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Abstract

Non-Volatile Cache Management for Improving Write Response Time with

Rotating Magnetic Media

by

Theodore R. Haining

A non-volatile write cache is an effective technique to bridge the performance

gap between I/O systems and processor speed. Using such caches provides two benefits:

some writes will be avoided because dirty blocks will be overwritten in the cache, and

physically contiguous dirty blocks can be grouped into a single I/O operation. In this

dissertation, we look at how to improve the performance of non-volatile write caches

through the use of effective management techniques. We begin by comparing different

simple strategies to discover the basic mechanisms governing cache performance. In

a series of trace-based simulation experiments, we show that small non-volatile write

caches can reduce the amount of data written to disk by as much as 60 percent. Cache

performance cannot be measured solely by this metric, however. Policies which best

reduce the amount of data written to disk also produce unacceptable numbers of stalled

write requests that must wait while cache space is cleaned. Other policies can eliminate

stalled writes, but write larger amounts of data to disk. To solve this problem, we present

a new block replacement policy that efficiently expels only blocks that are not likely to

be accessed again and that coalesces writes to disk. Additional trace based experiments

show that a cache employing our new policy is able to match the reductions in data



written to disk and stalled writes of the best simple policies simultaneously. Finally,

we observe that cache cleaning produces bursts of writes that increase read response

time. We investigate a policy where the cleaning of the cache is delayed until the disk

is not in active use, and is unlikely to be actively used again in the near future. We

show through analysis and trace-based simulation that while this delay produces a small

decrease in mean read response times, it increases write response times because of an

increased number of stalled writes.
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Chapter 1

Introduction

Volatile and non-volatile memory caches offer distinct advantages when used

with I/O subsystems such as magnetic disks. Data read from disks can be held in mem-

ory to reduce the number of times data is read from disk. Data to be written to disk can

also be held in memory where it may be over-written or consolidated into fewer, larger

disk I/O operations. Whether for reading or writing, memory caches allow response

times much more comparable to CPU speed rather than those of rotating media. With

recent advances in technology, random access memory (RAM) and non-volatile RAM

(NVRAM) have become more affordable in large quantities for I/O applications.

The focus of this dissertation is on the replacement strategies used to write data

from a non-volatile cache to disk in order to make room for current and future write

requests. The replacement policy strongly affects cache performance by determining

how long data resides in the cache. The amount of cache free space, the number of cache

overwrites and the amount of data written to disk are influenced by this duration of
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residence in the cache. An effective cache policy will have more overwrites in the cache,

write a smaller overall amount of data to disk, and more often have space available to

hold data from incoming write requests. This will increase I/O subsystem performance

by allowing a maximum number of write requests to complete at memory speed, and

produce the smallest waiting time for reads because the disk is not busy performing

writes.

In particular, we investigate three key issues related to non-volatile write cache

performance that are not adequately addressed elsewhere. We compare the performance

produced by different replacement algorithms under similar workload conditions in or-

der to choose an effective strategy, and find the key metrics used to choose between

strategies. We employ techniques developed for disk scheduling algorithms to create a

new replacement algorithms which provides better overall cache performance. Finally,

we investigate the use of idle detection to delay cache cleaning to improve read response

times with non-volatile caches.

We examine the problem of choosing an effective replacement strategy in three

ways using a combination of analysis and trace-based simulation experiments. We first

perform a comparative study of three simple replacement strategies for a non-volatile

cache to gain insight into the basic mechanisms (temporal locality, spatial locality, seek

distance) at work. Algorithms that exploit each of these mechanisms are used individu-

ally in other simulation studies and commercial products but little is known about how

they compare under similar working conditions. Our initial work addresses this problem

by looking at the performance of different cache management algorithms under similar
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conditions from the same trace-based workload.

Results of this simulation study reveal flaws in the use of simple cache cleaning

algorithms because both temporal and spatial locality govern cache performance. We use

these results to better characterize the disk workloads we use in simulation. We observe

that disk blocks fall into two groups based on their frequency of access: hot blocks that

are frequently written and will be often updated in the cache, and cold blocks that are

written a small number of times over a long period and seldom updated in the cache.

Using this observation, we develop a new, original replacement policy to better write

dirty blocks from the cache to disk. This new policy divides the cache into hot and cold

zones. Recently written blocks are held in the hot zone until they remain unmodified for

some period of time, and are then moved to the cold zone. Blocks are cleaned from the

cold zone in large groups. We show in a series of simulation experiments that this new

policy produces better performance than the three simple replacement policies we tested

earlier, with none of their deficiencies.

Finally, our work shows that cleaning the cache causes increases in read re-

sponse time because writes are made to disk in bursts. These bursts cause read opera-

tions to wait for service while the writes are completed. To solve this problem, we defer

cleaning the cache until the disk is idle, i.e. the disk is not servicing a read operation and

is unlikely to do so in the near future. We do this by using a simple idle detector that

waits for the disk to be unused for a fixed period of time before writing dirty blocks to

disk. An analytical model of the cleaning cycle shows that cleaning with idle detection

reduces read response time but also increases write response time because the cache is
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kept full during the idle detection period. Trace-based simulations confirm these results.

1.1 Motivation

As processors and main memory become faster and cheaper, a pressing need

arises to improve the write efficiency of I/O subsystems. Disks in particular are larger,

cheaper, and faster than they were 10 years ago, but their performance still lags that of

other subsystems. By looking at the latency and throughput of the different components

of a modern computer workstation, this lag is largely due to disk latency.

For example, a modern computer workstation will have a CPU clock rate up-

wards of 700MHz. The time to access one word of memory from RAM is at most 5 CPU

clock cycles, or at most about 7ns. Getting a word of information across a PCI-type bus is

a little slower due to a slower bus clock speed of 100MHz, but still is around 60ns. To get

a word of data across a SCSI bus requires even more time, approximately 250ns. All of

these latencies are within two orders of magnitude of the clock rate of the CPU. The disk

latency of disk is about 8ms for the latest generation of hard drives or approximately six

orders of magnitude larger than CPU clock speed.

Table 1.1: Approximate timing information for the data path from processor to disk.

Memory PCI Bus SCSI Bus Disk
Latency 1 clock 3 bus clock 200nS 8ms
Throughput 1 word/3 clock 1 word/2-3 bus clock 20 MB/s 4 MB/s

The effect of this disparity is most felt with I/O intensive tasks, especially write-

dominated tasks. Read traffic is affected, but large main-memory caches are an effective

technique for reducing the number of reads made to disk [40]. Therefore, the CPU
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must most often wait for disk writes to write or update file data or file system data and

metadata.

Rotation

Cylinder

Track

Platter

Read/Write Head

Comb

Spindle

Sector

Track

Platter

Comb

Pivot

Figure 1.1: The major logical and physical components of a magnetic disk drive. Disk
platters are attached to a central spindle which together spin around the spindle’s length-
wise axis. One set of magnetic read/write heads per platter are mounted at the end of
parallel arms, which together form a comb. An actuator forces the comb to pivot, swing-
ing the read/write heads between the outer and inner edge of the platters. Data is laid
out on the platters in concentric rings called tracks. The tracks at the same distance from
the spindle on all of the platters form a cylinder. Each track is divided into arcs called
sectors.

The write latency of disk arises from the design of the disk itself (shown in

Figure 1.1). A magnetic disk satisfies an I/O request by taking at most four distinct

steps: seek, settle, rotational delay, and read/write. A seek occurs when the disk actuator

moves the comb to reposition the disk head over the cylinder containing the track where

the next I/O request is located. The disk head is precisely aligned with the track under

the disk head during a settle after a seek or track switch (when two consecutive I/O

operations access data in different tracks in the same cylinder). Rotational delay occurs
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Track A

(a) Seek

Sector 51Sector 128

(b) Settle and rotational

delay

Sector 128
Sector 203

(c) Read/Write

Figure 1.2: The phases of a disk I/O operation for sectors 128 to 203 of Track A. The
read/write heads first move over Track A during a Seek. When the head is positioned
over Track A, it must settle to be precisely aligned over the data portion of the track.
When the settling is complete, sector 51 is currently under the disk head. The disk must
spin until sector 128 moves under the head. Finally, sectors 128 to 203 can be read or
written.

while the disk spins until the first sector of the I/O request passes under the disk head.

The data is read or written onto the disk during the read/write step. The steps in a sample

I/O operation are described in Figure 1.2. Much of the available I/O bandwidth that a

disk can provide is lost while the disk head is positioned over a requested sector in each

I/O operation.

Delaying write operations indefinitely in non-volatile memory before sending

data to disk reduces this loss of bandwidth. The longer that data are held in memory,

the more likely they will be overwritten or deleted, reducing the necessity for writing

them to disk. It is also more probable that data in non-volatile memory can be grouped

together to yield larger, more efficient writes to disk. Therefore, a buffer cache can sub-

stantially decrease the number of read and write operations actually serviced by the disk.
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This substantially reduces the amount of bandwidth lost by eliminating some of the time

necessary to reposition the disk head.

1.2 Non-volatile write caching

There are several different ways to incorporate a non-volatile write cache into

an I/O subsystem, each with advantages and disadvantages. At the lowest level, a non-

volatile cache could be attached to the controller of a hard drive. Such a cache would

have exact knowledge about the geometry and layout of the disk and be able to opti-

mize disk access accordingly. A non-volatile cache could also be attached to a channel

controller for some I/O channel, such as a SCSI bus controller. This offers the ability to

cache data for more than one I/O device, but may require more resources to model all the

devices on the channel than controllers currently possess. A still higher level approach

would be to place the cache in a block of NVRAM accessible to the kernel as a separate

operating system device or mapped into the kernel’s memory space. This allows the

kernel to potentially combine a non-volatile cache with whatever other I/O buffering

methods it uses. It also allows the use of CPU and main memory resources to model

the layout of data on all I/O devices connected to the system and actively distinguish

between file system data and metadata. The layout information modeled by a kernel

would not be as exact as in a disk controller cache, and would possibly expose the cache

to corruption caused by crashes in the operating system kernel.

We choose to examine this last approach, by modeling a non-volatile cache as

a block of battery backed up memory addressable by the operating system kernel. We
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use disk activity traces showing the requests produced by a volatile disk cache in the

kernel of the operating system and the write cache we propose operates at the same

architectural level. This design enables us to perform trace-based experiments with an

I/O subsystem that is minimally modified at the kernel level only. We also believe that

this ultimately offers the most flexibility in terms of availability of resources, cache con-

figuration, and cache management. Although this dissertation only discusses caches

which interact with one disk, a kernel level cache can be extended to interact with mul-

tiple disks. The cache management algorithms we discuss require few resources, but,

this design imposes few limits on algorithmic complexity because of the substantial re-

sources available at the kernel level. Changing or updating cache management methods

and parameters requires changing kernel level operating system software in this scheme.

Making such modifications is a routine task in practice compared to updating software

or firmware on channel or disk controllers.

Given that many operating systems already use some kind of file system cache,

two approaches can be used for incorporating non-volatile memory into an existing ker-

nel disk cache, write-aside and unified. In the write-aside model, file data are written both

into a volatile cache and the NVRAM. The NVRAM is used to protect the permanence of

the dirty data in the volatile cache, and is otherwise not accessed after system failure. In

the unified model, the volatile memory and NVRAM are treated as a single larger, logical

cache. An individual block may reside in either memory (but not both), and all dirty

blocks are required to be kept in the NVRAM.

We used the write-aside model for our experiments, for the practical reason that
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the disk activity traces we used were already filtered through a volatile read cache. It is

not possible to reconstruct a unified cache with read and written data together based

on this filtered activity. It is possible, however, to approximate total cache performance

with a write-aside model by assuming that the volatile cache is partitioned into sepa-

rately managed spaces for read and written data. Most read hits will occur in the sec-

tion reserved for read data and these hits are filtered out in the trace. The non-volatile

write-aside cache will mirror the contents of the portion of the volatile cache reserved

for written data. By explicitly monitoring the write-aside cache, we are then able to take

measurements of cache performance in term of block replacement, overwrites of data,

and read hits of recently written data.

Finally, it is important to describe the basic operation of the non-volatile write

caches we use and define some terms. In our cache design, dirty blocks generated by

the file system are written to the cache and eventually updated on disk in physical track-

based groups. By writing data from the cache based on physical location, we amor-

tize the cost of the seek phase of a write across a larger number of blocks and increase

throughput. We call blocks written into the cache that have not yet been updated on

the disk dirty. Dirty blocks must be written to disk before they can be overwritten in

the cache. Blocks in the cache that have been written to disk are clean and are eligible

for replacement. The process by which dirty blocks written to disk and become clean is

called cleaning. Since the act of cleaning blocks and replacing blocks in the cache are very

closely connected, we use the terms cleaning policy and replacement policy interchange-

ably.
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The cache cleaning policy is responsible for the management of the number of

clean and dirty blocks in the cache. To implement a replacement policy, the cache is

organized into a pool containing all the blocks in the cache, and two track-based lists of

dirty and clean blocks. Blocks are added to the dirty list when they are written into the

cache and become part of the block pool. During cache cleaning, blocks are moved from

the dirty list to the clean list in track-based groups in the order chosen by the replacement

policy currently in use. If a write request includes blocks from a track on the clean list,

the clean blocks already on the track (if any) are deleted from the block pool, and the

newly written data in that track moves to the dirty list. When a write request arrives

with blocks not already in the pool, clean blocks are removed from both the block pool

and clean list. If not enough clean blocks exist to hold the incoming data, the request

waits while dirty blocks are explicitly cleaned to disk. This is called a write stall.

1.3 Performance measures

We wish to study the impact of cache replacement policy on the utilization of

the disk with a specific emphasis on overall response time. Unfortunately, the event ar-

rival times in disk activity traces reflect the interaction between the running processes,

the kernel, and the I/O subsystem at the time when the traces were collected. In par-

ticular, the times at which certain I/O requests are made depend on when prior I/O

requests completed. Altering the behavior of the I/O subsystem with a simulated non-

volatile write cache will produce different event completion times, but, the time at which

all requests are made is fixed by the trace. This causes differences in the number of I/O
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requests waiting for service in certain circumstances and results in incorrect request re-

sponse times. Therefore, we cannot not simply measure read and write response times

directly and use them as accurate measures of system performance.

Instead, we break I/O subsystem response time into two parts. First, we mea-

sure service time which includes the seek time, settle time, rotational delay, and the time

to transfer data to/from the disk. We also measure the queue time each request spends

waiting to be serviced. The service times for read and write requests are directly com-

parable between those in the trace because a well-implemented disk simulator will ac-

curately reproduce the service time of the drive it simulates. Use of the queue times is

more problematic because the number of requests waiting for service may be inaccurate.

We therefore cannot compare simulated queue times and response times to those in the

original trace, but we do use them for comparing different simulation runs.

It is also important to measure of how much of the disk activity in the trace is

eliminated by using a non-volatile write cache. To do this, we count the number of times

that writes were made to the disk by cleaning the cache, and the size of each write used

to clean the cache. By comparing the total amount of data written to disk from the cache

with the total amount written in the trace, it is possible to get an idea of the amount of

work saved through overwrites. The number of cache hits and cache misses add further

dimension to how often data is overwritten in the cache. Some read operations are also

satisfied by data in the write cache, and a count of the number of read hits indicates fur-

ther work saved by the write cache. Finally, the number of writes generated by cleaning

the cache provides information about the amount of seek time (and potentially wasted
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bandwidth) generated by the I/O requests in the trace.

1.4 Organization

This dissertation is organized into several chapters. In Chapter 2, a brief review

of related research in the areas of write caching, disk scheduling, and adaptive block

placement is presented. Chapter 3 presents a detailed examination of some of the basic

strategies we use to test write cache performance. We use the results of these perfor-

mance tests to develop a new cache management algorithm and present it in Chapter 4.

In Chapter 5, we develop a probabilistic model of cache performance and apply it to the

problem of modeling simple idle detection for cache cleaning. Chapter 6 describes the

simulation environment used as the basis for all of our experiments. The results of our

simulation experiments are shown and analyzed in Chapter 7. The conclusions of this

work are summarized in Chapter 8.
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Chapter 2

Related Work

There is a large continuum of work devoted to hardware and operating system

level methods for improving the write latency of I/O subsystems. This has included

techniques for managing I/O requests in memory and rearranging data into more effi-

cient patterns on disk. In this chapter we will discuss some of the research related to the

original research presented in this dissertation.

2.1 Volatile Write Caches

One way operating systems have traditionally dealt with the problem of disk la-

tency is to use a volatile disk cache in the operating system kernel (such in the BSD UNIX

operating system). Read operations are handled in a read-through manner; information

is read from disk when requested for the first time, and stored in the cache. The cache

satisfies subsequent requests for this data without reading from disk. Space for newly

read data is made in the cache by ejecting the least recently used data. Such caches are
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very effective, typically satisfying 80 - 90 percent of read requests with a 512KB to 5MB

cache [39]. The I/O requests that remain tend to be write dominated, and the dominance

of write I/O requests creates the basic problem we examine in this dissertation.

Smith [48] is among the first to describe how similar techniques might be adapted

to reduce the disk latencies associated with writes. He describes two possible types of

write caches:

� a write through cache in which all writes are immediately sent to the disk surface

with copies kept in memory, and

� a copy back cache which accepts writes and transfers them to the disk when they

are pushed out of the cache.

Alhough no data is provided to suggest how effective either type of cache might be, there

is some discussion of practical design considerations that others ignore. Removable me-

dia pose a particularly interesting problem for write caches; written data must be flushed

from the cache to the media before it is removed. Other machines have I/O architectures

that are also not amenable to write caching. The IBM count-key-data architecture, for

example, initiates a transfer of data first and indicates if data is to be read or written last.

This makes it difficult to direct data to a special purpose cache rather than disk.

An implementation of a volatile disk write cache is described by McKusick et al.

in the description of the Berkeley Fast File System (FFS) for BSD UNIX [33]. When a pro-

cess writes data to a disk with the Berkeley FFS, data is placed into the write cache with

a write command. The cache is flushed to disk when the cache becomes full, the writing

process issues a sync command, or the kernel flushes dirty data in the cache at fixed in-
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tervals. The presence of a cache allows the writing process to complete an asynchronous

write request in the amount of time necessary to copy data from user memory to kernel

memory. If the written data is already present in the cache, it is overwritten and the

amount of data written to disk is reduced. Since the cache is volatile and its contents are

not immediately written to disk, data can be lost if the computer crashes. Trace based

simulation shows that such volatile caches can also be very effective, eliminating 65–90

percent of all disk accesses for file data [40].

While a volatile write cache does decrease the response time of many writes,

the approach has serious drawbacks. In order to reduce the amount of written data lost

during a sudden system failure, the dirty contents of the cache must be written to disk

frequently. These writes may force read operations to wait by increasing the amount of

time the disk spends writing data. It also reduces the amount of write activity absorbed

by the cache because cache blocks that may be overwritten in the near future are written

to disk.

Later work with volatile write caches attempts to reduce the amount of time

required to write out the contents of the cache. The Sprite Log-structured File System

(LFS) described by Ousterhout and Douglis [39] and Rosenblum and Ousterhout [42]

describe a special disk layout to reduce the amount of time needed to clean the cache.

Sprite LFS collects newly written data in a file cache in main memory like BSD UNIX, but

also abstracts the disk into a sequential, segmented log. When the file cache is cleaned,

it is written as a new contiguous segment at the end of the log as a single large I/O

operation. Old segments on the disk are periodically coalesced into a new segment at
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the end of the log and then marked as free when the new segment is full. Appending

writes to the end of a log in this way significantly reduces the amount of time required

to clean the cache.

Solworth and Orji propose using in a write cache in a similar way with a dif-

ferent kind of write protocol [38]. Data is written into a main memory write cache, but

data is opportunistically written from the cache to a set of reserved blocks on each track.

The cache uses the seek and rotational latency associated with a read to write data in the

reserved blocks on each track, “piggybacking” writes onto reads. The reserved blocks

are eventually cleaned when the data they contain are written back to their regular, fixed

locations. Using this method to write data out of the cache is especially effective if the

amount of data to be written is small since the number of reserved blocks on each track

is small. Since other work has shown that over 90 percent of writes to disk are less than

eight kilobytes in size [45], this is an effective approach.

These techniques do reduce the time spent cleaning the cache but the bursty

nature of cache cleaning still creates problems. Carson and Setia perform a queuing

model analysis to determine the average read response time when a periodic update

write policy is used with a write cache [8]. The authors conclude is that bursty arrivals

of writes caused by the periodic flushing of the cache creates a “traffic jam” effect that

severely degrades service except when the disk workload is highly read-dominated.

This conclusion is confirmed by work with volatile write caches in the read

dominated workload of online transaction processing systems (OLTP). Zivkov and Smith [47]

use an OLTP system with a cache similar in operation to the one used by the Berkeley
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Fast File System. Trace-based simulations show that delaying writes and writing them

to disk in batches resulted in no detectable decrease in write traffic, although batching

writes may decrease the amount of time spent writing to disk. This work also showed

that a mixed write policy that uses a write-back scheme for temporary data and a write-

through policy for permanent data increased reliability over a pure write-back cache

with very little effect on write traffic.

Carson and Setia extend their previous queuing analysis to determine how

batch write size for Sprite LFS affects the response time of read operations [9]. Clean-

ing the cache and coalescing disk segments require new segments of the disk be created

by a set of batched writes. These writes will cause read operations to block until they

are completed. Breaking up large batches of writes into smaller write groups can reduce

the amount of time that read operations block. This work uses an analytical method to

determine the size of those write groups which minimizes read response time while still

retaining the advantages of write batching.

The key limitation of the caches described thus far is their volatility. If the sys-

tem using a volatile cache suddenly crashes, the contents of the cache are lost. Related

work with volatile caches attempts to reduce this problem by cleaning the dirty contents

of the cache to disk at regular intervals. A frequent sync of the cache reduces cache per-

formance, however, by reducing the number of overwrites in the cache and increasing

disk activity. A better way to deal with sudden system failure is needed.
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2.2 Non-Volatile Write Caches

A more desirable solution is to make the write cache non-volatile. This is easily

accomplished by making the system more robust with an uninterruptible power supply

(UPS) or a small amount of battery backed up RAM (NVRAM). It is possible to delay

writes indefinitely with a non-volatile cache which provides two major benefits:

� the lifetime of frequently written data in the cache can grow, increasing the number

of overwrites in the cache, and,

� the periodic cleaning of the cache is no longer required, potentially reducing the

overall amount of disk activity.

If the cache no longer needs to be cleaned at fixed intervals, cleaning is best

governed by how many dirty blocks there are in the cache. This creates the potential

for some dirty blocks to remain in the cache for longer periods of time, especially when

arrival rates are low. A longer cache lifetime for dirty blocks may also mean reduced

performance during bursty periods of activity because less clean cache space may be

available for use by incoming data.

A common approach to handling cleaning is to use cleaning strategies that ex-

amine all dirty blocks in the cache when deciding to clean. Such strategies can include

cleaning the cache only when the cache is full, the disk is idle, or some kind of threshold

on the number of dirty blocks is reached. This allows a cleaning strategy to choose from

the largest possible selection of dirty blocks, making for more (and hopefully better)

choices of what to clean. There are several projects that have used this type of non-
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volatile cache.

The Rio File Cache, developed by Chen et al. [11], uses an uninterruptible power

supply and special software to create a non-volatile disk cache capable of surviving op-

erating system crashes. This cache operates much like the volatile cache described by

Ousterhout for the BSD 4.2 operating system [40] except that sync calls return immedi-

ately, and writes to disk are made when the cache is full. It is important to note that Rio’s

guarantee of protection is largely provided by software, and as such it does not provide

the same level of reliability as a block of NVRAM.

A NVRAM cache is used to improve performance of the Sprite LFS by Baker et al.

[4] with Sprite servers and disk-less clients. The authors investigate using non-volatile

RAM in two places: a non-volatile file cache on client workstations to reduce write traf-

fic, and write buffers for Sprite file servers to reduce disk accesses. Each cache is cleaned

when the Sprite segment cleaner coalesces older segments, and when the cache is full.

A similar approach to the Sprite LFS is used with a NVRAM cache by Hu and

Yang for the Disk Caching Disk (DCD) [26]. DCD uses a three level hierarchy consisting

of a NVRAM buffer, a log structured area of disk consisting of a logical section of one

physical disk or a separate physical disk called a cache disk, and one or more disks con-

taining hierarchical file systems. When a write request is made, data are written to the

NVRAM buffer and immediately reported as written to disk. The state of the cache disk

is checked, and the contents of the cache are written to cache disk as soon as the cache

disk is idle. The cache-disk is segmented much like the Sprite LFS [42] and is cleaned us-

ing a Last-Write-First-Destage algorithm. As segments are cleaned, data from the cache-
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disk are written to their primary physical locations on the data disks. Holes created by

overwriting are eliminated as the cache-disk is repacked during cleaning. Extensions

of this work include an improved cache structure which requires less NVRAM [27], a

patent [55], and the use of the DCD in a RAID array [28].

Work by Hitz, Lau, and Malcolm [24] and Hitz and Cheng [12] describe aspects

of the Write Anywhere File Layout (WAFL) and the FAServer NFS appliance by Network

Appliance Corporation. Together, the FAServer and WAFL use a NVRAM cache to log

incoming NFS write requests and data, as well as hold file system data for generating

snapshots. When placed in the cache, each request is split into two separate structures:

information representing the sequence number, location, and size of the write, and the

data to be written to disk. Writes requests are serviced based on the amount of data they

transfer to disk, with the largest requests being serviced first. Overlapping or contiguous

write requests in the cache are modified in one of three ways. Contiguous write requests

are coalesced into a single larger, higher priority write operation. Exact overlaps of NFS

writes (where two writes reference exactly the same disk blocks) cause the write with

the lower sequence number to be discarded. Inexact overlaps of NFS writes cause the

separate writes to be serviced based on their sequence number, regardless of size.

An alternative approach to cache cleaning involves dividing the cache into seg-

ments and using these segment groups to decide when and what data to clean from the

cache. This produces more incremental cleaning of the cache rather than large, bursty

cleaning operations. The interactions between segment size, read delays, and write

batch size remains an open issue, however. Work by Carson and Setia [9] suggests that
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the smaller amounts of data produced by incremental cleaning might reduce read wait

times, but further work is needed.

The Prestoserve data server from Legato Systems described by Moran et al. [35]

uses a non-volatile write cache embodied as a bus card with non-volatile RAM. Special

device drivers are installed which replace block and raw device drivers for the disks

with which the non-volatile write cache is used. These special device drivers process

I/O requests, sending the appropriate read and write requests to the cache and others

directly to disk. The cache is segmented into a series of small buffers, and the least

recently used buffer is written to disk first when cache space is freed. Data is flushed

from the cache only when it becomes full or when the number of unflushed buffers falls

below a configured threshold. The amount of data flushed from the cache depends on

which condition (cache fullness or unflushed buffer threshold) is true. If the cache is

full, a pre-configured percentage of the buffers are flushed to disk. Otherwise, buffers

are written to disk in small groups (also of a pre-configured size) until the number of

unflushed buffers falls below a threshold.

While these systems offer greater guarantees of reliability and higher poten-

tials for overwriting data in the cache, questions about cache performance remain. In

particular, little is understood about the relative performance of different management

algorithms under similar conditions. The replacement algorithm used in each case is

unaccompanied by any analysis or experimental evidence to justify its use. This lack of

supporting data leaves unanswered questions about what patterns in disk write access

govern the performance of a non-volatile write cache, and what better types of manage-



22

ment algorithms might exist.

There is also no analysis of the effect of cache cleaning on disk read perfor-

mance. A segmented approach that may reduce read delays was adopted in some studies

and products, but no published work justifies this choice. Work by Carson and Setia [9]

with volatile caches suggests that this may be a sound choice, but non-volatile caches

use significantly different cleaning techniques. Approaches that better compliment non-

volatile cache management policies may exist.

2.3 Caching with Disk Scheduling

One powerful approach to improving overall I/O performance is to schedule

disk operations to take advantage of the read and write characteristics of the disk. Such

scheduling can reduce the amount of time the disk head spends seeking from track to

track, improving mean response time. Log-structured file systems implicitly manage

the position of the disk head by appending data to the end of a log, but the LFS write

cache needs no special features which distinguish it from caches used by other file sys-

tems. Other systems with non-volatile write caches described so far also do nothing to

explicitly take advantage of disk scheduling.

We now consider write caches with specific design features for scheduling disk

operations. In order for a write cache to exploit disk scheduling, the cache must explic-

itly incorporate a model describing how data is laid out on disk and including some

knowledge of the disk’s seek characteristics. Writes to disk are then made from the cache

in a manner that profitably exploits the data layout of the disk to reduce the number
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and/or duration of the disk operations needed to clean the cache. Caches that use disk

scheduling in this way have been already studied in a number of different projects.

Solworth and Orji [49] propose using a NVRAM cache and opportunistically

piggyback a cleaning write of a dirty track onto a read request as with their volatile cache

work. The physical track with the largest number of dirty blocks also can be written to

disk when explicit cleaning of the cache is required. The major results of their work

with a model employing one disk surface show that writes become invisible and explicit

cleaning of the cache is not required if read rates are sufficiently high. Assumptions

are made for extending these results to disks which have multiple tracks per cylinder

that do not include head settle time, making them incompatible with the performance of

modern disk drives. Additional work by the authors applies these same ideas to multiple

disks [37], showing that a single disk model only works well for small caches. A multiple

disk model provides much better performance for large caches.

Biswas, Ramakrishnan, and Towsley study write policies for use with non-

volatile write caches with disk scheduling [6]. They investigate cache management poli-

cies that use one high threshold, or a high and low threshold. The single threshold cache

keeps a fixed percentage cache space free. If the number of dirty blocks in the cache

rises above this single threshold, the cache is cleaned until the number of blocks falls

below the threshold again. The high threshold has a similar function in a dual threshold

cache; cleaning begins once the number of dirty blocks rises above the high threshold but

stops when the number of dirty blocks falls below the low threshold. The same authors

with Krishna extend this single host result to look at the problem of write backs to file
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servers [7] in distributed file systems. All caches write data to disk based on which disk

track has the most dirty blocks.

An additional study by Chen, Bunt, and Eager [10] investigates further issues

of the interaction of non-volatile write caches in distributed file systems. Specifically, the

authors examine the effect of relative cache size and cache management policy where

write caches exist at both clients and servers. Three policies were examined: least re-

cently used (LRU), write-back with thresholds (WBT), and LRU purge with thresholds

(LRUPT). The LRU policy wrote blocks to disk one at a time in LRU order whenever

space was needed to make way for incoming blocks in all simulations. The WBT and

LRUPT policies wrote blocks to disk in groups. The choice of what group of blocks to

purge depends whether the cache is at the client, the server, or in a stand-alone envi-

ronment. For server or stand-alone caches, blocks are grouped based the number of

dirty blocks in a disk track. Client caches group blocks according to the number of dirty

blocks in the same file (since disk addresses are unavailable). The WBT policy purges

the block cache whenever the number of dirty blocks rises above a given threshold (as

in Biswas et al. [6]). The LRUPT combines the LRU and WBT approaches, using LRU or-

der but writing groups of blocks in the same track or file as the least recently referenced

block.

Fundamental questions about how the different management algorithms com-

pare in the amount of disk activity they generate, the load they can tolerate, and their ef-

fect on read response time remain unanswered. Biswas, Ramakrishnan, and Towsley [6]

provide an excellent study of the uses of thresholding and piggybacking but only with
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a cache using the largest segment per track management algorithm. The study by Chen,

Bunt, and Eager [10] examines caches with three different cache management algorithms,

but do so in a distributed file system environment with different client/server cache

combinations. Exploiting track-based scheduling with thresholds is therefore a useful

tool for managing non-volatile caches, but further study is needed to understand which

techniques work best with a given disk workload.

2.4 Caching with RAID

Patterson, Gibson, and Katz propose a high performance I/O system called

RAID [41] which presents a unique application for non-volatile caching. RAID uses a

technique called data striping to store data blocks of files on multiple disks to allow

parallel access to data storage. The disks in the RAID are split into reliability groups with

disk space containing redundant information that allows for data recovery should one of

the disks in the group fail. The same work by Patterson et al. provides a taxonomy of five

different ways to stripe data to accomplish data striping and redundant data placement

called RAID levels 1–5. The techniques used in the different RAID levels range from

simple disk mirroring (RAID 1) to distributing data and parity stripes across multiple

disks (RAID 5). For the remainder of this discussion, the term “RAID” will refer to a

level 5 RAID disk array that stripes data and parity information across multiple disks.

While RAID offers the advantages of improved performance and reliability at

reasonable cost, it also has a major drawback. Files in a RAID consist of a set of stripes

spread across one or more disks plus a parity stripe for the file on an additional disk. Up-
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dating a block in the file requires that the stripe containing the block and the parity stripe

for the file both be updated. Therefore, four disk accesses are required to update a single

data block: two to read the old data and parity, and two to write new data and parity.

This is known as the small write problem and causes severe performance degradation for

workloads where large numbers of small writes exist.

Menon and Cortney [34] show how NVRAM write caches offer a viable solution

to the small write problem by a technique called Fast Writes. A non-volatile write cache

is attached to the controller for the RAID array. Writes made to the RAID are written

as dirty blocks into the cache and immediately reported as written to disk with only the

delay of a write to memory. The cache data are then written to disks in the array by a

process called destaging. For the cache that the Menon and Cortney describe, destaging

begins once the number of dirty blocks rises above a fixed threshold and the least recently

used dirty block is destaged first. Since many applications read data before updating

them, it is very likely that the old value of the data block is in the array controller’s

cache. It is therefore possible to perform a destage write in three operations – one to read

parity, and two to write data and parity.

Varma and Jacobson test using Fast Writes with different write policies for

destaging with the NVRAM cache [51]. The authors compare the performance of four

different algorithms for destaging using synthetic workloads in simulation:

� First Come First Served scheduling which destages based on the order in which

write requests are made,

� Least-Cost scheduling which writes out data based on the shortest access time to



27

complete a destage write,

� High/Low Watermark scheduling uses the dual threshold cache scheme by Biswas,

Ramakrishnanan, and Towsley [6] described above, and

� Linear Threshold scheduling that adaptively varies the rate of destaging to disk

based on the instantaneous occupancy rate of the cache.

The results of these simulation experiments show that the linear threshold algorithm

provides the best read performance of all four algorithms with a high degree of burst

tolerance.

A NVRAM cache also improves RAID performance when recovering from a

single disk failure. When a single disk in the RAID fails, it is possible to reconstruct

data on the fly from the data and parity on the other disks to satisfy incoming requests

and rebuild the failed disk when a spare is installed. Since the reconstruction of data

requires reading and assembling data from multiple disks as well as possibly writing

to a spare, the RAID can support only two-thirds of its normal maximum workload in

this degraded state. The RAID experiences total failure if a second disk in the array fails

while the first failed disk is being rebuilt with a spare.

Hou and Patt [25] show how an NVRAM write cache can be used to both in-

crease the workload a RAID can handle and decrease the amount of time needed to

rebuild a failed disk when a disk in the array fails. In their scheme, the data needed to

recreate the failed disk are read from the other disks in the array when they are idle. The

NVRAM cache is used as a log for both incoming write requests and the writes to the

spare to recreate the failed disk. Writes are made from the NVRAM log to the necessary
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disks in the array when those disks are idle.

The use of NVRAM with RAID provides additional ideas and methods for use

with other kinds of disk arrays. The study by Varma and Jacobsen adds an additional

cache management algorithm, as well as doing some excellent comparative work for

cache management algorithms under similar load. The RAID problem domain is sig-

nificantly different from that for older, more conventional file systems, however, and

the RAID results are not applicable. This still leaves problems relating to the choice of

caching algorithm and the performance effects of cache cleaning unanswered for other

disk configurations.

2.5 Caching with Online Transaction Processing

The use of an NVRAM write cache has also been studied within the context of

online transaction processing (OLTP) systems. Many of the techniques used to update or

insert data in OLTP environments are similar to those discussed for file systems; others

are unique to this problem domain. Due to strict transaction semantics, data is consid-

ered to be volatile until commit time. Therefore, data can be explicitly buffered as pages

in volatile memory until commit time, similar to the write and sync semantics of a file

system. Unlike a file system, however, an OLTP system typically writes out the data

twice: once to a log used to reconstruct the consistent state of the database, and once as

part of a database page written to disk. The log is typically written out first, making it

possible to delay the write of the database page for an arbitrary amount of time. Check-

points (similar to the fixed interval cleaning of a file system disk cache) periodically flush
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database pages to disk to avoid a search of the log arbitrarily far back in time during re-

covery. Techniques exist which amortize the cost of log and database page writes across

more than one transaction [20].

Copeland et al. [14] examine using a NVRAM write cache in conjunction with

one such technique, “group commit with spooling”. In the group commit technique,

transactions are held up until a full page of data can be written to the log, or a timeout

occurs. Group commit with spooling performs writes out the log data as a background

operation when no read I/O is pending. By modeling an OLTP system with a non-

volatile cache using some pessimistic assumptions, the authors show that a NVRAM

cache is capable of providing excellent system performance. They also show that even if

disk unit cost decreases and UPS cost remains the same, NVRAM caching will be more

cost effective in the future because of the decreasing cost and power requirements of

DRAM.

A more general comparison of I/O and disk costs for Online Transaction Pro-

cessing (OLTP) systems is performed by Bhide et al. [5]. The authors begin by re-evaluating

the analysis performed by Gray [19] used to develop the “5 Minute Rule” – if a one kilo-

byte item is accessed more frequently than once every five minutes, it should be placed

in memory rather than on disk. Their results show that because of the constraints of an

OLTP system, the five minute rule must be replaced by a range of critical inter-access

times ranging from 500 to 10000 seconds. A cost comparison of different hardware solu-

tions under these conditions shows that with a recovery time constraint of less than 10

minutes, it is cheaper to use NVRAM or force data to disk than use volatile memory.
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eNVy is a high performance transaction system built by Wu and Zwaenepoel

using a 2GB Flash RAM array with a 16MB non-volatile SRAM cache [54]. Flash chips

are write once, bulk-erase devices with slow program times, a limited number of pro-

gram/erase cycles, and memories that cannot be updated in place. The authors over-

come these difficulties by using a segmented, log-based copy-on-write scheme (similar

to LFS [42]), page remapping, and a NVRAM write cache to provide low latency in-place

update semantics. In this case, the Flash RAM EPROMS are analogous to the segments

on disk in LFS. As in LFS, data is written to the cache and invalidated in the Flash RAM

array. When the NVRAM cache has been filled to some threshold, its contents are written

to a empty space on a Flash RAM module. If no such space is available where the cache

controller wishes to flush data, a RAM module is cleaned similar to the process used by

LFS.

Wu and Zwaenepoel test three different segment cleaning algorithms in sim-

ulation: a greedy heuristic that attempts to reclaim segments with the most invalid

data first, a locality gathering algorithm that attempts to spread frequently referenced

blocks across all segments, and a hybrid approach that combines elements of the first

two schemes. The greedy heuristic performs very well for a uniform distribution of

block access but degrades rapidly as locality of reference increased. The locality gath-

ering algorithm exhibits the opposite characteristics, performing well in situations of

high locality of reference but performing poorly when block distributions were uniform.

The hybrid approach partitions the Flash array into two or more parts and uses locality

gathering to move frequently accessed blocks between the parts while using the greedy
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heuristic to manage segments inside the parts.

The non-volatile buffer cache employed in the Rio file cache [11] is used in two

transaction processing systems: a lightweight transaction processor called Vista by Chen

and Lowell [32], and a version of the Postgres [50] database system with non-volatile

buffering by Ng and Chen [36]. In both cases, the reliable memory used to create the Rio

file cache is mapped into the transaction processing system’s address space to eliminate

double buffering and wasting memory capacity and bandwidth associated with other

kinds of usage semantics. For Vista, the focus of the work is on throughput, and the

authors claim an improvement in transaction overhead by a factor of 2000 for working

sets that fit in main memory. Reliability is the goal of the work with Postgres, with

the authors showing that non-volatile memory can be used in database management

systems to substantially increase speed without affecting system reliability.

OLTP workloads are generally read dominated, and may not exhibit the same

performance characteristics as the conventional file system workloads that are the focus

of this dissertation. They do, however, contribute some important economic arguments

for the use of non-volatile write caches. The studies by Copeland et al. and Bhide et al.

show how NVRAM caching with disk is a viable economic alternative to the using disk

alone. Systems such as eNVy, Vista, and modified Postgres also provide interesting ex-

amples of the speed and reliability that non-volatile RAM caching provides. This work

still leaves basic questions about the effects of cache management techniques on file sys-

tem performance unanswered.
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2.6 Other Work

Since disk scheduling will be used in the cache management work presented in

this dissertation and has been used with similar caches elsewhere, we now discuss some

different approaches to the problem. These disk scheduling algorithms use a variety of

techniques, many of which provided useful insights for the analysis of non-volatile cache

management problems.

Akyürek and Salem use one approach to the problem of reducing seek times by

adaptively relocating blocks on the disk [1]. A small number of frequently referenced

disk blocks are copied from their original locations to a small, reserved space near the

middle of the disk. The choice of what blocks to copy is made by keeping a reference

count for each block of the disk requested during a fixed period of time called a monitor-

ing interval. At the end of the interval, the most frequently referenced blocks and their

counts are reported and the counts are cleared in preparation for the next interval.

Trace-based simulation experiments use two strategies for placing blocks in the

reserved region: serial placement in the order of their block numbers and organ pipe

placement [21]. Results show that this technique can cut seek times substantially for

only a small fraction of the data on a disk. Not unexpectedly, the rearrangement scheme

works best with read-only file systems with a large number of users producing a stable

workload. Simulation tests also show that the choice of block placement policy has little

effect on overall results. This result contradicts tests with a modified UNIX device driver

in a real system [2]. The organ pipe placement policy works best there, with reductions

of over 90 percent in seek time in a large read-only file system.
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Ruemmler and Wilkes investigate a similar approach for reorganizing disk blocks

using the organ pipe heuristic [43]. Noting that Wong proved that the organ pipe heuris-

tic produced an optimal disk ordering for independent accesses [53], they use traces [45]

to test its effectiveness with read requests when dependencies in accesses exist.

The results of their experiments show that dynamic disk shuffling can improve

performance, but the benefits are not great: 2–15 percent overall. This is in part because

50 percent of the I/O operations in the study required no seeks at all, and cylinder shuf-

fling offers no benefits in this situation. The authors also note that the reductions in seek

times from shuffling are becoming smaller and smaller percentages of the long distance

seek times in modern disk drives, making the technique less useful with newer disks.

Disks shuffled infrequently (once a day to once a week) with small (block to track-sized)

shuffling quanta produce the best results in their study.

Others attempt to reduce write response time by using different methods to

schedule the movement of the disk head. Seltzer, Chen, and Ousterhout [46] and Jacob-

sen and Wilkes [29] describe disk scheduling algorithms based on head position. Per-

formed more or less concurrently, both studies focus on using simulation experiments

with shortest seek time first algorithms. Methods in both studies are subject to starva-

tion; new requests continue to arrive and may be performed by the disk before others

already queued for service with a large seek distance from the current position of the disk

head. Starvation can be limited by preventing additional requests from being added to

the queue. This causes the population is the queue grow smaller, however, and disk uti-

lization efficiency decreases. Both studies develop a solution to starvation by adding a
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time weighting factor to be used in conjunction with seek distance. Weighted shortest

seek time first algorithms show both strong average I/O time (within one to two percent

of shortest seek time) with a guaranteed bound on maximum response time [46]).

A study by King [30] examines a disk scheduling policy that statistically antic-

ipates the location where the disk head will be needed next, and moves it there during

an idle period. A simple analytical model of an anticipatory first come, first served algo-

rithm (called ANTIC) shows that the distance the head travels can be reduced as much

25 percent. If the distribution of requests is not uniform, the algorithm adapts by shift-

ing the ideal anticipatory position toward one of the “hot” spots on the disk. Since the

ANTIC algorithm uses idle periods to move the disk head, the approach is less effective

when arrival rates are high. Two possible solutions exist: reduce the size of anticipatory

seeks, and make seeks interruptible (something not possible with all disk controllers).

Results show that both approaches adapt well to high arrival rates. If the pattern of re-

quests from the disk is localized, ANTIC offers little benefit. If it is difficult to detect

when the disk it is idle, it is also hard to choose when to perform an anticipatory seek.

Gerchak and Lu [18] extend this work by attempting to find optimal solutions to

the problem of anticipatory placement of the disk head. They examine the problem of an

anticipatory arm location under two different kinds of head usage scenarios: the left end

(LE) scenario where the requested data is read from beginning to end, and the closer end

(CE) scenario where the data can be read backwards and re-ordered in a buffer where

necessary. They derive optimality conditions showing that the median of the read start

block distribution is optimal for LE. No closed form optimality conditions for CE are
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presented, but the authors show that a set of optimal anticipatory locations can be found

using numerical analysis. They confirm King’s result [30] that interruptible anticipatory

seeks are required.

This work in disk head scheduling provides useful ideas of the development of

cache management algorithms with disk scheduling that have not been tested in with

non-volatile write caches. The algorithm of greatest interest is Shortest Access Time

First algorithm employed in the studies on disk scheduling based on head position

by Seltzer, Chen, and Ousterhout, and Jacobsen and Wilkes. There are also algorithms

which use a combination of basic principles to perform effective head scheduling such

as the Weighted Shortest Access Time by Jacobsen and Wilkes. Work with block relo-

cation and organ pipe placement provides useful ideas for using frequency of access of

information that assisted in some of the modeling and analysis presented here.

2.7 Conclusions

There is a significant body of work related to using non-volatile write caching

with individual disks and disk arrays including research studies and commercial prod-

ucts. Some basic questions are left unanswered with regard to cache performance with

conventional file systems, however. Systems with non-volatile write caches such as the

Legato Prestoserve [35], Write Anywhere File Layout [12], and studies by Solworth and

Orji [49], Biswas, Ramakrishnan, and Towsley [6],and Chen, Bunt, and Eager [10] use a

variety of cache management schemes. Work by Biswas, Ramakrishnan, and Towsley [6]

provides a very good example of the interaction between thresholding and one cache
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replacement policy. Different cache replacement policies are tested by Varma and Jacob-

son [51] with RAID. Yet little work is presented justifying the choice of those policies, or

describing the key metrics used to describe cache performance are presented for more

conventional file systems. We address this problem with a comparative survey of three

basic cache replacement policies in Chapter 3.

There is also a large body of ideas about disk head scheduling algorithms that

has not been applied to the problem of developing non-volatile cache replacement poli-

cies. In particular, disk head scheduling algorithms like Weighted Shortest Seek Time

First [29] show that useful algorithms exist which combine more basic techniques in ef-

fective ways. Based on our survey results, we use a similar approach to develop a new

cache replacement algorithm in Chapter 4.

Work with volatile write caches has shown that the bursty nature of cache clean-

ing can cause increases in read response times for workloads which are not read domi-

nated [8]. Non-volatile caches exhibit similar bursts of write activity, but with the pos-

sibility of substantially different solutions based on the non-volatile nature of the cache.

We describe one such approach employing delays in cache cleaning impossible with

volatile caches in Chapter 5.

Finally, we present trace-based simulation results in Chapter 7 using disk activ-

ity traces by Ruemmler and Wilkes. These same traces have been used to test a substan-

tially different non-volatile cache system by Hu and Yang [26].
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Chapter 3

Cache management policies

A non-volatile write cache can improve the performance of the I/O subsystem

in three major ways. Data can be efficiently retained in the cache in such a way to increase

the number of overwrites of data. This reduces the number of writes serviced by the

disk – writes which would otherwise delay the service of read operations. Clean space

in the cache can be managed to reduce or eliminate stalled writes (writes which must

wait for clean cache space to become available). This makes I/O subsystem performance

resemble that of the cache for the processes that make write requests. When cache space

must be cleaned, writes from the cache are scheduled to reduce their overall response

time. This reduces the time reads must wait for service from the disk and the amount of

time the cache may be unavailable during cleaning and stalls are forced. Each of these

cache characteristics is governed by the exact policy used to clean the cache and the cache

size.

In this chapter, we focus on the management policies used to determine when
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and how to clean the cache. We describe three basic cache policies for scheduling cache

cleaning and provide simple models to show how they can improve performance. We

also discuss policies that are used to determine when cleaning begins and ends and dis-

cuss how exactly to model the writes to disk.

3.1 Cache replacement policies

A fundamental issue in the design of a non-volatile cache is the choice and

order of blocks to be cleaned from the cache as new blocks arrive. The blocks a cache

replacement policy chooses influences the number of overwrites in the cache because it

determines how long certain blocks remain in the cache. The schedule for cleaning blocks

is also set by the cache replacement policy. This schedule influences write response time

by increasing or reducing disk seek distance and rotational delay.

Several different replacement policies are used in different write caching stud-

ies and commercial products. The Least Recently Used (LRU) algorithm is used in the

Legato Prestoserve data server [35], and in a distributed file system by Chen, Bunt, and

Eager [10]. The Network Appliance FAS Server [12] and the non-volatile write cache re-

search by Biswas, Ramakrishnan, and Towsley [6] both employed the Largest Segment

per Track (LST) algorithm. Both Seltzer, Chen, and Ousterhout [46] and Jacobsen and

Wilkes [29] examined the Shortest Access Time First (STF) algorithm for use in reducing

write response time. Unfortunately, this published work presents each algorithm with-

out any reference to any of the others and it is difficult to compare the relative merits of

these algorithms.
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To investigate impact of cache replacement policy on cache performance, we

will examine all three of these candidate policies under conditions of similar workload.

These algorithms are attractive because they employ three basic principles: temporal

locality, seek distance, and write size. Comparing the performance of caches using these

algorithms under similar conditions will provide insight into the mechanisms at work in

the cache, and determine what the important metrics of cache performance are.

The remainder of this section describes the mathematical bases of LRU, STF,

and LST algorithms in detail to lay the foundation for their later use and comparison.

Descriptions of two of the algorithms (LRU and STF) compare their respective algo-

rithms to a first come, first served approach using queuing theory and probability theory.

The description of the LST algorithm shows that the algorithm cleans an optimally large

amount of data from the cache under certain conditions. Direct comparison of these

three algorithms using trace-based simulation appears in Chapter 7.

3.1.1 Least Recently Used

In the LRU algorithm, the most stale data in the cache is purged first. LRU ig-

nores the number of times data is written into the cache; it keeps track of the oldest dirty

data currently in the cache. This beneficially conditions the cache when data already in

the cache is modified because its cache lifetime is extended. Longer lifetimes increase the

opportunity for further overwrites of that data to be absorbed by the cache. LRU does

nothing to ensure that the write is reasonably short to service or is of significant size.

To capture a reasonable model of the behavior of an LRU cache, it is useful to

think of the cache as a stack of length m. Write requests in this model are references to
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single blocks on the disk or in the cache rather than extents (this does nothing to change

the mechanics of the model, but is simply done for ease of explanation). When a write

request arrives, the block it references is pushed onto the top of the stack if that block

does not already exist in the stack. If there are already m blocks in the stack, the oldest

block is ejected. If the new block is in the stack, it is removed from its place and pushed

onto the top of the stack.

If the writes are assumed to be statistically independent (though not uniformly

distributed), the write request stream becomes a string of independent random variables

r1; r2 : : : ; rt; : : : ; rn with the common stationary distribution f�1; : : : �ng such that the

probability Pr(rt = i) = �i for all t � 1. The content of the stack s is an ordered set m

of blocks taken from from the write request stream [j1; : : : ; jm] with a probability �jk of

jk being requested. The set of all possible orderings of the m blocks in the stack is Q,

making the size of Q the permutation of n blocks taken m ways. According to Denning

and Coffman [13], the fault rate function F which describes the number of blocks written

out of such an LRU stack is

F(LRU) =
X
s2Q

D2
1(s)

mY
i=1

�ji
Di(s)

; (3.1)

and

Di(s) = 1 -

m-i+1X
k=1

�jk :

This model is unrealistic because it treats blocks in writes in the request stream

independently; in reality, correlation exists between the blocks when processes write to

disk. We merely wish to show (pessimistically) how an LRU write cache will write to
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disk less by taking advantage of the fact that some blocks will appear in the cache more

frequently than others. When considering cache performance with write dependence

between blocks, it is easy to see that correlations between blocks mean that frequently

written blocks will be more likely to appear in the cache together in temporally local

groups. An LRU cache will be more likely to keep these groups together in the cache

because of the similar reference patterns and further reduce the number of writes to

disk.

It is also possible to create a similar model of an FCFS cache using a set of

independent random variables as input. In this case, the FCFS cache is not a stack but a

queue of length m with Q again being the set of queue states. As with the LRU cache, Q

is assumed to be the set of all orderings of m blocks with the size of Q being the number

of n blocks taken m ways. As writes arrive, they added to the head of the queue. If

the queue already contains m items, the tail of the queue is ejected. From Denning and

Coffman [13], the rate at which blocks are written out of an FCFS cache is

F(FCFS) =
1

G

X
s2Q

D1(s)

mY
i=1

�ji ; (3.2)

where

G =
X
s2Q

mY
i=1

�ji :

Modeling the transitions between states for both the LRU and FCFS can be con-

veniently done with a Markov chain. It is not difficult to show that both Markov chains

are irreducible and ergodic. It therefore follows that there are stationary probability dis-

tributions for each cache. If we let �(LRU) and �(FCFS) denote the vector of equilibrium
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probabilities for the LRU and FCFS cache respectively, and PLRU and PFCFS denote the

corresponding state transition probabilities, the limiting probabilities must satisfy the

following two conditions [3]:

X
s2Q

�s = 1

and

�j =
X
i

�iPij; j = 0; 1; 2; : : : :

where i represents the possible states and j the next future state both the LRU and FCFS

Markov chains. Therefore, the equilibrium equations for the FCFS and LRU caches are

�(LRU) = �(LRU)PLRU and �(FCFS) = �(FCFS)PFCFS.

Looking at the general behavior of both caches, it is now possible to collect some

common terms in Equations 3.1 and 3.2. If we let pf(s) be the probability at equilibrium

that a write occurs given that the cache is in state s, the total rate at which an algorithm

X writes out blocks is equal to the sum of the product of pf(s) and �s over all states, or

F(X) =
X
s2Q

pf(s)�s:

By using this formula to reorganize terms in the equations for F(LRU) and

F(FCFS), pf(s) becomes D1(s) for both the LRU and FCFS caches. The probabilities

for each cache being in the state s become

�s(LRU) =

Qm
i=1 �jiQm

i=2

�
1-
Pm-i+1

k=1 �jk

� (3.3)

and

�s(FCFS) =

Qm
i=1 �jiP

s2Q

Qm
i=1 �ji

: (3.4)
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Intuitively, the formula for �s(FCFS) represents the stationary probability of the current

queue state as a percentage of the total sample space. The formula for �s(LRU) shows

that the stationary probability for s is the fraction of the probabilities that the state s

occurs (the numerator) and that of an incoming block not already being in the cache (the

denominator).

Directly comparing F(FCFS) and F(LRU) is a difficult task because the combi-

natorial size of the set Q makes it hard to analyze these expressions with any rigor. It is

possible, however, to make some statements about �(FCFS) and �(LRU) caches that give

an intuitive understanding of how the two caches perform. Rather than try to compare

F(FCFS) and F(LRU) in general, let us look at the behavior of �s and pf(s) for a simple

model. Consider a pool of n blocks consisting of two sets of events, A and B containing

a and b events respectively that have exponentially distributed inter-arrival times. Each

set has a different uniformly distributed reference probability such that

�i =

8>>>><
>>>>:
� 1 � i � a

� a + 1 � i � n

where � < 1
n
< � and � = �=�. Given a cache which holds m blocks, the composition of

the cache is based on a binomial random variable X

P(X � t) =

�
m

t

��
a�

a�+ b

�t�
b

a�+ b

�m-t

:

The expected value of X is E[X] = (ma�)=(a� + b).

Applying the expressions for �s(FCFS) and �s(LRU) to this example, we get

�s(FCFS) =
�l�m-lP
s2Q �l�m-l
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and

�s(LRU) =
�l�m-l

Qm
i=2

�
1-
Pm-i+1

k=1 �jk

�
where l is the number of blocks from set A in each cache for state s. Likewise, the fault

rate for the state s is the same for both the FCFS and LRU caches:

pf(s) = 1 - l� - (m- l)�

For the statistically expected case, it is possible to obtain expressions for �s(FCFS), �s(LRU),

pf(s) by making l = (ma�)=(a� + b).

Neither of these expressions has a particularly direct reduction that makes com-

paring them a manageable task. The summation in �s(FCFS) can be reduced to a per-

mutation expression, but no further. The product of sum expression � s(LRU) cannot be

reduced at all without making some explicit assumptions about the order in which items

appear in the cache.

Some bounds can be put on these two expressions which do allow them to be

compared, however:

�l�m-l

Slower(n;m)�l�m-l
< �s(FCFS) <

�l�m-l

Supper(n;m)�l�m-l
(3.5)

and

�l�m-l

(1 - �)m-1
� �s(LRU) � �l�m-l

(1 - l(m - l)��)m-1
(3.6)

where the functions Slower and Supper are upper and lower bound approximations of
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combinatorial functions using Stirling’s approximation:

Slower(n;m) =

p
2�n

�
n
e

�n
p
2�(n -m)

�
n-m
e

�13(n-m)

12

Supper(n;m) =

p
2�n

�
n
e

�13m
12p

2�(n -m)
�
n-m
e

�n-m :

Given these bounds, it it is now possible to make some useful observations.

First, the formula for pf(s) shows that the fault rate for states with more blocks from A

is less than those states with less blocks from A. The stationary probability �s(LRU) will

also be larger for those states that have larger numbers of blocks from A in the cache.

The probability �s(FCFS) is dependent on the size of the cache alone and is therefore the

same regardless of the contents of the cache. Therefore, an LRU cache will be more likely

to be in a state that has a higher number of blocks from A at a steady state than an FCFS

cache. For this reason, the steady state fault rate of an LRU cache is likely to be lower

than that of an FCFS cache.

An example illustrating the relative values of �s and �s taken from the Equa-

tions 3.5 and 3.6 are shown in Figure 3.1 and 3.2. The increasing stationary probability of

states with a higher numbers of blocks from A given different ratios between � and � is

shown in Figure 3.1. States on the right side of the graph are several orders of magnitude

more likely to occur for an LRU cache than the same states in an FCFS cache at steady

state. Since these same states have a lower page fault rate, the steady state page fault rate

will be lower for the states at the right of the graph as well.

The expected steady state stationary probability for the same cache is shown in

Figure 3.2. The higher values of �s(LRU) indicate that the LRU cache is more likely to
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be (and remain) in a state with at least (ma�)=(a� + b) blocks than an FCFS cache. This

again points to an overall lower fault rate for the LRU cache at steady state.
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Figure 3.1: The lower bounds of �s(LRU) and the upper and lower bounds of �s(FCFS)
for caches where m = 10 and n = 1000 for different ratios of � to � as the number of
blocks from A increases across different states.

The LRU algorithm will increase the number of cache hits, but suffers from the

weaknesses that it can make inefficient writes to disk and does necessarily maintain large

amounts of clean cache space. In certain situations, the blocks that the LRU algorithm

picks to clean may result in large amounts of bandwidth being wasted by disk seeks. The

writes may also clean space in the cache in small increments, forcing incoming writes to

stall.
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Figure 3.2: The lower bounds of �s(LRU) and the upper and lower bounds of �s(FCFS)
for caches where m = 10 and n = 1000 for different ratios of � to � as the size of A grows.

3.1.2 Shortest Seek Time First

The STF algorithm attempts to minimize the amount of time between when the

write is initiated and when the first bit of data is written. The cache controller models the

current position of the disk head and writes the data with the lowest sum of seek time

and rotational delay. This data may be overwritten in the near future and the amount

written may be small. The amount of effort to model the position of the disk head is also

non-trivial.

The benefit of this approach can be found by developing an expression for the

expected seek time of a series of writes to a hard disk (see Denning [16]). Consider a

hard disk with W tracks per platter with the disk arm currently positioned at track k.

What is the expected seek time? The answer depends on the number of n operations

waiting to be serviced by the disk. We consider these each these requests to be a set of
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identically distributed random variables. According to Denning [16], the expected value

E[x] of such a set of n variables with a cumulative distribution F(u) is

E[x] =

Z
1

0

(1 - F(u))ndu: (3.7)

Given a disk where track 1 is at the outer edge and track W is the inner edge

of the disk, it is fairly straightforward to determine the conditional probability of arm

movement. Assuming that the head is positioned at track k and k < W=2, the disk head

can move k - 1 units toward the outer edge and the inner edge, and k to W - k toward

the inner edge. If the requests are assumed to be uniformly distributed across the disk,

the probability of a move to each track is probability p where

p =
1

W- 1
:

This results in the conditional probability distribution shown in Figure 3.3 and the fol-

lowing cumulative distribution function F(u):

F(u) =

8>>>>>>>>>><
>>>>>>>>>>:

0 u � 1
2

2pu- p 1
2
< u � (k - 1

2
)

p+ p
2
(2k- 3) (k- 1

2
) < u � (W- k+ 1

2
)

1 u > (W - k+ 1
2
):

(3.8)

By inserting equation 3.8 into equation 3.7 and integrating, it is possible to de-

velop the following expression for the expected seek time E[s] of n requests:

E[sn] =

�
W- 1

W

�n "
1

2
+ Smin +

Smax - Smin

2(n + 1)

 
1 +

1

n + 2

�
W

W- 1

�n+1!#
; (3.9)

where Smax and Smin represent the times where the head moves W-1 tracks and 1 track

respectively. The unscheduled seek time is obtained by setting n = 1 in equation 3.9. It
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Figure 3.3: Conditional probability that the disk arm moves u units.

is

E[s1] =

�
W- 1

W

�"
1

2
+ Smin +

Smax - Smin

4

 
1 +

1

3

�
W

W- 1

�2!#
: (3.10)

To see how the STF algorithm improves the performance of a non-volatile write

cache, consider two non-volatile write caches, one which cleans itself using an STF order

and the other using first come, first served (FCFS). If both caches contain the same m

blocks which must be written to disk and seeks to clean n of them at once, the STF

cache will take E[sn] time perform this cleaning and the FCFS cache will take nE[s1] time.

This is because the STF cache will use the placement of n blocks together to produce a

schedule that reduces the overall seek time required to write all n blocks to disk. The

FCFS cache will consider the blocks individually and not take total seek time into account

in creating a schedule. The FCFS cache instead writes blocks in the order in which they

arrived, in effect creating a schedule equivalent to n STF groups containing only one
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block. It is easy to see that E[sn] will always be less than nE[s1] for n greater than one,

and the STF cache will take less time to complete its cleaning.

Problems with the STF cache management algorithm arise because this ap-

proach only considers seek time in its measure of cost. Two other factors can play a

role: the availability of free space in the cache and cache hit patterns. By writing out

blocks in the track nearest the current position of the disk head, the number of blocks

being written out is ignored and may be small. This may create situations where small

amounts of clean space are available in the cache and incoming writes will be forced to

wait while additional space is cleaned. The extent closest to the disk head may also be

overwritten in the near future, and by writing it out disk, an I/O is created that could be

avoided.

3.1.3 Largest Segment per Track

With the LST algorithm, the cache controller sorts the dirty list in the cache by

the number of blocks in each dirty track. It cleans the track with the largest number of

dirty blocks first. LST requires very little state information. It has the advantage that it

initiates the purge that will free the largest possible amount of space in the cache.

Cleaning space in a non-volatile write cache is an instance of a fractional knap-

sack problem. Such problems are posed as follows:

A thief robbing a store finds n items: the ith item is worth vi dollars and
weighswi pounds, where vi and wi can be fractions of the ith item. He wants
to take as valuable a load as possible, but he can carry at most W pounds in
his knapsack for some integer W. What items should he take? [15]

In this particular case, each of the items is a dirty track based extent in a snapshot of the
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cache at taken at time t. Each of the items is assumed to have unit weight (cost), and so

filling the knapsack is merely a matter of choosing the items with the largest size (i.e. the

largest value). The knapsack is able to hold whatever pre-determined fixed percentage

of the cache necessary to reduce the number of dirty blocks to below a fixed threshold

and make the cache “clean”.

The optimal solution to this problem is to put the largest sized dirty track based

extent into the knapsack. Once that item is in the knapsack, all or a fraction of the largest

remaining dirty extent in the cache is added to the knapsack. This last step is repeated

until the knapsack is full.

The proof of the optimality of this solution relies on the fact that a globally

optimal solution can be arrived at by making a locally optimal choice. If S = f1; 2; : : : ; ng

be the set of extents to be cleaned ordered by decreasing size, let 1 be the extent of the

greatest size. Suppose A � S is an optimal solution to cleaning the cache and that the

first event in A is k. If k = 1, then schedule A begins with the greedy choice. If k 6= 1

then let B = A- fkg[ f1g. Because the size of 1 is less than or equal to that of k with A and

B having the same number of extents scheduled, B is also optimal. Thus B is an optimal

solution for S that contains the greedy choice of extent 1. Therefore a schedule always

exists that begins with the greedy choice.

Once the greedy choice of 1 is made, the problem reduces to finding an optimal

solution for those extents that remain in the cache that are compatible with extent 1. If

another solution B0 that solved S- f1g with fewer (at least one larger) extents than A- f1g,

thenB0[1would yield a solution with larger extents thanA and contradict the optimality
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of A. Induction on the number of steps made shows that making the greedy choice at

every cleaning step produces the optimal method for freeing cache space.

The weaknesses in this approach arise from relying on a snapshot to decide the

cleaning schedule and the assumption that cleaning cost is always proportionate to the

extent size. Cleaning cost is made up of three components, seek time, rotational delay,

and read/write time, of which only the last is proportional to extent size. Therefore the

cost to clean an extent is often not strictly proportionate to the size of the extent and

the schedule may incur large amounts of unaccounted cost due to seek time. The use of

snapshots to determine the cleaning schedule ignores the fact that certain of the extents

in the snapshot may be overwritten in the near future. By writing out these blocks, disk

activity is created which could otherwise be avoided.

3.2 Cache eviction policies

The choice of cache replacement policy dictates what blocks to clean from the

cache, and influences the frequency and duration of the cleaning proces. It does not,

however, describe when cache cleaning begins and ends. The decisions to begin and end

cache cleaning are part of a cache eviction policy.

The simplest policy we use to free space in the cache is write behind. Sectors are

written to the cache until the cache is full, and then dirty tracks are evicted when a new

write request arrives. Because blocks are evicted in cache based groups, the scheduling

algorithm can amortize the cost of several write requests in one write. The disadvantage

of this approach is that the write request that causes the cache to become full is stalled
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until a portion of the dirty list can be written to disk.

A simple way to improve this policy is to add thresholds to the cache to create

pro-active eviction policies. A single threshold cache begins to clean after the percentage

of dirty blocks in the cache exceeds a high threshold. When the threshold is crossed, cache

controller sets a “clean request” flag. Once this flag is set, the controller commits groups

from the dirty list and moves them to the clean list. The clean request flag is reset when

the percentage of dirty blocks falls below the high threshold. A dual threshold cache

adds a second low threshold. In this case, the clean request flag is not reset until the

percentage of dirty blocks is less than the low threshold. The combination of high and

low thresholds delays the start and stop of purging from the cache, creating hysteresis.

Adding thresholds has a number of advantages. Thresholds ensure that there

always is some free space in the cache and that stalls only occur during bursts in write

traffic. The use of thresholds means that cache cleaning does not need to be performed

immediately. The controller can attempt to clean the cache when the disk would oth-

erwise be idle, for example. The use of both high and low thresholds means that the

clean request flag is set infrequently if the difference between the two is large. The task

of cleaning the cache is split into smaller parts, reducing the impact of the additional

activity on other I/O requests. If the cache does fill during peak periods of load, it is still

possible to immediately clean blocks in the cache until the required amount of free space

is available.

To determine the effect of each eviction policy on cache performance, we test

each eviction policy in conjunction with each replacement policy in trace-based simula-
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tion in Chapter 7.

3.3 Conclusions

In this chapter we examined the basis for three major cache management al-

gorithms that have already been used by either another research project or commercial

product. The least recently used (LRU) cache replacement algorithm uses a stack model

and temporal locality to write out only those disk blocks that are likely to not be writ-

ten again in the near future. The STF or shortest access time first algorithm attempts

to reduce the inefficiency of writes by ensuring that the writes that have the minimum

overall access time for the disk head are written out first. The largest segment per track

or LST replacement algorithm creates more efficient writes by making the largest write

first reducing the ratio of byte per second of seek time.

Each of these algorithms performs poorly with certain types of write workloads.

The LRU algorithm may free blocks in small increments slowly because of long seek

times, forcing write stalls. The LST algorithm may clean data from the cache that will be

overwritten in the near future. The STF algorithm may suffer from both these problems.

This suggests that more complex types of cache replacement policies need to be found

which provide better performance in general.

These techniques will be tested in simulation and compared using different

metrics in Chapter 7. Their strengths and weaknesses in practice can then be accessed.

They will also be used for base line comparison with a new stack model-based policy

developed in Chapter 4.
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Chapter 4

A Stack Model-Based Replacement

Algorithm

Any cache replacement policy must control two things, namely which entities

to expel from the cache (the so-called victims) and when to expel them. The latter is very

important when the processes accessing the storage cannot be delayed. In this case, any

write occurring when the cache is full will stall and must wait while victims are being

cleaned to the disk. If the selection of these victims is not performed carefully, blocks

recently written into the cache will be flushed to disk. Once flushed to disk, the cleaned

blocks can be reused and overwritten as additional writes are made. If overwritten, the

data from victim blocks will not be present in the cache even though temporal locality

dictates that those blocks are the most likely to be accessed again.

In the previous chapter, we described three basic cache replacement algorithms:

least recently used (LRU), shortest access time first (STF), and largest segment per track
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(LST). Some simple mathematical modeling shows how each of them can potentially

improve cache performance by making fewer, shorter, or more efficient writes to disk

when cleaning the cache compared to a first come, first served policy. Each of these cache

replacement algorithms also have their respective problems however, because they only

attempted to improve one metric of cache performance.

To illustrate this problem, consider an LRU managed non-volatile write cache

such that the written blocks are spread widely across the disk in large number of con-

tiguous extents which are mostly small in size. The LRU cache replacement algorithm at-

tempts improve cache performance by keeping the most recently referenced blocks in the

cache using the assumption that these blocks will be referenced again soon. This keeps

the most recently written extents in the cache for a longer period of time to increase the

number of overwrites in the cache and reduce the number of blocks to be cleaned from

the cache. Because many of the extents to be written to disk are small, cleaning the cache

without regard to differences in extent size and access time is inefficient due to wasted

bandwidth. Cleaning in this way also may force additional write stalls if cache space is

cleaned in small increments.

In this chapter, we address some of the deficiencies of simple algorithms like

LRU, STF, and LST. We do this first by characterizing the properties of what we believe

is a common I/O workload for disk and presenting some trace-based tests showing that

this workload is valid. We then use this information to develop a new hybrid cache

replacement algorithm that is well-suited for use with this workload [23].
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4.1 A File System-Based Disk Workload

To consider the general I/O workload for a disk, we must first examine some of

the common properties of the file systems exhibit when accessing disk. First, file systems

read and write disk blocks in groups because of the cost of I/O operations. Each oper-

ation incurs a penalty due to seek time and rotational delay. This makes single blocks

in the cache very expensive to read or modify; each requires a separate I/O operation.

Working with groups of blocks in contiguous segments amortizes the cost of a single I/O

operation across several blocks.

Next, we must consider interdependencies between groups of blocks and the

relative frequency of access. A file system produces a structured layout of data on the

disk. Accesses to this structure will have dependencies. For example, changes in file

size in the Berkeley Fast File System [33] will not only produce accesses to the blocks

holding the data, but also to i-nodes describing the files. Files are also opened, modified,

and closed by programs during specific program runs or in regular bursts for program

daemons that provide system services. Accesses of interdependent blocks therefore can

generally be expected to occur close together in time during short bursts or regularly

across long periods, depending of the behavior of the process modifying the data. A file

system may also keep copies of some frequently used structures in memory that must be

regularly written to disk to create checkpoints. Therefore, we propose a model of cache

behavior that divides I/O operations into hot and cold groups. Blocks in the hot group

are regularly and frequently updated, and, those in the cold group are created, modified

a few times, and then not touched again for a relatively long time.
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To illustrate the effect of hot and cold groups on cache performance, consider

the simple independent reference model used to illustrate the LRU replacement algo-

rithm in Chapter 3. In this model, there are two populations of blocks, A and B, with

different uniformly distributed reference probabilities such that blocks from one popu-

lation are more likely to arrive than the other. If we assume that blocks in the smaller of

the two groups,A, have the higher reference probability, �, then this group will represent

the hot blocks frequently used by the file system itself or by long running programs. The

remaining blocks in group B represent blocks used in file system operations where a file

is created and/or modified, and then not touched for some relatively long period of time

with reference probability �. The expected number of blocks from A that reside in the

cache is

E[X] = (�ma)=(a� + b) (4.1)

where m is the size of the cache, a is the number of more frequently accessed blocks, b is

the corresponding number of less frequently accessed blocks, and � is the ratio of � to �.

From Equation 4.1, we see that all the blocks from A are expected to be in the

cache when cache size is sufficiently large because the number of blocks in the cache

from A increases as the cache size increases. Since the cache hit rate depends on the sum

of the reference probabilities for all the blocks in the cache and � is greater than �, hit rate

will grow quickly as more blocks from A are expected in the cache. Once all of the blocks

from A are expected to be in the cache, cache hit rate will increase because only because

additional blocks from B are expected to be in the cache. Because � is smaller than �,

these increases in cache hit rate will be relatively small. This produces a knee in a plot of
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hit rate to cache size, which is precisely the behavior seen in trace-based simulations as

shown in Figure 4.1.

This simple model of cache behavior treats I/O references as single blocks. In

reality, I/O requests deal with groups of contiguous blocks, which we call segments. To

simplify the eventual presentation of our policy, we define a segment as a set of contigu-

ous blocks located on the same track. By using with a track-based approach to grouping

segments, cost is associated with one seek of the disk head and one rotation of a disk plat-

ter. This has the advantage of making the cost of writing an individual block inversely

proportional to the size of the segment to which it belongs.

More formally, our new replacement policy is based on the following three ob-

servations about disk I/O workload:

1. Writes to blocks in the cache exhibit spatial locality: blocks with contiguous disk

addresses tend to be accessed together in segments,

2. Writes to blocks in the cache also exhibit temporal locality: the probability that a

block in the cache will be accessed again is a decreasing function of the time interval

elapsed since it was accessed last, and

3. The curve representing the hit ratio of the cache as a function of its size exhibits

a knee: once a given minimum cache size is reached, further increases of its size

lead to much smaller increases in the hit ratio (as seen in data from our trace-based

simulations shown in Figure 4.1).
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Figure 4.1: Simulated hit ratios as non-volatile write cache sizes increase for the two
disks used in our experiments.

4.2 Cache Behavior

Given a cache exhibiting the properties of temporal locality, spatial locality, and

a diminishing benefit to hit ratio described above, consider the m segments in S residing

at any given time in a write cache. Assume that they are sorted in LRU order so that

segment S1 is the most recently referenced segment. Let n i represent the size of segment

Si expressed in blocks. If accesses to segments in the cache follow the LRU stack model,

each segment has a probability �i of being referenced next. This probability will decrease

with the rank of the segment i.e. i < j implies �i > �j. Note that �i represents the

probability that keeping segment Si in the cache will avoid a cache miss at the next disk

write.

The contribution of each block in segment Si to the expected benefit of keeping

segment Si in the cache is given by the ratio �i=ni. It makes sense to keep all the seg-

ments with the highest �i=ni ratios in the cache because this strategy makes the most ef-
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ficient use of cache space. Conversely the segment with the minimum �k=nk ratio should

be expelled. The blocks of that segment have the lowest probability of avoiding a cache

miss during the next write.

Using these probabilities, the segments residing in the cache are partitioned

into two groups. The first group contains segments recently written into the cache; these

are the most likely to be accessed again in the near future. These hot segments should

remain in the cache. The second group contains the segments not recently accessed and

therefore much less likely to be referenced again. These cold segments are all potential

victims for the replacement policy.

These two groups of segments are identified based on the knee in the curve

representing the hit ratio of the cache as a function of its size. Let sknee be the size in

blocks of the cache at the knee and let Cj be the sum of the sizes of the first j segments in

the LRU stack ordering of all segments in the stack:

Cj =

jX
i=1

ni: (4.2)

The hot segments are the k most recently referenced segments that could fit in a cache of

size sknee, that is, all segments Si such that i � k where k is given by:

maxfj j j � 1 and Cj � skneeg: (4.3)

All cold segments are assumed to be good candidates for replacement. We infer

from the hit ratio curve that the �i=ni ratios for cold segments differ very little from

each other. We would expect to see a greater increase in hit rate where the hit rate is

nearly constant past the knee otherwise. Therefore the most efficient choice is to clean
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the largest segment in the cold region. This cleans the most cache blocks for the cost of

one disk seek and at most one rotation of the disk platter.

In Chapter 3, we discussed how a write behind replacement policy that never

expels segments until the cache is full can often cause writes to stall for lack of available

space in the cache. We also discussed how this can be avoided by setting an upper

threshold on the number of dirty blocks in the cache to force block replacement to begin.

By using a threshold to maintain some clean space, say 10 percent of the cache space, the

cache is able to absorb short-term bursts of write activity and prevent stalls. Our cache

replacement policy then has two thresholds: one to determine when replacement should

begin in order to keep a minimum amount of clean space, and one to determine when it

ends based on the location of the knee.

The algorithm to select the segment to be expelled can thus be summarized as

follows:

1. Find sknee the size of the cache for x-value of the knee of the hit ratio curve.

2. Order all segments in the cache by the last time they were accessed: segment S1 is

the most recently accessed segment.

3. Compute successive Cj =
Pj

i=1 ni for all Cj � sknee.

4. Let k = maxfj j j � 1 and Cj � skneeg.

5. When 90 percent of the cache is full of dirty pages, expel the segment Sv such that

Sv has maxfni j i > kg until Sv = Sk.



63

4.3 Conclusions

In this chapter, we discussed the shortcomings of simple cache management

algorithms like LRU, STF, LST. These algorithms only attempt to improve one metric of

cache performance, such as seek time, write size, or number of writes. This can lead to

situations where the cache performs well according to one metric but not others, creating

poor overall performance. For example, a management algorithm may effectively reduce

the amount of data written to disk but forces an unacceptable number of stalled writes

because the amount of clean space in the cache is small. We believe that this is true for a

common I/O workload where there are frequently referenced hot blocks on the disk and

cold blocks that will be created and then updated infrequently.

To solve this problem, we proposed a new segment-based cache replacement al-

gorithm that exploits both temporal locality and write size to make more efficient writes

of cache stale data during cleaning. To do this, the cache is divided into hot and cold re-

gions based on the ratio of time since last access to segment size. The hot region contains

the most recently written dirty segments. Segments move to the cold region when the

ratio of time since last access to segment size increases past a threshold value. Once in

the cold region, segments become candidates for cache cleaning. Segments are written

to disk in track based groups according to the amount of dirty data per track. This cache

replacement policy will be tested in trace-simulation in Chapter 7.
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Chapter 5

Idle detection

A practical problem with non-volatile write caches is that cleaning the cache

causes read events to wait while data is written from the cache to disk. The thresholds

that make such caches more effective by reducing disk write activity and stalled writes

also cause read delays because the thresholds causes cache cleaning to occur in bursts.

These bursts occur without any knowledge of recent disk utilization and cleaning may

begin during a period of high read activity for the disk. The writes used to clean the

cache create congestion and increase read response time by forcing reads to wait for

service by the disk while the writes are performed [9]. They also increase total disk seek

time by eliminating the benefit of any spatial locality in the read request stream [30].

One possible way to ameliorate these read response increases is to delay the

cleaning of the cache until the disk is not servicing a read request and unlikely to service

another for some time. In this state, the disk is considered to be idle. If cleaning is

performed while the disk is idle, no read requests must wait for additional time for
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service while the cache is cleaned. This also has the potential benefit that additional

overwrites may occur in the cache by forcing a delay in cleaning dirty blocks to disk.

These benefits are not without cost: the cache remains full of dirty blocks and stalls

occur as write requests arrive that do not overwrite blocks in the cache. Thus the overall

effectiveness of this idle cleaning approach depends on finding a good balance between

increase stalled writes the reduction in read response time.

In this chapter, we evaluate the relative merits and deficiencies of idle cleaning.

We will focus on a very simple constant-time idle detection technique that waits a fixed

amount of time after each request is complete. If no read requests requiring disk access

arrive during this time, the disk is considered to be idle and cleaning can begin. If a

read arrives, cleaning is interrupted and the read is serviced. The disk must then remain

unused for the fixed idle detection period before cleaning can resume. To facilitate our

analysis, we will develop two mathematical models: one describing how often the cache

must clean data to disk, and another for calculating read and write response time during

idle detection and cache cleaning. The results of this analytical analysis will then be

compared with simulation results in Chapter 7 of this dissertation.

5.1 Modeling cache behavior

Consider the following model of an I/O subsystem with a non-volatile LRU

write cache: the system consists of a disk with an associated event queue and the non-

volatile write cache itself (see Figure 5.1). I/O requests are made by the computer’s

process population and arrive at the cache in two separate streams of read and writes.
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Figure 5.1: Modeled request streams into and out of the disk cache.

Each stream has a fixed associated arrival rate; reads arrive at a rate �R and writes at �W.

Each request stream has its own separate hit probability for the cache, hr and hw. The

I/O events are filtered by the cache based on these hit probabilities and then passed to

the event queue of the disk.

For modeling purposes,hr and hw are assumed to be independent of each other

and calculated differently. The read hit probability, hr, is assumed to be a fixed constant

representing the probability that a recently updated block is found in the write cache

such that 0 � hr � 1. The write hit probability, hw, varies with the contents of the

write cache. The cache will contain at most n blocks where each block has an associated

hit probability pi and the blocks are ordered by increasing hit probability (pi � pi+1 :

1 � i � n - 1). The probability that the next written block will be in the cache can be

expressed as:

hw(n) =

nX
i=1

pi:

The events that arrive at the disk are also separated into two event streams (see

Figure 5.1). Reads arrive at the rate �r = (1 - hr)�R.

When the cache becomes full and must be cleaned, writes are made from the
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of dirty blocks in a cache of size n. At any given time the cache has nd dirty blocks in
it. After some period of time, nd will be greater than nlow and then nlow � nd � nhigh
from then on.

cache to disk at the rate �w. The choice of when to clean the cache and how much must

be cleaned is based on two cache parameters, nhigh and nlow, such that 0 � nlow <

nhigh � n as shown in Figure 5.2. Cleaning begins when the number of dirty blocks in

the cache is greater than or equal to nhigh and ends when the number falls below nlow.

The probability pclean that a given write event will force the cache to be cleaned is:

pclean = (1 - hw(nhigh))p(N = nhigh)

where N is the number of dirty blocks in the cache. From this, we calculate the disk write

arrival rate to be �w = pclean�W.

To evaluate the probability that there will be nhigh blocks in the cache, consider

that the cache is a Markov chain that moves between at most n different discrete states

as dirty blocks are added and removed. To understand the transitions between each of
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Figure 5.3: The state transition when an additional block is added to a write cache con-
taining i blocks.
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Figure 5.4: The state transitions made around the nlow and nhigh boundaries of the write
cache.

these states, consider the change in state of the cache when one block is added to the

cache shown in Figure 5.3. Before a new block is added to the cache, there are i dirty

blocks in the cache with an associated hit probability of hw(i). A state transition only

occurs if the number of dirty blocks in the cache increases because the arriving block

isn’t in the cache or is in the cache and clean. The probability of a state transition is

therefore 1 - hw(i) and the hit probability of the i + 1 state is hw(i + 1) = hw(i) + pi.

Looking at the boundary conditions at nlow and nhigh, cleaning the cache introduces a

cycle into the overall state transition graph, shown in Figure 5.4.

Ignoring the initial state transitions where the number of dirty pages is below
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nlow, the state transition graph can be translated into the following probability matrix:

P =

2
666666666666664

hw(nlow) 1- hw(nlow) 0 � � � 0 0

0 hw(nlow + 1) 1- hw(nlow + 1) � � � 0 0

...
...

...
...

...

0 0 0 � � � hw(nhigh - 1) 1 - hw(nhigh - 1)

1 - hw(nhigh) 0 0 � � � 0 hw(nhigh)

3
777777777777775

:

It is not difficult to show that this matrix is irreducible because the there is always a pos-

itive probability of the cache moving between two states in an arbitrary number of steps.

Likewise, each of the states also communicate because the state transition probabilities

are non-zero. If the state transitions governed by hw(n) remain constant over time, the

matrix is also aperiodic. If the Markov chain is irreducible and aperiodic, it must be

ergodic and a set of steady state limiting probabilities must exist. This can be verified

using numerical analysis as the converging values of pclean show as P is multiplied by

itself in Figure 5.5.

In order for the state transition probabilities between states to remain constant

over time, the function hw(n) must be of the form

h(n+ 1) = h(n) + �

where the � is approximately constant for nlow � n < n + 1 � nhigh. This means that

while the blocks are written into the cache at an exponentially distributed rate, the prob-

abilities that dirty blocks in the cache will be referenced again differ very little from each

other. Were this not the case, the probability of creating a new dirty block in the cache

would depend on the order in which blocks were written into the cache, the Markov

chain would no longer be homogeneous, and the model would break down.
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Fortunately, we believe that block reference probability distributions support-

ing a time homogeneous matrix are common. Two examples of reference distributions

that create homogeneous transition matrices are the reference model described for the

LRU cache in Chapter 3 and the access patterns we assume for the stack model based-

algorithm in Chapter 4. In both cases, the stream of write operations consists of events

referencing either a small set of blocks very frequently or a larger set infrequently. Given

a cache of sufficient size, the cache will be expected to contain all of the frequently ref-

erenced data. Changes in contents of the cache will come from infrequent writes to the

larger set of data where writes are assumed to be equally likely to all the blocks. There-

fore, by making nlow sufficiently large to include all of the frequently referenced blocks

in the cache, both of these examples produce homogeneous transition matrices. We will

test this assertion by comparing model results with trace-based simulation in Chapter 7.

5.2 Modeling cache cleaning

The analytical model for cache cleaning we present treats each cleaning interval

independently assuming that cleaning operations occur approximately tcycle seconds

apart where tcycle = 1=�w and �w = pclean�W. The model describes a cleaning cycle

that begins with a cache full of dirty blocks needing to be cleaned, followed by fixed

sequence of steps. First, there is a waiting period to detect if there is an interarrival

time in the read request stream larger than a pre-set constant. When such an interarrival

time occurs, the disk is declared idle and the disk’s event queue is allowed to drain. The

contents of the cache are then cleaned to disk, followed by the service of any reads which
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arrived while the writes were performed, the service of the reads that arrived while those

reads were serviced and so on, until no further requests remain. After this cleaning cycle

is complete, the disk system becomes an M/G/1 server that services read requests until

the next time cleaning is required. The relationship between the various times can be

seen in Figure 5.6. This model resembles that developed by Carson and Setia [8] for their

periodic update analysis.

The first interval in the cleaning cycle, tdetect, is the period when the disk acts

as an M/G/1 server and the cache determines if the disk is idle. The duration of the

test interval, tidle, is a parameter set as a part of the tuning of the cache. The actual

amount of time spent waiting is a function of the arrival rate �r of requests. Intuitively,

let X be a geometric random variable representing a series of Bernoulli trials every tidle

seconds where the trial is true if no reads arrive since the last trial and false otherwise.

The probability p that a Bernoulli trial succeeds is the probability that no event arrives

during tidle seconds or

p = e-(�rtidle)
(�rtidle)

0

0!
= e-�rtidle:

Therefore, the time to detect an idle period, tdetect is the product of one plus the expected

value of X and tidle or

tdetect = tidle

�
1+

(1 - e-�rtidle)

e-�rtidle

�

with a variance of

(1 - e-�rtidle)tidle

e-2�rtidle
:
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Next, any waiting reads events are allowed to drain out of the disk’s queue. As-

suming that the arrival pattern of reads is relatively independent of the cleaning activity

of the disk, the system is operating as an M/G/1 server when cleaning commences. The

interval tr is the time required to service reads that are in the queue. Since reads and

cleaning activity are assumed to be independent, the cleaning cycle commences at a ran-

dom time as far as read arrivals and service completions are concerned. Therefore, the

value of tr is at most the “virtual waiting time” of a random arrival from Pollaczek’s

formula:

Wq =
�rWs(1+ C2

s)

2(1 - �r)
=

�rE[s
2]

2(1 - �r)

where �r � �rWs is a measure of the probability that the disk is servicing a read. The

squared coefficient of variation term C2
s includes a measure of the random variability in

each disk service operation.

The fact that idle detection occurs before the read queue is allowed to drain

affects the length of tr, however. Because no read request has arrived for tidle seconds in

order for the disk to be considered idle, the draining of the disk’s queue actually begins

at the start of the idle period. Therefore, the complete expression t r is:

tr =

8>><
>>:

Wq- tidle Wq > tidle

0 Wq � tidle:

The third interval of length tw is the time required to complete writes that are

needed to clean the cache. Given that every cleaning cycle begins tcycle seconds apart on

average, the number of writes to be cleaned is the product of the number of writes in the
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cache and the average service time for each, or

tw = (nhigh - nlow)Ws:

A series of read intervals now follows before the system returns to an M/G/1

queueing state. These intervals are of average length ti; 1 � i �1. The first read interval

of length t1 is the time to complete read requests that arrive during tw, so t1 = tw�r. In

general, ti is the time required to service read requests that arrive during i - 1. Thus,

ti = �rti-1 = t0(�r)
i. The total length of the active part of the cleaning cycle is

tactive =

1X
i=0

ti =
t0

(1 - �r)
:

: : :

tactive

t1 tn

tr tw

tcycle

tdetect

t0

Figure 5.6: Relative times in a cache cleaning cycle of a non-volatile cache.

The average response time for reads can now be calculated for each of the inter-

vals in which reads are serviced. This is identical to an expression developed by Carson

and Setia [8]. Let R1 be the the average read response time during period t1. This is equal
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to the average amount of time spent waiting during the preceding interval plus the aver-

age time to be serviced during the current interval. The average waiting time during the

interval when the request arrived is the mean residual amount of time left for a random

arrival, t0=2+�2t0=2t0, where �2t0 is the variance of t0. The average time for service in the

system includes both queuing and service time. Let A[k; t] be the probability that k read

operations arrive during a period of t seconds. Since the read arrival process is Poisson,

this is

A[k; t] = e-�rt
(�rt)

k

k!
:

Given that there are k arrivals in the system during time t, the average waiting time

W[k; t0] is

W[k; t0] =

kX
i=0

iWs

k
:

Therefore, the average time in the system during the interval t1 is:

1X
k=1

W[k; t0]A[k; t0] =

1X
k=1

kX
i=0

iWs

k
A[k; t0]

=

1X
k=1

Ws

k

kX
i=0

iA[k; t0]

=

1X
k=1

Ws

k

k(k+ 1)

2
A[k; t0]

=
Ws

2

1X
k=1

kA[k; t0] +
Ws

2

1X
k=1

A[k; t0]

=
Ws

2
(�rt0 + 1 -A[0; t0])

=
1

2
(t1 +Ws(1 - e-�rt0)):
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The value of this last expression lies between t1=2 and (t1 +Ws)=2. Assuming the lower

value results in closed form expression with a slightly more optimistic prediction of re-

sponse time. Carson and Setia report that assuming either bound makes little difference

in the final response time calculation. Using this bound provides the following average

response time requests serviced during t1:

R1 =
1

2

 
t0 +

�2t0
t0

+ t1

!
: (5.1)

The variance of the time t0 in Equation 5.1 is the combination of the variances

of tr, and tw. The variance of tr is the variance of the queue waiting time for an M/G/1

system when tr > 0 or

�2rE
2[s2]

4(1 - �r)2
+

�rE[s
3]

3(1 - �r)

The variance of the cache cleaning period is expressed as the variance of of a random

number of random variables, or E[s2](nhigh - nlow). Therefore the overall variance for

the t0 is

�2t0 =
�2rE

2[s2]

4(1 - �r)2
+

�rE[s
3]

3(1 - �r)
+ (nhigh - nlow)E[s2]: (5.2)

During the remaining read intervals where i � 2, the average response time is

calculated in a similar way. During the interval i-1, a random number of read operations

arrive. The variance of the aggregate time to service those reads is the variance of the

sum of a random number of variables, or:

�2ti-1 = �rti-2�
2
s +W2

s�rti-2 = E[s2]�rt0�
i-2
r :
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The response time for requests serviced during interval i � 2 is the sum of the waiting

time during the i- 1 interval and the waiting and service times during interval i, or

Ri =
ti-1

2
+
�2ti-1
2ti-1

+
ti

2
=
1

2

�
ti-1 +

E[s2]�r

�r
+ ti

�
:

The probability that a read request arrived during interval i - 1, and is serviced during

interval i is, on average, ti-1=pmiss�W. The contribution to the average read response

time of the read requests that arrive during the cleaning interval is

1X
i=1

RiPr(i) =
tactive

tcycle

1

2

 
t0 + �rE[s

2] +
�2t0

tactive

!
:

After this cleaning activity is complete, read requests are serviced by a simple

M/G/1 server which had an average response time of R = Ws+ �rE[s
2]=(2(1-�r)). The

probability that a read request arrives during the “non-active” portion of the interval

is (tcycle - tactive)=tcycle. Thus, the overall response time for reads during a cleaning

interval is

Rread =
tactive

tcycle

1

2

 
t0 + �rE[s

2] +
�2t0

tactive

!
+

(tcycle - tactive)

tcycle

�
Ws+

�rE[s
2]

2(1 - �r)

�
:

(5.3)

Calculating the response time for writes is a much simpler problem. The write

cache absorbs writes with negligible response time (assume zero response time) when-

ever a write does not stall. The only time when stalled writes can occur during the

cleaning cycle is during tdetect and tr; writes can immediately be moved into the cache

during tw and after. The average waiting time for a write during is the residual amount

of time for a random arrival during tdetect and tr or

tdetect + tr

2
+
�2tdetect
2tdetect

+
�2tr
2tr
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where �2tdetect and �2tr are the variances of tdetect and tr respectively. Since all of these

expressions are already known, the response time for a write is

Rwrite =
tdetect + tr

tcycle

 
tdetect + tr

2
+
�2tdetect
2tdetect

+
�2tr
2tr

!
: (5.4)

To show how the read and write response times are affected by increasing idle

detection times, we performed tests with a hypothetical disk and write cache. Rather

than obtain disk moment information for the disks in our traces, we used the moment in-

formation suggested by Vongsathorn and Carson [52] and used by Carson and Setia [8].

The values we used for cache size and pclean are those suggested by the performance of a

128K cache with snake disk 5 with the model described in the previous section. We used

mean arrival rates of reads and writes similar in relative proportion to the rates found in

snake disk 5 trace. The parameters are summarized in Table 5.1. We perform these tests

to show the relative effect of increasing idle detection times, and to gain insight into the

strengths and weaknesses of our model.

Our results (shown in Figure 5.7) show that idle detection may do little to im-

prove read response time, and increase write response time. This indicates that the bursts

of writes produced by the cache do not often encounter the disk in a busy state. The num-

ber of reads queuing for service when a cleaning commences is small, and therefore the

benefit of waiting for that queue to empty does little to improve overall read response

time. This observation will be compared with trends in the response time results from

trace-based simulations in Chapter 7.

Our tests with the model show a major flaw with respect the relative sizes of

tdetect and tcycle that limit the range of tidle values we could test. An increasing value
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Disk mean service time (ms) 15
Standard deviation (ms) 8
Second moment (s2) 0.0012
Third moment (s3) 0.000006
Coefficient of variation 1/3
pclean 0.03
Cache size (blocks) 52
�R 12
�W 8

Table 5.1: Disk and cache model parameters for read and write response time tests.
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Figure 5.7: Read and write response times for a hypothetical disk with a non-volatile
write cache as the idle detection tidle is increased.
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of tidle quickly produced values of tdetect that were larger than tcycle. This breaks the

assumption that the cleaning cycle is at most tcycle in length. This does not directly affect

the write response time, but calls the read response time results into question because of

the method used to calculate Rread.

The model also does not accurately take the effects of stalled writes into ac-

count. The non-volatile write cache used in simulation produces stalled writes during

the detection period if it is excessively long. The model makes the simplifying assump-

tion that the number of stalls are few as long as idle detection times are relatively short

and assumes that all waiting writes can be written into the cache during tw. This sim-

plifies the analysis of the model significantly, but it also reduces the amount of time

required to find the disk idle. We believe that this still gives a decent approximation of

disk behavior for small idle detection times, however.

5.3 Conclusions

In this chapter, we examined idle detection as a solution to problems created

by non-volatile cache cleaning. When a non-volatile write cache becomes full it begins

writing dirty blocks to disk in bulk. The batches of cleaning writes arrive at the disk in

bursts, causing read response time to increase while read operations to wait for service.

To reduce read response time, we investigate delaying the cleaning of the cache until

such time when the disk is no longer servicing a read and unlikely to service another in

the near future. This keeps the cache full for a period of time and increases the possibility

of stalled writes, but reduces the waiting times that cleaning writes cause arriving reads.



81

To develop a model for estimating read and write response time when using a

simple constant time idle detector, we first use a Markov model to estimate how often the

cache must be cleaned. We then break down cache cleaning into time periods: the time to

detect if the disk idle, the time to let any pending reads finish, the time to write from the

cache, and the time to perform any reads that arrived while the cache was being cleaned.

We develop mathematical expressions for each length of time based on the assumption

that the disk performs as an M/G/1 queue.

Based on tests with our model, we note that the time needed for any pending

reads to be serviced decreases only slightly as the idle detection time increases. Small

decreases in queue drain time change produce few changes in the number of reads ser-

viced in the later in the cycle very and do little to decrease the overall read response time.

At the same time, longer idle detection times increase the probability of a write arrives

and a stall is forced. This results in an increase in write response time. These conclusions

will be compared to cache behavior in trace-based simulation in Chapter 7.
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Chapter 6

Simulation environment

In order to create a test bed for evaluating different cache management schemes,

we implemented our own models of the HP2200C and the HP97560 disks. Each disk

model is implemented in C++, and designed to support multiple disks connected to one

or more data buses within the same simulation. Two different types of buses can cur-

rently be used: the HP97560 can be attached to a SCSI 2 bus, and the HP2200C to a

HP-IB (IEEE-488) bus. The simulation currently uses the Sim++ event simulation pack-

age [17], but can be easily ported to another environment. The design is also meant to be

extensible and support additional disk models and bus types over time.

6.1 Implementation

The models that we used to simulate both the HP97560 and the HP2200C are

based on three major sources. A paper by Ruemmler and Wilkes [44] described the basic

mechanisms and simulation parameters needed to build an effective disk simulator. A
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document by Kotz, Toh, and Radhakrishnan [31] provided routine specifications, simu-

lation times, and core data structures that we adapted for our simulator. The SRTheavy

C++ code library by Ruemmler and Wilkes provided additional hints about the behavior

of each disk and access to file system traces.

While each of these sources helped us create accurate models, we needed to

make a few assumptions to make each simulator complete:

� The size of read and write requests are limited to the size of the buffers on each

the disks of each type. Analysis of trace data showed no I/O events larger than

the buffer cache size of the HP97560. For the HP2200C, there were a small number

of calls for swap space which were larger than the buffer on the disk. Since the

number of these calls was small, they were filtered out of the simulation.

� Read and write fence sizes were equal and corresponded to the values listed by

Ruemmler and Wilkes as “Read fence size”.

� Cylinder skew and cylinder seek time subsumes track skew and head switch costs

when crossing cylinder boundaries for both disks.

� Data provided in the SRTheavy library for the head switch time of the HP2200C

(4:5ms) conflicted with the time in the article by the same authors (2:5ms). While

calculations show that 4:5ms is a better offset for the skew factor of the HP2200C,

we decided to use the value published in the article.

� Two guesses were used for the delays needed to get the use of each type of data

bus. A value of 50�s was used for the time needed the SCSI bus; this was the value
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used by Kotz et al.. A value of 400�s was used for the for the HP-IB bus. The

SRTheavy library provided a bus delay time of 4ms for the HP-IB bus, but testing

showed that it didn’t work well with our simulation. John Wilkes said that this

reflected driver overhead as well as bus acquisition time, and, the driver wasn’t

modeled by this simulator.

� The sizes for the “Disk Request” (10 bytes) and “Done Messages” (1 byte) for both

disks were the same as Kotz et al. used for their HP97560 simulator.

� Controller overhead values were assumed to be the same as those published in the

article by Reummler and Wilkes.

� Neither disk has a segmented buffer cache, command queuing, or multiple zones

(though the code will support multiple zones). Evidence in the traces showed

that the HP2200C did shortest seek time first reordering of write operations. Our

HP2200C simulator did not reorder operations in this way.

� A head settling time of 1:0ms for the HP97560 and 1:5ms for the HP2200C was

included for write requests.

� Transfers of read data from the buffer cache to the bus for the HP2200C commenced

when the head crossed a track or cylinder boundary. Reummler and Wilkes did not

describe this behavior in their article, but it did appear in STheavy code.
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6.2 Structure of the simulation

The simulation model consists of two Sim++ Facility objects, two major loops

of simulation events, and several supporting member functions. The disk’s Facility ob-

jects provide serialized access to the disk and to the bus to which the disk is connected.

One event loop functions as the disk’s DMA engine, getting or filling buffer memory,

performing bus transfers, and managing the bus if the buffer is full or data is not ready.

The second loop simulates the disk’s mechanism by performing seek, settle, and rotation

operations, getting or filling the disk’s buffer memory, and requesting DMA transfers if

the disk’s buffer is full or not ready. The supporting member functions send and receive

control messages and calculate delays associated with the disk’s mechanism.

A disk I/O request begins as follows: When the user calls Request Disk, a re-

quest is made for the Facility representing the disk. After this request is successfully

made, a request is made for the Facility representing the bus. When that second request

is complete, the simulation waits the amount of time needed to send a command mes-

sage to the disk’s Controller. After that time has elapsed, the bus Facility is released and

the Controller starts. The Controller determines if the new request is a read or a write,

and handles each operation accordingly. If the new operation is a READ, the Controller

schedules the start of the disk’s mechanism event loop to move the simulated disk head

to the appropriate location to begin the read. If the operation is a WRITE, the Controller

starts both event loops to write the data to the disk’s buffer and move the head to start

the write.

Since the HP97560 supports buffer caching, read ahead, and immediate report-
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Figure 6.1: Event graph of our simulation. Bold names denote class member functions.
Other names represent simulation event routines, which are implemented as C++ friend
functions. Solid lines represent event transitions common to all disks. Dashed lines
represent transitions due to read ahead, immediate reporting, and sync-ing operations.
Arrows and dotted lines represent Facility objects that are busy for the duration of event.
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ing, the Controller for the HP97560 must perform a few additional functions. As each

new READ request arrives, it checks for a buffer cache hit. If there is a read hit, it acti-

vates the disk’s DMA event loop to transfer the data across the bus and flushes the buffer

cache to the first requested sector. If there is a read miss or a write, the whole cache is

flushed.

In the disk mechanism transfer loop, requests are processed on a sector per loop

iteration basis using logical sector numbers. The loop begins when DiskMove calculates

the time needed to move the disk head to the beginning of first sector of the new I/O

request. DiskMove then schedules a StartDiskXfer to occur when the move is complete.

StartDiskXfer updates the state of the disk’s buffer to show the read or write of the next

sector has started, and schedules an EndDiskXfer for when the sector I/O is finished.

EndDiskXfer sets the current state of the disk’s buffer to the values previously set by

StartDiskXfer, and schedules a StartDiskXfer if further head movement is required. End-

DiskXfer also attempts to start the DMA transfer loop in case any new data needs to be

transferred to or from the buffer. If the data transfer is complete and the current oper-

ation is write, EndDiskXfer schedules an ExecDone to notify the host that the write is

complete.

The DMA transfer loop works by transferring bytes from the bus to the buffer

one sector at a time. ConsiderBusXfer decides if a DMA transfer loop should be started.

Whether or not the loop is started depends on a set of circumstances that varies with the

type of operation and the type of disk. Some factors that need to be considered are:

� if the bus is already in use,
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� if the Controller indicates that data needs to be transferred on the bus,

� if the last sector already has been written to the buffer (for writes), or read from the

buffer (for reads),

� if the buffer is sufficiently full (for reads) or sufficiently empty (for writes) to merit

a DMA transfer, or

� if the disk begins read DMA immediately or on a track crossing.

If the appropriate conditions are met, then ConsiderBusXfer requests the disk’s bus Fa-

cility and schedules a StartBusXfer for when that request is successful.

StartBusXfer schedules an EndBusXfer event after a sector of disk is transferred

over the bus. EndBusXfer continues the loop by scheduling a StartBusXfer if the current

DMA transfer is incomplete and the cache contains non-transferred data (if reading) or

the buffer is not full (if writing). If the loop is not continued, then ExecDone is scheduled

to finish the current request. EndBusXfer may also start the disk transfer loop if the

cache filled during a read, or emptied the cache during a write. Since the disk transfer

calls ConsiderBusXfer as it iterates, the bus transfer will be restarted when conditions

have changed.

Since the HP97560 prefetches reads and immediately reports writes, certain ad-

ditional state transitions occur. Because the HP97560 performs read prefetching, the disk

mechanism loop transfers data from the disk until the buffer is full. When the Con-

troller is called during read prefetching and there is a cache miss or a write after a read,

the mechanism transfer loop may be busy and events may be cancelled. Because the
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HP95760 immediately reports writes, ExecDone will be scheduled as soon as the DMA

transfer of the data to the buffer is complete. If another operation is requested before the

buffer is written to disk, the data is either appended to the cache (if it is a contiguous

write) or the operation must wait until the write is complete. If the operation must wait,

the disk Controller is restarted after the write is finished. Setting the event token’s sync

flag to TRUE causes the HP97560 to wait until the write is complete before scheduling

ExecDone. Execution of the I/O request finishes when Release Disk calls ExecDone. The

Facility representing the disk is then released, and execution completes.

6.3 Validation

To validate our simulation models, we used trace data used by Ruemmler and

Wilkes for their study. To test the HP2200C, we looked at events for disk numbers 0

and 1 from the hplajw trace set from 4/18/92 to 5/11/92. For the HP97560, we chose

events from the snake traces from 4/25/92 through 4/30/92, disk numbers 5 and 6. We

filtered the traces for events from the appropriate disk drives and ran them through our

disk model. All writes were treated as immediate reported.

The method we use to evaluate our simulations is the same used by Ruemmler

and Wilkes to test their disk simulators [44]. Simply comparing mean I/O execution

times for simulated and real disks provides little information about the accuracy of the

simulation model. Instead, we plot cumulative time distributions of execution times

for the real and model disks, and measure the difference. The root-mean-square of the

horizontal distance between the two curves is used as a figure of demerit, and represented
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in absolute (as a difference in milliseconds) and relative terms (as a percentage of mean

execution times). The real trace has a demerit of zero; it matches itself exactly.

Each set of traces produced some trace events that had access times that were

extremely long. For the snake traces, Kotz, Toh, and Radhakrishnan consulted Chris

Ruemmler about these long requests, and discovered that these long requests were most

likely due to thermal recalibration. Since neither we, Kotz et al. , nor Ruemmler and

Wilkes modeled these events, we simply discarded them. In the case of the hplajw

traces, the trace data revealed that these events are extremely large (> 32Kb) reads and

writes of swap data. Since the sizes of these events were larger than the buffer in the disk

controller and sent to the disk by a unknown protocol, they were discarded as well. Both

types of events were very rare, and removing them gave us a closer match.
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(b) hplajw disk 1
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Mean Demerit
Simulation 17:75ms 5:48ms 30:1%

Figure 6.2: I/O time distributions for our model of the HP2200C. Input data is taken
from the hplajw trace set from 4/18/92 to 5/11/92.

We simulated each disk independently, and offset trace events for consecutive
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Figure 6.3: I/O time distributions for our model of the HP97560. Input data is taken
from the snake trace set from 4/25/92 to 4/30/92.

days with the number of microseconds in a day to create large continuous sets of ac-

cesses. Mean simulated access times, demerit times, and demerit percentages, as well as

distributions for real and simulated disks is shown in Figures 6.2 and 6.3.

Testing showed that our simulators were accurate to 4.0–8.0% for three out of

the four disks we looked at. The reason for the large figure of demerit for Disk 1 is

unclear. The trace headers for the hplajw traces indicate that one unmonitored section

of Disk 1 was used to write out trace information. This may be the source of the demerit.

To test the different properties of NVRAM caches, we modified the simulator to

support a write cache. The cache was implemented in a way similar to the disk simula-

tors; each type of cache was implemented as a C++ class with similar interfaces. Caches

with four different management policies have been implemented: LRUcache using a

Least Recently Used policy to age data from the cache, SSTcache using Shortest Seek
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Time, LSTcache using the Largest Segment per Track in the cache, and StModcache using

the Stack Model-based algorithm we develop in this dissertation.

To clean each cache object, we used two basic mechanisms: either a routine

which explicitly cleans the cache while an incoming write waits, or a background clean-

ing process similar that found in many virtual memory systems. The use of each mech-

anism depends on the cache eviction policy (see x3.2). A write behind cache is only

cleaned when space is needed for an incoming write, therefore only explicit cleaning is

used. The high and low cleaning thresholds pro-actively evict sectors from the cache

using both explicit and background cleaning when used. Writes generated by the back-

ground cleaner are marked with a flag, but have the same queuing priority as other reads

and writes.

6.4 Conclusions

In this chapter, we described the specific implementation details of the HP97560

and HP2200C disk simulators we developed. In particular we discussed details that dif-

ferentiate our simulators from similar simulators developed by other research groups.

We described their use in trace-based simulation and show figures of demerit compared

the performance of actual disks. We showed that our disk simulators perform very accu-

rately in three out of four cases with 4:0% demerit for hplajw disk 0, 7:5% demerit for

snake disk 5, and 4:3% demerit for snake disk 6.
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Chapter 7

Simulation results

To compliment the mathematical analysis of the cache management techniques

presented in the previous chapters, we now use trace-based simulation to study the im-

pact of each technique. Our goal is to see how write cache management affects overall

response time for both read and write requests. The major results of these experiments

confirm the hypothesis that non-volatile write caching is a huge win: a well-managed

non-volatile write cache of sufficient size can result in order of magnitude decreases in

mean write service time. In fact, some cache management policies work so well that there

are no stalled writes and the write performance of the I/O subsystem mimics the write

performance of the cache. The effect of write caching on read response times is generally

moderate, with the read delays caused by bursty cleaning writes being infrequent. A

discussion of the strengths and flaws of each cache management technique based on our

simulations follows in the rest of this chapter.

For our experiments, we collect several related time measurements to deter-
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mine the effectiveness of different cache management algorithms in trace-based simu-

lation. We model the I/O subsystem as the classic queue/server combination used in

queuing theory. Requests are read from the trace, placed in the queue, and wait for the

server perform them in the order that they are issued. The queue time is the amount of

time the request spends waiting in the queue. The server simulates the actions necessary

to complete the request at the head of the queue, removes it from the queue, and then

repeats this cycle with the new head of the queue until the queue is empty. The service

time is the time for each request to be completed by the server and depends on the type

of I/O request being serviced and the cache state. The time necessary for cache hits and

writes smaller than the amount of clean cache space is zero. The times to complete stalled

writes, reads, and cleaning writes that require disk I/O include the disk seek time, settle

time, and rotational delay as well as time to transfer data to or from the disk. The request

response time is the sum of the queue time and service time.

We also collect information to measure how much disk activity from the trace

the non-volatile write cache eliminates. The number of cache hits and cache misses

provide information about how much data is overwritten in the cache. We record the

amount of disk activity generated by the write cache, including the number of cleaning

writes and their size. The total amount of data written to disk from the cache is a good

indicator of the amount of disk activity saved through overwrites when compared to the

amount written in the trace. The request times, service times, and number of cleaning

writes made by the cache provide information about the contribution of cache cleaning

to queue congestion and the amount of potentially wasted disk bandwidth. Finally, the
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number of stalled writes is a good measure of how effectively a management technique

keeps clean space available in the cache.

We wish to use I/O request response times for measuring the effectiveness of

cache replacement techniques. We find that inaccuracies in the queue times of our results

make this information unreliable for comparison with the times in the trace, however.

These inaccuracies are caused by two factors:

1. Disk activity traces record I/O request times that represent the interaction between

the processes, the operating system kernel, and the I/O subsystem of a computer.

Adding a non-volatile write cache changes this interaction, but the request times

remain fixed and do not correctly reflect interaction with the modified system.

2. Small inaccuracies of less than a millisecond in the service times of our simulators

skew the queue times of long strings simulated read events compared to those in

the traces. There are several such long groups of reads of consecutive sectors in the

traces (presumably to back up the disk) where each read explicitly begins within

a millisecond of the completion of the one before it. Our disk service times were

slightly too large (< 1ms), creating long sequences of events waiting for service by

the disk where none existed in the trace.

Both of these factors result in skewed queue lengths which sometimes (especially in the

case of the consecutive reads) skew mean queue times by several milliseconds. This

makes comparing the response times of the trace-based simulations and the traces im-

possible. We do however compare response times between traces, especially for our idle

detection experiments. To avoid queue time skew for some experiments where response
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time was especially important, the first 90 minutes of each trace was truncated to remove

the groups of consecutive reads causing the skew.

Rather compare response times between the traces and our simulations, we rely

on metrics which are accurate and indicate trends in response time when a non-volatile

write cache in use. Of these, service time was the most important because our simulators

are shown to be very accurate in Chapter 6. This allows us to directly compare mean

service times between different simulation runs with the service times in the original

traces. The number of cache misses and the number of stalled writes are also important

because they affect how many write requests must wait for disk I/O to occur before being

written into the cache. Finally, the number of writes and the amount of data needed to

clean the cache are strong metrics for cache efficiency because increased cleaning activity

increases the queue and response times of read operations.

For our experiments, we concentrate on disks 5 and 6 of the snake trace set and

disk 0 from the hplajw set. Some of the important static and dynamic characteristics for

these data sets are summarized in Table 7.1. Write requests in these traces are all sent

to the cache and then eventually updated on disk with the exception of large writes

(> 16KB), which are sent straight to disk. Writes larger than 16KB are passed directly to

the disk because they constitute a large portion of a disk track for the disks we examine.

This makes them relatively efficient to write immediately and avoids consuming large

portions of cache space in the smaller caches we test.

The remainder of this chapter is divided into four major sections. The next sec-

tion describes simulation results comparing the three different management algorithms
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Table 7.1: Characteristics for disks used in our analysis.

Disk # of Read Mean Read Mean Service Block
I/Os Size Time (all) Size

(KB) (ms) (bytes)
5 134420 5.354 11.735 512
6 146782 6.152 13.039 512
0 41080 4.409 25.346 256

Disk # of Write I/Os Mean Write Size Mean Service
Time (writes)

(KB) (ms)
5 129379 6.876 12.388
6 240632 6.726 12.714
0 82054 6.024 27.475

presented in Chapter 3. Section 7.2 presents simulation results for the stack model-based

algorithm described in Chapter 4. The simulations showing the effects of the idle detec-

tion technique in Chapter 5 on response times is found in Section 7.3. Finally, the last

section summarizes the important results of these simulation studies.

7.1 Cache management results

For our first set of experiments, we concentrate on the relative merits of the

cache management techniques presented in Chapter 3 [22]. The goal is to understand the

basic mechanisms that control cache performance and examine how thresholding tech-

niques and cache size improve cache performance. The following three subsections de-

scribe the performance of the least recently used (LRU), largest segment per track (LST),

and shortest access time first (STF) algorithms with different thresholding schemes and

cache sizes. Section 7.1.1 describes the performance of a very simple write behind non-
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volatile write cache. Because this simple technique yields a good reduction in disk write

activity but a high number of stalled writes, simulation results for single and dual thresh-

old caches of different sizes are shown in Section 7.1.2. The good performance of dual

threshold caches motivates a series of experiments to examine the relationship between

replacement algorithm and cache size. The results of these simulations are shown in Sec-

tion 7.1.3. This first series of experiments concentrates on snake disk 5 and hplajw disk

0.

7.1.1 Write behind cache management

A write cache contains the modified disk blocks which must be eventually com-

mitted to disk to make room for new blocks as write events occur. A simple policy to

evict blocks from the cache is to wait until the cache is completely full and then purge

the cache with a write behind strategy, as explained in Chapter 3. Because the cache op-

erates at a nearly full steady state, writes frequently stall while room is made for the new

data. The idea of simple non-volatile write behind caches was first suggested but never

tested by Biwas, Radhakrishnan, and Towsley [6] because such policies “would result in

unacceptably poor performance” because of frequent stalling.

We performed our own tests with write behind caches. We varied the cache

size starting at 128KB and doubled the size on each run until we reached 2MB. For the

three disk scheduling algorithms we tried, LRU performed the best in these tests, closely

followed by STF, and then LST. Our service time measurements show that LRU and STF

decreased the mean service time by at least 25%, scaled well as cache size increased, and

reduced the number of writes to disk by at least 75% for both disks. The LST managed
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cache produced little reduction in the number of writes to disk especially for small caches

with a correspondingly small reduction in service times.
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Figure 7.1: Cache misses for disks with a write behind cache.

Our results for stalled writes in some measure dispute the assumption that

write behind caches are ineffective because of the high number of stalled writes (see

Figure 7.1). While the cache miss rate is high for LST caches (nearly 100% of all writes

are cache misses for small caches), cache misses for the LRU caches were much smaller

(less than 20% for disk 5 and 40% for disk 0) with the performance of the STF cache in be-

tween. These results show that write behind caches can be effective and offer significant

performance improvement without having any cache parameters to tune.

7.1.2 Cache management with thresholds

While a simple write behind cache can improve cache performance, the best

cache management algorithm we examined only showed 30–50% improvement in mean



100

service time. For this reason, we also study a track based purge policy triggered by

thresholds to prevent the cache from becoming completely full or (in some cases) com-

pletely empty. By preventing the cache from becoming completely full, stalled writes are

reduced because some clean space is always available to hold new data. Since the cache

does not completely empty, some data that will be overwritten in the cache in the near

future will (hopefully) not be written to disk.

First we consider a single threshold variant of this cache eviction policy. With

this type of cache, the high and low thresholds are set to the same value. The resulting

cache is similar to a write behind cache, with some improvements. Because there is

always some clean space in the cache, writes to the cache stall less frequently and cache

writes can be made by the background cleaner. The amount of cache space cleaned in

the background is small and the cache must be cleaned frequently.

We performed experiments to investigate the sensitivity of the cache to the

threshold setting. We looked at single threshold caches of two different sizes for each

disk; the caches were 128KB and 256KB for disk 5 and disk 0. Cache sizes were small to

prevent the cache from holding the working set of written blocks. At the same time, we

wanted to get some feeling for how these parameters change with cache size.

The number of writes to disk for a single threshold cache was within 10% of

that of a write-behind cache of the same size for the LRU and STF algorithms until the

threshold rose above 90%. The write traffic of the LST cache for disk 5 was also within

10% for both sizes, but the single threshold LST cache improved about 30% for most

threshold values. The least amount of write traffic was produced for all single threshold
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Figure 7.2: Number of cache misses for disks with a single threshold cache.

caches when the threshold was set at 98%. This single threshold cache produced 25–50%

fewer writes than the write behind cache.

Our results also show that adding a single threshold only improved the num-

ber of stalled writes produced by the write behind cache (see Figures 7.1 and 7.2). The

reduction in stalls is attributed to the clean space kept available by the threshold; data

is written instead of forcing stalls. Since only the number of stalls changes, temporal

locality still dominates and the LRU cache performs best.

Our results show that choosing a good cache threshold is a trade-off between

the numbers of stalled writes and writes to disk. To obtain good overall performance, we

try for a balance that decreased the number of writes to disk, but avoided sharp increases

in the number of stalled writes. Based on these criteria, we note that the best choice for a

high limit threshold is in the range of 90–95% for both disks for all algorithms.
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Using a single threshold improves cache performance, but it is difficult to find

a good balance between writes to disk and stalled writes. To avoid this problem, we also

look at caches using high and low thresholds to create hysteresis in the cache purging

process. Because the amount of space cleaned using a dual threshold scheme is larger,

the number of stalled writes will decrease.

We began by testing how the interaction of the high and low threshold values

affected performance. We fixed the high threshold at the single threshold values and

varied the low threshold value from 10–85%. For these experiments, cache size was set

at 256KB. The number of cleaning writes and cache misses for each cache are found in

Figures 7.3 and 7.4.
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Figure 7.3: Number of cache misses for disks with a high and low threshold cache.

Finding a good value for the low threshold depends on what metric is used.

Based on the number of cache misses for each cache, all three algorithms perform best
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Figure 7.4: Cache generated write traffic for disks with a high and low threshold cache.

when the low limit was set in the 15–20% range. It is more difficult to measure the

performance of the write cache based on the number of writes generated to clean the

cache. The LRU cache also shows the unusual property that number of writes decrease

by almost 5% as the lower limit is raised. The LST and STF algorithms perform well for

both disks when the low limit is set in the 15–20% range. The number for both algorithms

is not minimal for disk 0, because of the unusual rise and fall in the number of writes.

In terms of performance, adding a second threshold causes mixed results. It

reduces the number of stalled writes for the LST cache to almost zero, and reduces the

number of writes for the LST cache to that of the other algorithms (see Table 7.2). At the

same time, it degrades the performance of the LRU algorithm. Cleaning large portions

of the cache benefits the LST cache because it will always use the fewest number of large

writes to clean cache space. This same action reduces the number of dirty blocks in the



104

Table 7.2: Write traffic for disk 5 and disk 0 generated by a 256k cache.

Write Single Dual
Behind Threshold Threshold

LRU 22194 21155 26039
LST 98117 83010 28589
STF 31773 30227 25791

Disk 5

Write Single Dual
Behind Threshold Threshold

LRU 30187 17083 30243
LST 53569 29928 29165
STF 34633 20573 27553

Disk 0

LRU cache whenever cleaning is performed. The LRU algorithm may be able to make

better choices when there are more dirty blocks in the cache. In spite of this limitation,

the LRU algorithm performs well, confirming that temporal locality is still important.

7.1.3 Cache size variation

The performance of the dual threshold caches leaves an open question: is it

better to stall less or write to the disk less? We looked at the answer to this question

while examining the impact of cache size for the LRU, STF, and LST algorithms. We used

the number of cache misses as our best metric for setting the high and low thresholds for

each cache. High threshold values were set to the values used in our lower bound tests:

90% for the upper thresholds for all caches. Low threshold values were set to 20% for

disk 5 and 15% for disk 0. For these experiments, we varied cache size from 128KB to

2MB, doubling memory size for each successive run.

The results from our cache size experiments show that all three management
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Figure 7.5: Write cache misses for disks with different dual threshold write cache sizes.
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Figure 7.6: Mean service times for disks with different dual threshold write cache sizes.
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algorithms scale equally, though the head position aware algorithms (LST and STF) may

scale slightly better than LRU. Looking at the number of writes generated by each cache,

the LST, STF, and LRU caches produced almost identical numbers of writes for disk 0,

and LRU produced approximately 10% more writes for disk 5. The rates of decrease for

STF and LST were were slightly higher than that for LRU for disk 5. Perhaps temporal

locality becomes less significant as cache size grows larger for that disk. At that point,

algorithms that take advantage of head position may become more useful.

Looking at the mean service and cache miss data, fewer cache misses have a

direct and beneficial effect on the service time (see Figures 7.5 and 7.6). The LST cache

produces the lowest service times for both disks, and produces zero stalled writes with

the smallest amount of cache space for both disks. Service times for all trace events

quickly converged to an average dominated by the service time of read events for both

disks.

Lower service times are only beneficial if they contribute to lower overall re-

sponse times. While the LST algorithm does produce consistently fewer stalls and better

service times, it also tends to write more often to disk. If these additional writes are

increasing the amount of time that other events spend queueing for service, then an al-

gorithm other than LST is a better choice.

To check to see if this was happening, we collected queue time information for

two sets of events in the disk traces. The results in Figure 7.7 show mixed results. For

disk 5, the STF cache produces mean queue times for write events that are better than

either LRU or LST. The set of write events from disk 0 shows that the LST cache has a
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Figure 7.7: Mean write queue times for disks with different dual threshold write cache
sizes.

lower mean queue times than the other caches though the values are close enough not

to be significant. The read queue times for disk 5 were abnormally long (for reasons

mentioned at the beginning of this section), but, the read queue times for both disks did

show trends similar to their write counterparts.

7.2 Simulations using the stack model algorithm

As results in the previous section show, the LRU, LST, and STF algorithms can

very effectively reduce the amount of write traffic sent to the disk and produce a com-

paratively small percentage of stalled writes. No one algorithm is clearly the best for

all cache performance metrics, however. The LST algorithm produces a small number

of stalled writes, but writes to disk the most often. The STF replacement policy writes

the least amount to disk, but produces and higher number of stalled writes. The LRU
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cache performs somewhere in between LST and STF in terms of stalled writes and disk

activity. These results motivated the development of the stack-model based algorithm

presented in Chapter 4. Our experiments with this algorithm focus on disks 5 and 6

from the snake traces.

To validate our approach of grouping segments into hot and cold regions, we

examine the effect of manually varying the size of the hot region of our cache [23]. If this

approach is correct, the number of writes to disk should be high when the hot region

is small because the large hot segments are frequently being replaced. As cache size

increases and approaches the knee, the number of writes to disk should decrease rapidly

because more hot segments fit into the hot region. The number of writes should then

decrease gradually past the knee as all the hot segments are now in the hot region. The

results (see Figure 7.8) showed precisely this type of behavior, with decreases of as much

as 25 percent in the number of writes before the knee and as little as 4 percent after it.

We now compare the performance of our replacement policy to those that use

temporal locality or spatial locality but not both. We employ two other policies for points

of comparison: the LRU replacement policy and the LST replacement policy. We ex-

pected the LRU and LST policies to perform worse than our policy overall. The LRU

policy handles hot segments well, but makes costly small writes to disk. The LST pol-

icy makes efficient writes of large segments, but this is only useful when the segments

are cold. Since our policy attempts to deal with both hot and cold segments, we expect

that it will perform comparably (at least) to the best metrics for LRU and LST. A com-

parison of the results shows this is true for the number of writes made to disk and the
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Figure 7.8: The effects of varying the size of the hot region of the cache for three different
cache sizes with snake disks 5 and 6. The dotted line indicates the location of the knee in
the hit ratio curve.

Table 7.3: A comparison of three metrics for snake disks 5 and 6 for a 128KB cache.

Snake disk 5 Snake disk 6
LRU LST New LRU LST New

writes to disk 33538 33895 32758 57059 54057 59592
stalled writes 418 85 97 398 0 0
cache overwrites 79678 76061 79980 143191 141814 145871

number of stalled writes (see Table 7.3). This comparison also shows that our new policy

consistently overwrote data in the cache more often than the LRU or LST policies.

To see how our new policy performs as the size of the hot region changes, we

considered the hot region to be a fraction f of the total cache size and varied f from

zero to one with a 128KB cache. A small cache was used because larger caches produce

fewer cache writes and stalled writes, obscuring the relative performance of the different

replacement policies. We adjusted the size of the hot region of the cache between 8KB
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and 112KB in 8KB increments to obtain different values of f. We didn’t use a hot region

size larger than 112KB because the high threshold of the cache was set to require that

at least 10 percent of the cache be kept free of dirty blocks. The effect of changing hot

region size on write activity and cache stalls for the Snake disk 5 is shown in Figure 7.9.
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Figure 7.9: Writes to disk made with the new policy as the size of the hot region varies

The changes in the number of writes made to disk with the increasing size of

the hot region confirm our assumptions about cache behavior. The number of writes

to disk is high when the size of the hot region is very small because hot segments are

being replaced in the LST portion of the cache. The number of writes decreases sharply

as the hot region grows but then flattens out once the size of the knee value is reached.

The increase in write activity as the hot region grows very large is because the effective

amount of space that can be cleaned is small. The small amount of clean-able space

forces explicit writes as the cache often stalls and frequent purges of the small amount of
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clean-able space.

Our sensitivity experiments reveal that the number of stalled writes determines

the upper bound in hot region size (see Figure 7.10). As the hot region grows, the per-

centage of dirty blocks in the cache more often approaches the 90 percent upper limit for

dirty blocks in the cache. This causes the number of stalled writes to begin to increase

rapidly at a smaller cache size than the number of writes shown in Figure 7.9. Obtaining

the best overall performance requires a hot region size that provides the right balance

between the number of writes to disk and stalled writes.
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Figure 7.10: Stalled writes made by the new policy as the size of the hot region varies

Finally, we looked at how well our new replacement policy scales as cache size

increases. Changes in the number of writes to disk (shown in Figure 7.11) reveals that

the cache scales well. The number of disk writes decreases at a nearly linear rate as cache

size doubles.
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Figure 7.11: Writes to disk using our new policy as cache size increases.

7.3 Idle detection

One consequence of using a non-volatile write cache is that writes are made to

disk in bursts as the cache is cleaned. These bursts can potentially delay read requests

made to the disk by forcing them to wait while groups of cleaning writes are serviced. A

possible remedy to this situation is to wait until the disk is idle i.e. not servicing a read

request and is unlikely to do so in the near future. This allows cleaning write requests

to be serviced while the disk is otherwise idle and creates minimal increases in read

response time. The experiments we performed to examine the effects of idle detection

focus on snake disk 5.

Our work with idle detection produced two basic models to describe cache per-

formance in Chapter 5. The first uses a Markov chain to model the growth in the number

of dirty blocks in the cache. This Markov chain has a set of steady state limiting prob-

abilities that can be used to predict the probability that an arriving write will cause the

cache to begin cleaning dirty blocks to disk. The second model uses queuing theory to
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investigate the effects of waiting a fixed period of time to determine if the disk is idle

before writing dirty blocks to disk during a cleaning cycle.

To test our model for predicting how often the cache will be cleaned, we in-

strumented our disk simulation programs to produce special event tags indicating when

cleaning cycles start. Scripts counted the number of cleaning cycles that occurred in a

given experimental run. The probability that a write forces a cleaning cycle to begin is

this cycle count divided by the number of write events in the source traces.

We quickly discovered one major flaw with our simple Markov model: the

model does not correctly handle write dependencies between blocks on the disk. The

Markov model we construct treats each block independently, where there is one state in

the Markov chain for each dirty block in the cold region of the cache. A write event in

the trace rarely writes a single block, however. Blocks are written to the cache in groups

of one to sixteen kilobytes, causing additional state transitions that our simple Markov

chain does not model.

In an effort to account for these write dependencies between blocks, we try

modeling the cache using a grouping factor to reduce the number of states in the cache.

The rationale behind the grouping factor is this: a disk will generally write out data in

certain contiguous file system block and fragment sizes. If we have the states in the

Markov chain represent the number of these dirty blocks or fragments in the cache, a

better probability estimate might be possible. Therefore, we calculated the length of the

Markov chain in our model according to the following formula:

(# of Markov states) =
(80% of total cache size in KB)� (# of blocks per KB)

(grouping factor)
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The eighty percent cache size figure in the formula assumes that twenty percent of total

cache space was assumed to be reserved by settings of nhigh and nlow. This is based on

experiments in Section 7.1.2 showing the need to set the high and low cleaning thresholds

to improve cache performance by reducing stalls and keeping hot blocks in the cache.

The one remaining required input of for the model is the state transition proba-

bility for the Markov chain using the formula

h(n + 1) = h(n) + �:

The value � was estimated by plotting a histogram of the write frequency of every block

in the experimental trace sorted by increasing frequency. This created a tail at one end

of the histogram that estimated the number of “cold” blocks in the trace that are written

a small number of times. The grouping factor was divided by this number to produce a

value for �.

Some simple tests with different grouping factors with data taken from snake

disk 5 show that a grouping factor of 8 with an estimated number of cold blocks in the

trace of 119400 models cache performance well. The results are shown in Figure 7.12.

This indicates that the Markov chain with grouping factor approach has some merit, but

further research is required to more correctly deal with dependencies between written

blocks. This may include additional analysis to correctly determine the grouping fac-

tor based on the properties of the trace, or a second order model that uses dependency

information to better model state transitions.

In Chapter 5, our model of cache cleaning with idle detection suggests that

cleaning the cache during idle periods improves read response time very little and de-
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Figure 7.12: Simulated and model predicted cache cleaning probabilities for an LRU
managed cache with snake disk 5. The model values used a grouping factor of 8. The
number of cold blocks in the trace was estimated to be 119400.

grades write response time. To prove or disprove this assertion, we altered our simula-

tors to wait a fixed period of time after the last serviced event before cleaning the cache.

We then conducted experimental runs with a wide range of idle times and collected sim-

ulated read and write mean response times for each run. The results of these simulations

are shown in Figure 7.13.

The simulated read and write response times repeat the general behavior seen

in the model in Chapter 5 with a sample disk. The read response time stays approx-

imately constant for small idle waiting times, until a cross over point as waiting time

increases. After this crossover is reached, the read response time decreases slightly and

remains nearly constant at this lower value. At the same time, write response time re-

mains constant for low values of the idle detection time and then increases when the idle
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detection time grows large. These are all characteristics observed in both the model and

the simulated data.

This behavior suggests that the number of reads waiting for service when a

cleaning cycle commences is rather small. It also suggests that no additional decreases

in read response time are possible once an idle detection period allows these reads to be

serviced. It does suggest that one way to improve read response time is to issue write

requests to clean the cache in small groups rather than all at once. This is an approach

actively pursued analytically by Carson and Setia [9] with the Sprite LFS.
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Figure 7.13: Read and write response times for snake disk 5 with a non-volatile write
cache with idle detection.

7.4 Conclusions

This chapter describes a series of simulation experiments designed to increase

our insight about how to manage of non-volatile caches and either confirm or deny our

ideas about how such caches function. In general, these results show that the caching

and delaying of writes to disk is an excellent idea. Even the simplest write behind cache
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significantly reduced the amount of data written to disk by 80 percent by overwriting

data in the cache when correctly managed. Slightly more complicated two threshold

caches are able to increase the number of cache overwrites and dramatically decrease

stalled writes (writes which must wait while dirty cache space is cleaned). Some cache

management algorithms were even able to reduce the number of stalled writes to zero,

making the I/O subsystem appear to have a write service time identical to that of the

cache.

Our first series of experiments with the basic cache management algorithms

presented in Chapter 3 reveal that there is more than one important mechanism govern-

ing cache performance. Each of the simple algorithms has some kind of performance

flaw; the STF algorithm produces too many stalls, the LST cache writes to disk too often,

and the LRU algorithm shows mediocre performance in between the two other algo-

rithms. This suggests that a simple technique that takes advantage of only one property

of the write reference stream cannot always produce the best cache performance.

We perform similar experiments with the stack model based algorithm de-

scribed in Chapter 4. These experiments show that the new algorithm offers the best

aspects of the performance of the LRU and LST algorithms; it produces a number of

stalled writes comparable with LST, and writes as much data as LRU to disk. Further

tests reveal that this algorithm also scales well.

Finally, we use instrumented simulators to investigate using idle detection with

cache cleaning. The results confim trends found in the model presented in Chapter 5.

Idle detection improves read response times only slightly while increasing write re-
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sponse times. Work with the Markov model to predict how often the cache cleaning

is required reveal that dependencies between written blocks make the number of states

in the Markov chain difficult to calculate. By grouping blocks together and altering the

model to work with these groups instead of single blocks, it is possible to predict the

probability that the cache will be cleaned, although more work is required to validate

this technique.
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Chapter 8

Conclusions

As processors and main memory become faster and cheaper, a pressing need

arises to improve the write efficiency of disk drives. Today’s disk drives are larger,

cheaper, and faster than they were 10 years ago, but their access times have not kept

pace. The microprocessors of today have a clock rate 50 times faster than their predeces-

sors of 10 years ago did. At the same time, the average seek time of a fast hard disk is

at best between one half and one third of its predecessors from the same period. Some

technique must be found to bridge the performance gap if I/O systems are to keep pace

with processor speed.

In the preceding chapters of this dissertation, we examine several aspects of

non-volatile cache management used in conjunction with delayed writes to address this

problem. Non-volatile disk caches can reduce disk workload more effectively than volatile

kernel buffers or disk caches because they allow disk writes to be safely delayed. This

approach allows some writes to be avoided because the blocks will be overwritten or
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deleted while they are still in the cache. The remaining disk writes also can be organized

more efficiently by writing contiguous blocks in a single I/O operation. As disk subsys-

tems continue to lag the performance of ever faster processors, non-volatile caches are

an increasingly important way to remove a critical performance bottleneck.

Our goal with this dissertation is to compare different cache management tech-

niques by looking at different ways to implement and clean disk write caches of NVRAM.

We examined three issues not adequately addressed in prior work with non-volatile

write caches:

1. How do different basic cache replacement algorithms affect cache performance un-

der similar file system workloads and what are the key metrics that describe cache

performance?

2. Can techniques used in developing disk scheduling algorithms be used to develop

new replacement algorithms which provide better overall cache performance?

3. Can idle detection be used to delay cache cleaning to improve read response times

with non-volatile caches?

The answers to these questions form the basis of the work of this dissertation.

In Chapters 3 and 4, we present mathematical models and algorithms describing four

replacement algorithms for cleaning the cache. Three of these algorithms (in Chapter 3)

were used previously in a research study or product involving non-volatile caching or

disk scheduling. The algorithm presented in Chapter 4 is new and uses design principles

borrowed from disk scheduling research. Chapter 5 describes a method for predicting

how often the cache requires cleaning and a model for investigating of delaying cache
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cleaning until the disk is not servicing any I/O requests. This work is complimented in

Chapter 7 by a series of trace-based simulation experiments which measure cache perfor-

mance when these different techniques are used. Key measures of performance include

the number of write cache hits and misses, the mean service times, and the number of

writes to disk for two types of disks. The simulators for these disks are described in

detail and validated in Chapter 6.

The remainder of this chapter is split into four sections summing up our conclu-

sions for the different aspects of this work and describing future work. The next section

describes the key results for a comparative study of three basic cache replacement algo-

rithms. Next, Section 8.2 presents our conclusions regarding the use of a new stack-based

replacement algorithm that combines aspects of two simpler algorithms. In Section 8.3

describes the effects of using cache cleaning with idle detection. Finally, we end with

some directions the research in this dissertation could take in the last section.

8.1 Cache management

Our comparative study with NVRAM caches shows that temporal locality is

a key to cache efficiency for many caches, especially small ones. We implemented and

tested models of caches using a simple write-behind purging model and write-behind

with thresholds. We used the least recently used (LRU), largest segment per track (LST)

and shortest seek time first (STF) algorithms to decide what data to clean from the cache.

Comparison of the data for the number of (cleaned) writes to disk and stalled writes

shows that the LRU algorithm works best in many situations. Algorithms which attempt
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to use head position to determine what to clean next (LST and STF) can produce fewer

stalled writes, but generally write to disk more often. For many kinds of caches, the cost

of the additional writes outweighs the benefits of fewer stalls.

Our initial work with write-behind caches shows that the LRU managed cache

was the most effective, by far. Others rejected simple write behind caches under the

assumption that writes to these caches would frequently stall. Caches of this type using

algorithms depending intrinsically on disk geometry, particularly LST, perform poorly,

sometimes no better than the cache-less disk itself. The LRU managed cache significantly

reduces the number of writes to disk and improved response time. The number of stalled

writes is large compared to more complex cache management policies, but the policy is

very simple and does not need tuning.

We find that one of the few cases where temporal locality is not dominant is

when high and low thresholds are used. The large hysteresis of such a cache substantially

reduces the number of writes that the LST algorithm must make to clean the cache, mak-

ing its write performance equivalent to other algorithms. This performance improve-

ment combined with the smaller number of stalled writes creates reduced service times.

A study of how these properties scale shows that head position algorithms like LST may

perform better than LRU when cache sizes are large.

8.2 A stack based replacement technique

Our prior results show that although adding thresholds to caches improved

their performance, each basic method we examined performed poorly in some way.
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In particular, caches managed using a greedy LST policy produced the fewest number

stalled writes but produced larger amounts of write activity. The STF policy produced

the least amount of write activity, but also produced an unacceptable number of stalled

writes. The LRU policy performed between the other two in terms of write activity and

stalled writes.

We presented a new block replacement policy that organizes efficiently disk

writes while keeping the blocks that are the most likely to be accessed again in the cache.

Our policy partitions the blocks in the cache into two groups: the hot blocks that have

been recently referenced and the remaining blocks that are said to be cold. Hot pages are

guaranteed to stay in memory. Whenever space must be made in the cache, the policy

expels the cold blocks that belong to the largest set of contiguous segments within a

single track until enough free space has been made.

Experimental results show that the use of our new replacement policy with a

correctly tuned, modestly sized cache reduces writes to disk by 75 percent on average

and the policy frequently did better. The results show the stack model policy to be more

effective than cache replacement policies which exploited either spatial or temporal lo-

cality, but not both. In particular, data is overwritten in the cache more often using our

policy than the others, reducing the number of writes to disk. The new replacement

policy also gives the relative benefits of such policies without their unattractive features.

It often provides the least number of writes to disk of any of the policies we used for

comparison. At the same time, it often produces no stalled writes when other policies

produce hundreds.
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8.3 Idle detection

A potential problem with non-volatile write caching is that it produces bursts

of writes to clean the cache. These groups of writes can increase read response time by

forcing read requests to wait while writes are serviced. We examined a method which

forces clean writes to be made when the disk is idle i.e. the disk is not servicing a read

request and unlikely to do so in the near future.

The first part of this investigation attempted to predict how often a non-volatile

write cache requires cleaning. We first developed a model of cache behavior using a

Markov chain. Using assumptions about the cache workload, the Markov chain pro-

duced a expression for stable mean probability for cleaning the cache over time.

Tests with trace-based simulations show that interdependencies between disk

blocks in the disk traces make the calculation of the number of states in the Markov

chain difficult. In particular, the Markov chain models individual disk blocks where real

disk workloads rarely access blocks one at a time. We used the observation that disks

frequently write data in groups of contiguous disk blocks based on a file system block

size or fragment size to compensate for these dependencies. By employing a grouping

factor to make the states in the Markov model correspond to groups of sectors, model

predictions closely approximate observed values. The properties of this grouping factor

technique are not well understood and require further investigation and validation.

This cache model was then extended with queuing theory techniques to show

that the delays in cleaning induced by idle detection have mixed effects for many prac-

tical workloads. By modeling a statistically average cleaning cycle, we show that mean
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read response times decrease only slightly while write response times increase dramat-

ically due to stalls for larger idle detection times. These results are confirmed in trace-

based simulations.

These results suggest that few, if any, read requests are waiting for service at the

disk when cleaning begins. The delay of the start of the cleaning cycle until the disk is

idle allows only a few reads to be serviced and has a small impact on mean read response

time. The real impact of cache cleaning is caused by reads waiting for service once cache

writing has begun. Cleaning writes should be made from small cache segments to more

effectively reduce read response time, not from the entire cache at once.

8.4 Future work

This work can be extended in several ways. One of the most immediate aspects

of this work requiring more research is the method to determine the size of the hot zone

for the stack model-based replacement algorithm. We determined the best size for the

hot zone empirically in our experiments. A more ideal solution would be some form

of online method that uses information about the disk workload from some preceding

period and determines the hot zone size based on those conditions.

Additional work is also required to identify the workloads where the stack-

model based algorithm works best. We only examined the traces of two disks for our

simulation results, and both were taken from a single file server. Other workloads exist

with different access characteristics where the algorithm may not perform as well. A

test for separating good and bad workloads for this algorithm must be devised, and,
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a measure of how poorly this algorithm performs with bad workloads must be found.

This can include experiments with systems that may produce substantially different disk

workloads like databases and transaction processing systems

The idle detection work suggests that the cache should be cleaned in segments

to reduce impact on read response time. Determining the size of these segments and the

amount of time between the cleaning of the segments is an open research issue. This will

require additional mathematical analysis of the cleaning cycle and further experimenta-

tion.

The work in this dissertation only deals with the interaction between the cache

and one disk. Additional studies are required to extend this work to systems with multi-

ple disks. Issues such as threshold placement, the correlation between cache size and the

number of disks, and the merits of each cache replacement policy must be investigated.

Finally, this work needs to be included in a device driver implementation. Trace-

based simulation has flaws because it fixes request arrival times according to the interac-

tion between the processes, operating system, and I/O devices used by a certain machine

at a certain time. Using a non-volatile write cache changes the performance character-

istics of the I/O subsystem, and the arrival times of certain I/O requests should be dif-

ferent as a result. Simulation provides excellent indications of how performance will

improve, but the kind and size of the real performance improvements produced by this

approach will not be known until an implementation is done.

This dissertation examines several important aspects of cache management for

non-volatile write caches to reduce write latency. It includes a comparative survey of



127

simple cache management techniques. It also presents a new hybrid algorithm that pro-

vides better performance. It details two disk simulators that can be used in other I/O

related research. Finally, it discusses the advantages and drawbacks of delaying cache

cleaning until the disk is idle. All of this work will be useful in guiding future work in

non-volatile write cache management.
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Appendix A

Simulator Usage

This section describes the steps required to create and initialize the data struc-

tures needed for a simple disk simulation program. This discussion will be limited to

the public members of all simulation classes. More details about the private members of

classes and the interaction between simulation objects can be found in the simulation

source code.

Three different C++ classes were developed to implement and validate our de-

sign: DiskNULL, Disk335, and Disk975. The classes Disk335 and Disk975 simulate the

HP22001 and the HP97560 disks respectively, and, both classes have identical interfaces.

The class DiskNULL is used to replay a disk trace using starting and ending times found

in an existing disk trace, and has slighty different interface semantics.

In general, a disk object is created by calling a constructor which supplies it with

information about the bus to which is to be attached (see Figure A.1). This information is
1The HP2200 and the HP335h are identical disks. Source code in the SRTheavy library from HP fre-

quently refers the HP2200 as the HP335. For this reason, we used 335 instead of 2200.
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Token_List tlist;

diskioBus *theHPBusType = new diskioBus("hp_ib");
Facility *theHPBus = new Facil-
ity("HP bus", 1);

diskioBus *theSCSIBusType = new diskioBus("scsi");
Facility *theSCSIBus = new Facil-
ity("SCSI bus", 1);

DiskNULL *theDiskNULL = new DiskNULL();
Disk335 *theDisk335 = new Disk335(theHPBus, theHPBusType);
Disk975 *theDisk975 = new Disk975(theSCSIBus, theSCSIBusType);

Figure A.1: Constructors and necessary data structures for simulation objects.

in two parts: a Sim++ Facility object to control access to the bus, and a diskioBus object

to provide information about bus speed and access time. The exception to this rule is

the class DiskNULL. Because a DiskNULL object is used to play back existing traces, it

doesn’t model bus contention and no bus information is necessary. The construction of

disk objects as pointers is recommended, because Sim++ does not support a destructor

for the Facility class. Using pointers avoids the creation of unused Facility objects in

the simulation. All simulation events are referenced from a common event list (of type

Token List) which must be declared by the simulation program writer.

int theDisk_idNULL = theDiskNULL->AddToArray();
int theDisk_id335 = theDisk335->AddToArray();
int theDisk_id975 = theDisk975->AddToArray();
InitTokenList(&tlist);

Figure A.2: Initialization steps for simulation objects.

Once the disk objects have been declared, two more data structures must be
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initialized (shown in Figure A.2). In order for the simulation events to locate the state

information of the disk object with which they are associated, each disk object must be

added to a common array of disks known to all simulation events with an AddToArray

call. The id of the disk object assigned (and returned) by AddToArray is used internally

by the simulation as an id to relate specific events and specific disks. The declaration of

the simulation event list must also be made known to the disk objects through a call to

InitTokenList.

token a_token

a_token.id = theDisk975->Id();
a_token.type = <READ, WRITE, EOF>
a_token.sector = <logical sector number>;
a_token.size = <size in sectors>;
a_token.start = <time since simulation start in microseconds>;
a_token.sync = <TRUE or FALSE>;

tlist.add(a_token);

Figure A.3: Declaration and input fields of a request token.

All three simulation classes accept I/O requests as tokens which contain infor-

mation about the request. An event token requires a minimum of five pieces of informa-

tion (see Figure A.3): The token’s id is the identifier returned by the AddToArray call for

the disk object processing the event. This id can be obtained from the disk object with an

Id() call. The event type is the type of the requested operation. Currently supported re-

quest types are limited to reads and writes (the EOF type indicates that the simulation is

finished). The sector number is the logical sector number representing the starting loca-

tion of the request. The size of the event is the length of the request in number of sectors.
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The start is the simulation time when the request will be issued. The sync flag indicates

whether or not the request is to be followed by a sync operation (if it is supported).

Each simulation token must be added to the event list prior to the start of its

execution. The last event added to the event list should be an EOF event.

a_token.wait = <time since simulation start in microseconds>;
a_token.end = <time since simulation start in microseconds>;

Figure A.4: Additional input fields for the DiskNULL class.

Since the DiskNULL class replays existing traces, two additional fields shown

in Figure A.4 are required. The wait time, normally an output, is the time from the trace

when the simulation began servicing the request. The end time, also usually an output,

is the time from the trace when the request was completed.

theDisk->Request_Disk();

Figure A.5: Starting a service request.

Each I/O event is serviced by calling the disk object’s member function named

Request Disk (shown in Figure A.5). Because this call should be made during a Sim++

event, the time of the request should already be known. The simulation is complete once

all I/O requests have been processed.

To obtain simulation results after the simulation has completed, individual to-

kens can be retrieved from the token list and their outputs read as seen in Figure A.6. The

wait time is the simulation time when the servicing of the I/O request actually started

(the time in the queue is the difference between the wait time and the start time). The end
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tlist.get(token_index);

a_token.wait = <simulation time when request service began>;
a_token.end = <simulation time when request service completed>;

Figure A.6: Obtaining simulation results.

time is the time when the request completed (the service time is the difference between

the end and wait times).
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