tion and in doing so interferes with the execution of another
victim computation.

Figure 1. Request Flood Attack Scenario

Figure 1 illustrates such an attack. On an endsystem re-
ceiving request packets from the subverted program, a hard
IRQ handler executes to notify the system of a packet’s ar-
rival, and in Linux a soft IRQ system component must then
perform an irreducible amount of processing to classify the
request packets. Since in many COTS operating systems,
including Linux, system components servicing interrupts
are controlled under “as fast as possible” semantics, this
can result in excessive use of the CPU by packet process-
ing and denial of CPU access to other computations. Once
the packets are classified, the kernel-level scheduler selects
the processes to whom the packets are being sent. Here as
well, the default semantics of demand-driven scheduling in
COTS operating systems can lead to excessive occupation
of the CPU by the computation to which the requests are
targeted, leading to interference by that computation with
still other computations in the same endsystem. In the re-
quest flood example, therefore, an attacker may be able to
produce a constraint violation in either the computation ser-
vicing requests or in other computations by causing inter-
ference through the CPU interaction channel. This exam-
ple is of particular interest because the victim computation
is attacked directly via an interaction channel that it is us-
ing (the CPU), but that attack is enabled by another inter-
action channel which the victim computation does not use
(the network interface) but to which its execution seman-
tics is nonetheless indirectly coupled.

3. Scheduling Design and Implementation

The example attacks described in Section 2.3 include
several ways an attacker can cause interaction, and poten-

tial interference, with victim computations. They also illus-
trate an important fact: a large number of possible interac-
tions pass through a small set of system components. This
is the fundamental insight on which our approach is based:
by using kernel-level scheduling and performance monitor-
ing to exert precise control over a core set of system com-
ponents, we can strongly constrain the ability of attackers to
interfere with victims under a large number of potential at-
tack scenarios.

Specifically, in our driving example precise execution
control over the soft IRQ and hard IRQ system components
supporting the threads serving requests enables us to con-
strain the ability of a request flood attack to interfere with
the victim computation through the CPU interaction chan-
nel. Group scheduling is the mechanism through which we
exercise precise control over all computational components
in KURT-Linux, at both the application and OS level. The
precision of group scheduling control is matched by the pre-
cision with which we can measure system behavior using
the Datastreams subsystem of KURT-Linux.

Previous research has shown the ability of group
scheduling to ensure timeliness in distributed real-time and
embedded systems [6, 7]. Direct expression of schedul-
ing semantics for computations under group schedul-
ing has three major benefits: (1) it relieves developers of
the error-prone task of using indirect mechanisms such as
semaphores and priority manipulations which may also in-
crease the application’s vulnerability to adversarial at-
tacks by increasing the number of interaction channels; (2)
it more effectively supports analysis using formal mod-
els by making explicit how scheduling policies interact
with system components; and (3) it enables higher fi-
delity and more efficient design and verification of schedul-
ing policies for constraining interference.

3.1. Default Scheduling Semantics Consequences

Most operating systems, including Linux, support an
application programming environment through which pro-
grams can interact with a rich set of system-level compo-
nents. Interrupt handlers are an obvious example, but other
relevant components in Linux include several soft IRQs and
tasklets. An important implication of this common OS ar-
chitecture is that some portion of the work specified by an
application program is actually performed by OS compo-
nents. In our driving example, the request packets flooding
the victim system are processed by two system components:
the hard IRQ handler for the Ethernet device, and the net-
work receive soft IRQ handler.

The crucial point is that, under the default Linux schedul-
ing semantics, execution of both of these OS components
is given preference over that of application threads. More-
over, no constraint is placed on the CPU cycles that can be

consumed by these components. Measurements we discuss
in Section 5 showed that a single machine generating re-
quests can cause the network receive soft IRQ to consume
between 50 and 60% of the victim system’s CPU cycles,
and two machines generating requests can raise that to in
excess of 95%. The computations sharing the victim sys-
tem with the target thread are reduced to sharing whatever
limited CPU cycles remain under the default Linux priority
scheduling semantics. Even raising the priority of the victim
application is of limited utility because, in general, giving
a user process a higher priority than the packet processing
hard or soft IRQ components is undesirable. Group schedul-
ing provides a framework within which better solutions to
this problem can be designed, by creating a constraint on
the percentage of the CPU which can be consumed by the
group of application and system components affected by the
request flood attack, without changing the original prioriti-
zation semantics among the group members.

3.2. Precise Computation Component Control

Precise computation control has been a central theme
of KURT-Linux from the very beginning. The need for
a general framework for controlling groups of application
threads motivated the creation of Group Scheduling [7], and
the desire for precise control over every aspect of the sys-
tem affecting CPU use motivated its extension to context-
borrowing computations, hard IRQs, soft IRQs and tasklets,
in Linux 2.4 [8]. Other work has shown the ability to
control groups of application threads and OS computation
components to reduce the instrumentation effect of Datas-
treams [9], and to implement application semantics directly
in the scheduling framework for complex multi-threaded
multi-pipelined video processing applications [6].

This previous research has produced the group schedul-
ing framework in which we can express directly the precise
computation control semantics that our approach to protect-
ing the victim thread in the request flood attack scenario re-
quires. The precise control of of OS computation compo-
nents has been helped by recent work on the “RT Patch” for
Linux 2.6 [10], which significantly improves preemptability
in the OS and eliminates almost all context borrowing OS
components by creating kernel threads in whose context all
hard IRQ and soft IRQ handlers are executed. Given its sig-
nificant improvement in performance, we have used the RT
Patch as the foundation for KURT-Linux in the 2.6 kernel.
The group scheduling framework in this context can con-
trol essentially every system activity with fine precision, by
controlling execution of hard and soft IRQ threads.

3.3. Resource Isolation under Group Scheduling

The precise control of all computation components under
KURT-Linux group scheduling makes a wide range of ex-

ecution semantics possible. Intervals during which a thread
uses a particular resource can be tracked using the fine-grain
system time standard, e.g. the 64-bit Time Stamp Counter
(TSC) on the x86 which increments at CPU clock speed.
High resolution timers, such as those provided by KURT-
Linux in the 2.4 kernel or by the RT Patch in the 2.6 kernel,
can be used to schedule preemption of resource use inter-
vals for resources permitting preemption. For those that do
not, resource use control and accounting points can be im-
plemented within scheduling decision functions or inserted
in resource acquire and release routines. We used a CPU
share execution opportunity semantics to control simulated
video processing pipelines in [6]. For the request flood at-
tack scenario considered in this paper, we chose a CPU
share usage semantics to control computations related to re-
ceiving network packets: (1) the network receive hard IRQ
handler, (2) the network receive soft IRQ handler, and (3)
the target thread. CPU use by each execution interval of
a thread under control of the scheduling decision function
(SDF) we have designed for that scenario (which we dis-
cuss in Section 3.4) is measured within schedule(), and the
SDF tracks CPU use within accounting windows of con-
figurable length. CPU use by the network receive soft IRQ
is non-preemptable under our SDF, which matches its de-
fault Linux execution semantics. However, further analysis
and modification of the handler could make it possible to
use preemption semantics, as future work.

3.4. Scheduling Decision Function Design

The SDFs we used to address the request flood attack
scenario that was described in Section 2.3 (and illustrated
in Figure 1) are organized hierarchically into a single Sys-
tem Scheduling Decision Function (SSDF) whose structure
is illustrated in Figure 2. This structure is essentially a deci-
sion tree evaluated by invocation at the root, which returns
a decision after recursive evaluation of individual SDFs as-
sociated with the nested groups. This structure controls al-
most all CPU use in the system. The only exceptions under
the RT Patch are the hard IRQ service routines whose exe-
cution is invoked directly at the hardware level by interrupt
occurrence. However, their executions are extremely short,
generally running only the few instructions necessary to en-
able the associated hard IRQ service thread.

The root of the SSDF in Figure 2 is the schedule() func-
tion implementing the Linux scheduler, which first evalu-
ates the SDF of the subordinate group on its left branch. If
this decision tree chooses a thread, then schedule() jumps
directly to its context switch section. If not, it consults the
right branch, which is the default Linux thread scheduler.
The top node of the left sub-tree uses a simple sequential
SDF (SEQ), which checks its branches from left to right.
It checks to see if any hard IRQ threads are able to run,

Figure 2. CPU Isolation Control SSDF

with the exception of the network receive hard IRQ thread
which is under CPU share control. The order in which the
SDF checks the hard IRQ handler status matches their pri-
ority relationships under default Linux scheduling, since we
wish to modify system semantics as little as possible while
achieving the desired goal of isolating computations from
interference. The bottom of this subtree is the group con-
trolling the network receive hard and soft IRQ handlers as
well as the request server target thread, under a CPU share
SDF. This SDF constrains the CPU percentage used by each
thread and by the group as a whole. This SDF can be imple-
mented various ways, but we use a simple non-preemptive
and conservative accounting approach for the system de-
scribed in this paper. Performance of the system under both
default Linux and SDF semantics is examined in Section 5.

4. Formal Models and Verification

Our previous research [11] has shown the suitability of
timed automata models for verification of timing and live-
ness properties in real-time system software. While that
work focused on models of middleware components and
their interactions, the techniques developed there are read-
ily applicable to modeling kernel-level components and in-
teractions. In this section we describe the timed automata
models we have developed for analysis of the attack sce-
nario that was described in Section 2.3 and illustrated in
Figure 1. Section 4.1 first describes models we have devel-
oped for the system components involved in that scenario.
Results of using these automata to model target system be-
havior under both default Linux semantics and under group
scheduling control which isolates the victim thread from the
effects of the request flood attack, as well as comparison of
those results to measurements from the target system, are
discussed in Section 5.

4.1. Computational Component Models

Figure 3 shows the model architecture we have devel-
oped for the direct interactions in the driving example. The
ovals in Figure 3 represent system components whose se-
mantics we represent through timed automata and the rect-
angles in Figure 3 represent system data structures through
which packets are passed from one component to the next.
In addition to the components depicted in Figure 3, we have
also modeled the victim thread and scheduler components
shown in in Figure 1 in Section 2.3.

������������	�
������

�	������������������

�������

�������

�������

� �

�

�

��

Figure 3. Packet Processing Pipeline TA

To ensure the fidelity of key temporal attributes of the
system that are represented as variables in our models, we
sample values for those variables from an empirically mea-
sured statistical model of several aspects of system behav-
ior: hard IRQ inter-arrival times, hard IRQ handler execu-
tion durations, and soft IRQ handler execution durations.
Techniques based in queuing theory or other detailed math-
ematical models also could be used to generate values for
these variables in our approach, but to avoid additional vali-
dation complexity we used data measured directly from the
system implementation itself. We note that this decision is
another example of model/system co-design in that we ob-
tained data from the actual system being modeled so that
we could abstract away further modeling of those details.

Our models represent two different aspects of computa-
tions - their inputs and the components which execute on
their behalf. Computations’ inputs may include user input
at a keyboard or, as in our attack scenario, network traf-
fic arriving at an Ethernet card. While the arrival of an input
requires a computational response, the arrival time is not it-
self under system control. We represent this behavior with
a simple EventGenerator automaton consisting of a single
state and a single transition that samples the hard IRQ inter-
arrival time distribution to pace its transitions.

Figure 4 shows the structure of the automata for the hard
IRQ, soft IRQ, and target thread components. These au-

tomata represent a mix of I/O and CPU bound actions that
are coupled to the states of the buffers through which they
perform I/O actions and to the scheduler automaton that
governs when they are given access to the CPU.

WaitingForWork Runnable

Running

Preempted

work in buffer

scheduledbuffer empty
add event to buffer

other process scheduledscheduled

Figure 4. Target and Hard/Soft IRQ Thread TA

The CPU bound victim thread component does not per-
form I/O actions. Its automaton consists only of the Run-
ning and Preempted states shown in Figure 4, and is only
coupled with the scheduler automaton that governs its ac-
cess to the CPU.

The execution of these component models is ordered and
controlled by a Scheduler automaton. Figure 5 shows the
structure of the scheduler automaton that governs the ac-
cess of the hard IRQ, soft IRQ, target thread, and victim
thread components to the CPU. Note that it can dispatch
both preemptable and non-preemptable processes, and that
the transition from the PreemptibleProcessRunning state to
the SchedulingDecisionFunction state is performed at quan-
tum expiration or when a hard IRQ or soft IRQ is runnable,
as well as under the condition for the transition from the
NonPreemptibleProcessRunning that occurs when the pro-
cess is waiting for work.

The automaton that models the group scheduling seman-
tics described in Section 3.4 is similar to the one shown in
Figure 5, except that a soft IRQ becoming runnable does
not trigger the transition from the PreemptibleProcessRun-
ning state to the SchedulingDecisionFunction state.

5. Empirical and Simulation Studies

In this section we describe a set of empirical and simula-
tion studies we conducted to verify the design and validate
the implementation of our group scheduling decision func-
tions for isolation of computations from adversarial attack,
which were discussed in Section 3.4. The empirical stud-
ies described in this Section were conducted on 1 GHz ma-
chines with 1GB RAM running KURT-Linux 2.6.15, con-
nected by 100 Mbps switched Ethernet. The Linux based

NonPreemptableProcessRunning

PreemptableProcessRunning

SchedulingDecisionFunction

process instate WaitingForWork

quantum expired
process instate WaitingForWork
SoftIRQ/HardIRQ instate Runnable

scheduling decision made

scheduling decision made

Figure 5. Default Linux Scheduler TA

experiments discussed here ran for approximately 30 sec-
onds, with the attacking thread sending request packets as
fast as possible. Figures 4 and Figure 5 in Section 4 were ob-
tained from implementing our models in UPPAAL 3.6, but
the verification studies in this section were run using ex-
haustive simulation of our models implemented in IF 2.0,
on a 2.8 GHz processor with 2GB of RAM.

5.1. Empirical Profiling

As we noted in Section 4, to ensure the fidelity of key
temporal attributes of the system our models sampled em-
pirically collected distributions of timing values. We col-
lected data about several aspects of request packet process-
ing, including: (1) the distribution of Ethernet hardware in-
terrupt inter-arrival times, (2) the distribution of hard IRQ
handler execution times, (3) the distribution of soft IRQ
handler execution times, (4) the distribution of the number
of packets handled by a single invocation of the soft IRQ
handler, and (5) the distribution of network packet handler
execution times.

Analysis of these data revealed that execution time of
both the network hard IRQ handler and the network packet
handler routines exhibits low variance. The attacking thread
transmitted over 7 million packets, which generated roughly
1.3 million network hardware interrupts. All but 1000 inter-
rupt inter-arrival periods were less than 150 microseconds,
with a fairly normal distribution between 25 and 150. The
execution time of the handler was below 20 microseconds
in all cases, and below 6 microseconds for all but 1800. The
network driver packet handler executed over 7 million times
for which all but 14 had execution intervals of less than 41
microseconds, and all but 200 thousand were below 9 mi-
croseconds. The distribution of network soft IRQ handler
execution interval lengths was broader because each execu-
tion could process from one to over 20 packets.

We also collected data describing the request flood at-
tack scenario. We collected data about the percentage of the

CPU used by the threads of interest: (1) network hard IRQ
handler, (2) network soft IRQ handler, (3) target thread,, and
(4) victim thread which is CPU bound. Under the attack sce-
nario the CPU use by the first three threads is influenced by
the number of request packets arriving at the victim system.
The CPU use by the victim thread is influenced through the
CPU scheduling interaction channel.

5.2. Studies with Default Linux Scheduling

To verify the fidelity our design and validate our imple-
mentation of the group scheduling decision functions de-
scribed in Section 3.4, we examined the attack scenario
in two ways: (1) through the timed automata models de-
scribed in Section 4; and (2) through a simple client/server
implementation. In both cases, the victim thread was a CPU
bound greedy process and the target thread consumed re-
quest packets. The attacking thread was on another system
generating request packets as quickly as possible.

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 0 200000 400000 600000 800000 1e+06 1.2e+06 1.4e+06 1.6e+06

C
yc

le
s

co
ns

um
ed

Time

victim thread
soft-irq

target thread
hard-irq

Figure 6. Modeled Default Behavior

Figure 6 shows the output from exhaustive simulations
under default Linux scheduling semantics, using values
drawn from the empirical distributions discussed in Sec-
tion 5.1. In these simulations, as in the validation experi-
ments we conducted with our implementation, the victim
thread is allowed to run unimpeded for a while before the
attack begins. Once the attack begins, our simulations pre-
dict a sharp decrease in the victim thread’s CPU utilization,
and a sustained rate of CPU utilization by the other compo-
nents, at the victim thread’s expense. Unfortunately, in the
simulations presented here and in Section 5.3, we were un-
able to obtain output from IF for runs longer than 1.5 sim-
ulated seconds, much shorter than the 30 seconds of the ac-
tual experiments. However, this duration was sufficient to
evaluate the relevant behavior.

Figure 7 shows CPU use in the actual attack experiment
under default Linux scheduling semantics. The horizontal
axis is time in nanoseconds, and the vertical axis is accu-

 0

 2e+09

 4e+09

 6e+09

 8e+09

 1e+10

 1.2e+10

 1.4e+10

 1.6e+10

 0 5e+09 1e+10 1.5e+10 2e+10 2.5e+10 3e+10 3.5e+10

C
yc

le
s

co
ns

um
ed

Time

soft-irq
target thread
victim thread

hard-irq

Figure 7. Measured Default Behavior

mulated CPU use in the same units. Note that the victim
thread executes briefly at the beginning of the experiment at
a much higher CPU utilization than after the attack begins,
as indicated by its major change in slope. The CPU utiliza-
tion of the hard IRQ, soft IRQ and target threads all increase
as the packet flood begins, indicating that they are interact-
ing with the victim thread through the CPU. Under default
Linux semantics, when the request flood began, the CPU
utilization of the network soft IRQ thread rose from essen-
tially zero to roughly 50%, abruptly reducing the CPU con-
sumption of the victim, as demonstrated by its abrupt reduc-
tion in slope at the moment the attack began. The large in-
crease in the soft IRQ thread utilization reveals that it is the
channel though which the majority of interference with the
victim thread is occurring, as the simulations shown in Fig-
ure 6 predicted.

5.3. Studies with Group Scheduling

Figure 8 shows the output from exhaustive simulations
under the group scheduling semantics we designed, again
using values from the empirically obtained distributions dis-
cussed in Section 5.1. As in the previous studies, the victim
thread ran for a while before the attack began. The simu-
lations predict that the victim thread’s CPU utilization will
suffer a minor (though non-zero) decrease, indicating both
the efficacy and limitations on the ability of our approach to
isolate computations from adversarial attack.

Figure 9 shows the cumulative CPU use for the attack
scenario under GS control which limits the CPU use of the
target thread to 7%, the hard IRQ to 6%, and the soft IRQ
to 12%. While the soft IRQ consumed closer to its full allo-
cation (10.3%), the hard IRQ and target thread utilizations
were noticeably lower than their specified limits (0.05% and
0.9% respectively). This result contradicts our expectation
that the hard IRQ and target thread would behave greedily
under GS semantics, which is how we modeled them for the

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 0 200000 400000 600000 800000 1e+06 1.2e+06 1.4e+06 1.6e+06

C
yc

le
s

co
ns

um
ed

Time

victim thread
soft-irq

target thread
hard-irq

Figure 8. Modeled GS Behavior

simulations shown in Figure 8. As future work, we are in-
vestigating the network card, hard IRQ, soft IRQ, and target
thread interactions in the 2.6 kernel in greater detail to ex-
plain the observed difference between the modeled and ob-
served behavior.

Although small, the victim thread suffered a non-zero
decrease in its CPU utilization when the attack began, due
to the non-zero CPU allocation our GS policy made for the
hard IRQ, soft IRQ and target thread. This result was pre-
dicted by our simulations shown in Figure 8.

 0

 5e+09

 1e+10

 1.5e+10

 2e+10

 2.5e+10

 3e+10

 0 5e+09 1e+10 1.5e+10 2e+10 2.5e+10 3e+10

C
yc

le
s

co
ns

um
ed

Time

victim thread
soft-irq

target thread
hard-irq

Figure 9. Measured GS Behavior

Summary of results. Table 1 shows CPU utilization by rel-
evant threads under five cases: idle, IF simulation with de-
fault Linux semantics (DIF), execution with default Linux
semantics (DL), IF simulation with group scheduling se-
mantics (GSIF), and execution with group scheduling se-
mantics (GSL). This table shows both the similarity and dif-
ferences between the simulated and actual results, as well as
the predicted and actual effectiveness of our group schedul-
ing design. In practice, repeated refinements to the models
can be used to bring the simulated and actual behaviors as
close as is beneficial for particular systems.

CPU % Idle DIF DL GSIF GSL
Victim 99 30 14.3 76 88.7
Target < 1 20 25.1 07 0.9
SIRQ < 1 44 51.7 12 10.3
HIRQ < 1 04 05.1 04 0.05

Table 1. Thread Utilizations

6. Related Work

While cyber-security techniques such as network packet
filtering [4, 5], data encryption [12, 13, 14], and capabil-
ity management [15], help to deter malicious use of the net-
work, inappropriate access to data, or unauthorized invoca-
tion of system functions, they do not address an attacker’s
ability to interfere with the execution of computations re-
sponsible for ensuring the system’s correct operation.

The current state of the art in preventing interference
among computations centers mainly on (1) partitioning
system resources, (2) segregating computations into re-
source partitions, and (3) enforcing strict isolation between
partitions [16]. This approach allows formal specification
and verification of separation kernels [17] to enforce re-
source isolation between the partitions. While some sep-
aration kernel approaches focus solely on memory isola-
tion, others such as the MILS kernel [18] also address iso-
lation of process execution. However, many examples of
non-adversarial interference among components of com-
plex mission-critical systems, such as the Mars Pathfinder
priority inversion problem [19], illustrate that partitioning
dependencies statically in real-world systems is difficult.

Our approach extends earlier hierarchical schedul-
ing frameworks [20, 21, 22] by (1) using formal models
and verification techniques to determine whether proper-
ties such as isolation are achieved in each scenario; (2)
taking into account the groupings of computational com-
ponents involved in the various interaction channels an
attacker could exploit; and (3) co-designing schedul-
ing policies and formal models to support both tractable
verification and rigorous run-time enforcement of prop-
erties such as isolation. Our automata described in Sec-
tion 4.1 express refinements to the task automata used
in DREAM [23], based on scenario-specific informa-
tion. For example, the victim thread automaton is reduced
to only two states based on its role in our driving ex-
ample scenario. In earlier work, we integrated SELinux
security features with group scheduling, using informa-
tion from the SELinux component to help inform the
decisions made by group scheduling control [24]. That re-
search showed both group scheduling’s ability to isolate
competing computations’ resource demands, and the util-
ity of using information from security frameworks like

SELinux within scheduling-based approaches to isolat-
ing computations from adversarial attack.

7. Conclusions and Future Work

In this paper we have shown that integration of kernel
components under group scheduling control allows isola-
tion of computations from adversarial attack, without a pri-
ori partitioning of computations. Our experiences in devel-
oping this approach also have shown that careful co-design
of models and scheduling policies is necessary to realize
such isolation efficiently, effectively, and verifiably.

The research presented in this paper has focused ex-
clusively on developing customized scheduling policies for
isolation. An important area of future work is the exten-
sion of our earlier work on integration of SELinux secu-
rity features with scheduling [24], to include similarly de-
tailed and customized scheduling policies and verification
models. With additional information about computations’
expected and actual behavior as noted by the SELinux se-
curity framework, our hypothesis is that further rigor and
efficiency can be realized in detecting attacks and isolating
computations from adversarial or accidental interference.

References

[1] D. Bailey and E. Wright, Practical SCADA for Industry.
Elsevier-Newnes, 2003.

[2] R. Shell and E. H. eds., Handbook of Industrial Automation.
CRC Press, 2000.

[3] U. of Pennsylvania, “Fda/nist/nsa/nsf/nco-itrd high confi-
dence medical device software and systems workshop.”
http://www.cis.upenn.edu/hcmdss/ , jun 2005.

[4] S. Iyer, R. Kompella, and A. Shelat, “Classipi:an architec-
ture for fast and flexible packet classification,” IEEE Network
Special Issue, vol. 15, no. 2, 2001.

[5] F. Baboescu and G. Varghese, “Fast and scalable conflict de-
tection for packet classifiers,” in Proceedings of IEEE Inter-
national Conference on Network Protocols, 2002.

[6] T. Aswathanarayana, V. Subramonian, D. Niehaus, and
C. Gill, “Design and performance of configurable endsys-
tem scheduling mechanisms,” in Proceedings of 11th IEEE
Real-time and Embedded Technology and Applications Sym-
posium (RTAS), 2005.

[7] M. Frisbie, D. Niehaus, V. Subramonian, and C. Gill, “Group
scheduling in systems software,” in Workshop on Parallel
and Distributed Real-Time Systems, (Santa Fe, NM), apr
2004.

[8] M. Frisbie, “A unified scheduling model for precise compu-
tation control,” Master’s thesis, University of Kansas, June
2004.

[9] D. Mokkapati, “Evaluation of effects of a performance eval-
uation tool on system performance,” Master’s thesis, Univer-
sity of Kansas, april 2005.

[10] P. McKenney, “Attempted summary of ”rt patch acceptance”
thread, take 2.” Linux Weekly News Articlehttp://lwn.
net/Articles/143323/ , july 2005.

[11] V. Subramonian, Timed Automata Models for Principled
Composition of Middleware. PhD thesis, Washington Uni-
versity in St. Louis, Technical Report WUCSE-2006-23,
May 2006.

[12] P. Syverson, “Limitations on design principles for public key
protocols,” in Proceedings of the 1996 IEEE Symposium on
Security and Privacy, (Oakland, CA), pp. 62–73, may 1996.

[13] M. Winslett, N. Ching, V. Jones, and I. Slepchin, “Using dig-
ital credentials on the world-wide web,” Journal of Computer
Security, vol. 5, pp. 255–267, 1997.

[14] S. Garfinkel, PGP: Pretty Good Privacy. O’Reilly, 1994.
[15] B. MCCarty, SELINUX:NSA’s Open Source Security En-

hanced Linux. O’Reilly, 2005.
[16] D. Greve, M. Wilding, and W. M. Vanfleet, “A Separa-

tion Kernel Formal Security Policy,” in Fourth International
Workshop on the ACL2 Theorem Prover and Its Applications
(ACL2-2003), (Boulder, CO), July 2003.

[17] W. Martin, P. White, F. S. Taylor, and A. Goldberg, “Formal
construction of the mathematically analyzed separation ker-
nel,” in ASE ’00: Proceedings of the 15th IEEE international
conference on Automated software engineering, (Washing-
ton, DC, USA), p. 133, IEEE Computer Society, 2000.

[18] W. Mark Vanfleet and Jahn A. Luke and R.
William Beckwith and Carol Taylor and Ben Cal-
loni and Gordon Uchenick, “MILS: Architec-
ture for High-Assurance Embedded Computing.”
http://www.stsc.hill.af.mil/crosstalk/
2005/08/0508Vanfleet_etal.html , Crosstalk: the
Journal of Defense Software Engineering, August, 2005.

[19] M. Jones, “What really happened on Mars?.”
www.research.microsoft.com/˜mbj/Mars_
Pathfinder/Mars_Pathfinder.html , Dec. 1997.

[20] Regehr and Stankovic, “HLS: A Framework for Composing
Soft Real-Time Schedulers,” in 22

nd IEEE Real-Time Sys-
tems Symposium, (London, UK), Dec. 2001.

[21] Regehr, Reid, Webb, Parker, and Lepreau, “Evolving real-
time systems using hierarchical scheduling and concurrency
analysis,” in 24

th IEEE Real-Time Systems Symposium,
(Cancun, Mexico), Dec. 2003.

[22] Goyal, Guo, and Vin, “A Hierarchical CPU Scheduler for
Multimedia Operating Systems,” in 2

nd Symposium on Op-
erating Systems Design and Implementation, USENIX, Oct.
1996.

[23] G. Madl and S. Abdelwahed, “Model-based analysis of dis-
tributed real-time embedded system composition,” in EM-
SOFT ’05: Proceedings of the 5th ACM international con-
ference on Embedded software, (New York, NY, USA),
pp. 371–374, ACM Press, 2005.

[24] A. Migliaccio, T. Tidwell, C. Gill, T. Aswathanarayana,
and D. Niehaus, “Group scheduling in selinux to mitigate
cpu-focused denial of service attacks,” Tech. Rep. WUCSE-
2005-55, Department of Computer Science and Engineering,
Washington University in St.Louis, 2005.

	DepartmentName: Department of Computer Science & Engineering
	ReportNumber: 2006-34
	Date: June 1, 2006
	Email: Corresponding Author: cdgill@cse.wustl.edu
	Notes:
	Footer1: Department of Computer Science & Engineering - Washington University in St. Louis
	Footer2: Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160
	Abstract: Abstract: To isolate computations from denial of service (DoS) attacks and other forms of adversarial interference, it is necessary to constrain the effects of interactions among computations. This paper makes four contributions to research on isolation of computations from adversarial interference: (1) it describes the design and implementation of a kernel level scheduling policy to control the effects of adversarial attacks on computations™ execution; (2) it presents formal models of the system components that are involved in a representative DoS attack scenario; (3) it shows how model checking can be used to analyze that example scenario, under default Linux scheduling semantics and under our scheduling policy design; and (4) it presents empirical studies we have conducted to validate our scheduling policy implementation. Our results show that, with careful design, scheduling and detailed monitoring of computations™ behavior can be combined effectively to mitigate interference of attacks with computations™ execution.

	Title: The Design, Modeling, and Implementation of Group Scheduling for Isolation of Computations from Adversarial Interference
	Author: Authors: Tidwell, Terry; Watkins, Noah; Subramonian, Venkita; Niehaus, Douglas; Gill, Christopher; Migliaccio, Armando

