Kernel Regression Based Image Processing Toolbox for MATLAB

Hiroyuki Takeda

Multi-Dimensional Signal Processing Laboratory
University of California, Santa Cruz
Directory Structure

- **Kernel Regression**
 - This directory contains the main functions of kernel regression.

- **Support Functions**
 - This directory contains the sub functions for the main functions.

- **Examples**
 - Some simulation scripts are available in this directory.

- **Test Images**
 - There are some test images in this directory.
Directory Structure

- **Kernel Regression**
 - This directory contains the main functions of kernel regression.

- **Support Functions**
 - This directory contains the sub functions for the main functions.

- **Examples**
 - Some simulation scripts are available in this directory.

- **Test Images**
 - There are some test images in this directory.
Kernel Regression Functions

- 9 functions of kernel regression and an orientation estimation function are available.
 - Second order classic kernel regression for regular and irregular data.
 - “ckr2_regular”, “ckr2all_regular”, “ckr2L1_regular” and “ckr2_irregular”
 - Zeroth order steering kernel regression for regular and irregular data.
 - “skr0_regular” and “skr0_irregular”
 - Second order steering kernel regression for regular and irregular data.
 - “skr2_regular”, “skr2L1_regular” and “skr2_irregular”
 - Orientation estimation function
 - “steering”
ckr2_regular

- **Description**
 - Second order classic kernel regression for regularly sampled data with Gaussian kernel function

- **Usage**
 - \([z, zx1, zx2] = ckr2_regular(y, h, r, ksize)\)

- **Returns**
 - \(z\) : the estimated image
 - \(zx1, zx2\) : the estimated gradient images along \(x1\) and \(x2\) directions

- **Parameters**
 - \(y\) : the input image
 - \(h\) : the global smoothing parameter
 - \(r\) : the upscaling factor
 - \(ksize\) : the support size of the kernel function
ckr2all_regular

- **Description**
 - Second order classic kernel regression for regularly sampled data with Gaussian kernel function. This function returns the estimated image and all the first and second gradients.

- **Usage**
 - `z = ckr2all_regular(y, h, r, ksize)`

- **Returns**
 - `z`: the estimated image and all the first and second gradients.

- **Parameters**
 - `y`: the input image
 - `h`: the global smoothing parameter
 - `r`: the upscaling factor
 - `ksize`: the support size of the kernel function
Description
- Second order classic kernel regression with L1-norm for regularly sampled data with Gaussian kernel function. This function returns the estimated image and all the first and second gradients.

Usage
- \(z = \text{ckr2L1_regular}(y, z\text{_init}, h, r, ksize, IT, step) \)

Returns
- \(z \) : the estimated image and all the first and second gradients.

Parameters
- \(y \) : the input image
- \(z\text{_init} \) : the initial state for the steepest descent method
- \(h \) : the global smoothing parameter
- \(r \) : the upscaling factor
- \(ksize \) : the support size of the kernel function
- \(IT \) : the number of iterations for steepest descent method
- \(step \) : the step size of the steepest descent update
ckr2_irregular

● Description
 ● Second order classic kernel regression for irregularly sampled data with Gaussian kernel function

● Usage
 ● \([z, zx1, zx2] = ckr2_irregular(y, I, h, ksize)\)

● Returns
 ● \(z\) : the estimated image
 ● \(zx1, zx2\) : the estimated gradient images along \(x1\) and \(x2\) directions

● Parameters
 ● \(y\) : the input image
 ● \(I\) : the sampling position map (1 where we have samples)
 ● \(h\) : the global smoothing parameter
 ● \(ksize\) : the support size of the kernel function
skr0_regular

- **Description**
 - Zeroth order steering kernel function for regularly sampled data with Gaussian kernel function

- **Usage**
 - `z = skr0_regular(y, h, C, r, ksize)`

- **Returns**
 - `z`: the estimated image

- **Parameters**
 - `y`: the input image
 - `h`: the global smoothing parameter
 - `C`: the inverse covariance matrices which contain local orientation information
 - `r`: the upscaling factor
 - `ksize`: the support size of the kernel function
Description
- Second order steering kernel function for regularly sampled data with Gaussian kernel function

Usage
- \([z, zx1, zx2] = \text{skr2_regular}(y, h, C, r, ksize)\)

Returns
- \(z\) : the estimated image
- \(zx1, zx2\) : the estimated gradient images along \(x1\) and \(x2\) directions

Parameters
- \(y\) : the input image
- \(h\) : the global smoothing parameter
- \(C\) : the inverse covariance matrices which contain local orientation information
- \(r\) : the upscaling factor
- \(ksize\) : the support size of the kernel function
skr2L1_regular

- **Description**
 - Second order steering kernel regression with L1-norm for regularly sampled data with Gaussian kernel function. This function returns the estimated image and all the first and second gradients.

- **Usage**
 - \(z = \text{skr2L1}_\text{regular}(y, z_{\text{init}}, h, C, r, ksize, IT, step) \)

- **Returns**
 - \(z \): the estimated image and all the first and second gradients.

- **Parameters**
 - \(y \): the input image
 - \(z_{\text{init}} \): the initial state for the steepest descent method
 - \(h \): the global smoothing parameter
 - \(C \): the inverse covariance matrices which contain local orientation information
 - \(r \): the upscaling factor
 - \(ksize \): the support size of the kernel function
 - \(IT \): the number of iterations for steepest descent method
 - \(step \): the step size of the steepest descent update
skr0_irregular

- **Description**
 - Zeroth order steering kernel regression function for irregularly sampled data with Gaussian kernel function

- **Usage**
 - \(z = \text{skr0_irregular}(y, I, h, C, \text{ksize}) \)

- **Returns**
 - \(z \) : the estimated image

- **Parameters**
 - \(y \) : the input image
 - \(I \) : the sampling position map (1 where we have samples)
 - \(h \) : the global smoothing parameter
 - \(C \) : the inverse covariance matrices which contain local orientation information
 - \(\text{ksize} \) : the support size of the kernel function
skr2_irregular

- **Description**
 - Second order steering kernel regression function for irregularly sampled data with Gaussian kernel function

- **Usage**
 - \([z, z_{x1}, z_{x2}] = \text{skr2_irregular}(y, I, h, C, \text{ksize})\)

- **Returns**
 - \(z\) : the estimated image
 - \(z_{x1}, z_{x2}\) : the estimated gradient images along \(x_1\) and \(x_2\) directions

- **Parameters**
 - \(y\) : the input image
 - \(I\) : the sampling position map (1 where we have samples)
 - \(h\) : the global smoothing parameter
 - \(C\) : the inverse covariance matrices which contain local orientation information
 - \(\text{ksize}\) : the support size of the kernel function
steering

- **Description**
 - Orientation estimation function using singular value decomposition for steering kernel regression

- **Usage**
 - \(C = \text{steering}(zx1, zx2, I, \text{wsize}, \lambda, \alpha) \)

- **Returns**
 - \(C \) : the inverse covariance matrices which contain local orientation information

- **Parameters**
 - \(zx1, zx2 \) : the gradient images along x1 and x2 directions
 - \(I \) : the sampling position map (1 where we have samples)
 - \(\text{wsize} \) : the size of the local analysis window
 - \(\lambda \) : the regularization for the elongation parameter
 - \(\alpha \) : the structure sensitive parameter
Directory Structure

- **Kernel Regression**
 - This directory contains the main functions of kernel regression.

- **Support Functions**
 - This directory contains the sub functions for the main functions.

- **Examples**
 - Some simulation scripts are available in this directory.

- **Test Images**
 - There are some test images in this directory.
Examples

- 6 examples are available to show how to use the kernel regression functions.
 - “Lena_denoise.m”
 - Image denoising example using the algorithm of iterative steering kernel regression
 - “Lena_upscale.m”
 - Image upscaling example by steering kernel regression
 - “Lena_irregular.m”
 - Image reconstruction example from irregularly downsampled image by steering kernel regression
 - “Lena_saltpepper.m”
 - Salt & pepper noise reduction example.
 - “Pepper_deblock.m”
 - Compression artifact removal example using the algorithm of iterative steering kernel regression
 - “JFK_denoise.m”
 - Real denoising example for a color image (Film grain noise removal)
Summary

- The kernel regression framework is very easy to implement.

- Other simulations are also possible by using the function set such as color artifact reduction and simultaneous interpolation and denoising.
Relevant Publication
