
An Annotation Management System for Relational Databases

Deepavali Bhagwat Laura Chiticariu Wang-Chiew Tan
�

Gaurav Vijayvargiya

University of California, Santa Cruz
Email:

�
dbhagwat, laura, wctan, gaurav � @cs.ucsc.edu

Abstract

We present an annotation management system for rela-
tional databases. In this system, every piece of data in
a relation is assumed to have zero or more annotations
associated with it and annotations are propagated along,
from the source to the output, as data is being trans-
formed through a query. Such an annotation manage-
ment system is important for understanding the prove-
nance and quality of data, especially in applications that
deal with integration of scientific and biological data.

We present an extension, pSQL, of a fragment of SQL
that has three different types of annotation propagation
schemes, each useful for different purposes. The default
scheme propagates annotations according to where data
is copied from. The default-all scheme propagates an-
notations according to where data is copied from among
all equivalent formulations of a given query. The cus-
tom scheme allows a user to specify how annotations
should propagate. We present a storage scheme for the
annotations and describe algorithms for translating a
pSQL query under each propagation scheme into one
or more SQL queries that would correctly retrieve the
relevant annotations according to the specified propaga-
tion scheme. For the default-all scheme, we also show
how we generate finitely many queries that can simu-
late the annotation propagation behavior of the set of
all equivalent queries, which is possibly infinite. The
algorithms are implemented and the feasibility of the
system is demonstrated by a set of experiments that we
have conducted.

1 Introduction

For many scientific domains, new databases are often cre-
ated to support the data analysis needs of domain-specific
scientists. Some examples of such databases from biology
include UniProt [2] and SWISS-PROT [3]. Data that is col-
lected from other sources is often cleansed and reformatted

�
Supported in part by an NSF CAREER Award IIS-0347065.

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the VLDB copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Very Large Data Base Endowment. To copy otherwise, or to republish,
requires a fee and/or special permission from the Endowment.

Proceedings of the 30th VLDB Conference,
Toronto, Canada, 2004

before it is compiled into the new database. Very often,
the newly created database will also contain new analysis
or results that are derived by scientists. By associating old
and new data together in the new database, an integrated
perspective is provided to scientists and this is critical for
further analysis and scientific discovery. With the prolif-
eration of many such inter-dependent databases1, it is nat-
ural to ask what is the provenance of a piece of data (i.e.,
where that piece of data is copied or created from) in a
database. Understanding the provenance of data is impor-
tant towards understanding the quality of data which may
help, for example, a scientist to decide on the amount of
trust to place on a piece of information that she encounters
in a database. We use the term annotations to mean infor-
mation about data such as provenance, comments, or other
types of metadata.

We describe an annotation management system for re-
lational databases where annotations may be attached to a
piece of data and are transparently carried along as data is
being transformed. One immediate application is to use an-
notations to systematically trace the provenance and flow
of data: if we attach to every piece of source data an an-
notation that describes its address (i.e., origins), then the
annotations of a piece of data in the output of a trans-
formation describe its provenance. Even if the data had
undergone several transformation steps, we can easily de-
termine the origins (or the flow of data for that matter)
through the transformation steps by examining the anno-
tations. Another use of annotations is to describe informa-
tion about data that would otherwise have not been kept in
a database. For example, an error report or remarks about
a piece of data may be attached and propagated along to
other databases, thus notifying other users of the error or
additional information. The quality or security level of a
piece of data can also be described in annotations. Since
annotations are propagated along as a query is executed,
the annotations on the result of a query can be aggregated
to determine the quality or degree of sensitivity of the re-
sulting output. This idea of using annotations to describe
the security level of various data items or to specify fine-
grained access control policies is not new and can be found
in various forms in existing literature [11, 13, 19].

We describe three propagation schemes for propagating

1See [10] for a catalog of biology databases.

annotations that are motivated by different needs. They cor-
respond to the default, default-all, and custom propagation
schemes. The default scheme uses provenance as the basis
for propagating annotations. If an output piece of data ��� is
copied from an input piece of data � , then the annotations
associated with � are propagated to � � . A piece of output
data � � is copied from an input piece of data � if � � is created
from � according to the syntax and evaluation of the query.
Although this natural definition corresponds intuitively to
how people reason about provenance, the way annotations
are propagated is dependent on the way a query is written.
As shown in [24], two equivalent queries may propagate
annotations differently. While this behavior may seem dis-
turbing at first, in many applications including those de-
scribed above, such an automatic provenance-based anno-
tation propagation scheme which allows one to trace where
data is copied from or copied to based on a given query
is still very desirable. Indeed, similar ideas were proposed
before in [18, 26]. An alternative method of propagating
annotations, called the default-all scheme, is to propagate
annotations according to where data is copied from in all
equivalent formulations of the given query since one may
be interested in obtaining all relevant annotations of a piece
of data in the output regardless of how a query may have
been written. Unlike the default scheme, two equivalent
queries will always propagate annotations in the same way
under this scheme. In some cases, a user may only be in-
terested in annotations provided by a certain trusted data
source. Hence we also have a third propagation scheme,
the custom propagation scheme, where the user is free to
specify how annotations should be propagated.

Summary of results We have implemented all three prop-
agation schemes in our annotation management system by
extending a fragment of SQL. We call this extension pSQL.
A pSQL query is essentially an SQL query extended with a
PROPAGATE clause that would propagate annotations ac-
cording to one of the schemes described above as data is
transformed. In our implementation, we assume that there
is an “additional column” that stores the annotations for
every attribute of every relation. A translation algorithm
translates a given pSQL query into one or more SPJ queries
against these underlying relations and these SPJ queries
will retrieve the relevant annotations according to the spec-
ified propagation scheme. In the default-all scheme, we are
required to propagate annotations according to every pos-
sible equivalent reformulations of a given query. At first
sight, the default-all scheme seems impossible to imple-
ment as there are infinitely many equivalent reformulations
of a given query. We show, however, that it is always pos-
sible to find a finite set of equivalent queries whose annota-
tion propagation behavior is “representative” of all equiv-
alent queries. Hence, by running every query in this fi-
nite set and taking the union of resulting tuples and anno-
tations, we are able to obtain the annotated output of the
given query under the default-all scheme. We have con-
ducted experiments to evaluate the feasibility of such an
annotation management system. Our experimental results

indicate that the execution time of a query under any prop-
agation scheme increases only slightly when the number
of annotations in a database is doubled. Our results also
show that for the queries we executed, the performance of
a query under the default-all scheme can be at worst eight
times slower than the performance of the same query under
the default or no propagation scheme (i.e., SQL query). At
best, it runs about twice as slow. For the default scheme,
however, the execution times of pSQL queries are compa-
rable to those of SQL queries. On the average, the pSQL
queries with default scheme that we experimented with on
a 100MB database took around 40% more time to execute
than their corresponding SQL queries. For larger databases
(500MB and 1GB), the pSQL queries with default scheme
took only about 18% more time to execute than their corre-
sponding SQL queries on the average.

Related Work The problem of computing data provenance
is not new. Cui, Widom, and Wiener [9] first approached
the problem of tracing the provenance of data that is the
result of a query applied on a relational database. The solu-
tion proposed in [9] was to first generate a “reverse” query���

when asked to compute the provenance of an output
tuple � in the result of a query

�
applied on a database�

(i.e.,
�	� ��

). The result of applying
���

on
�

consists
of all combinations of source tuples in

�
such that each

combination of source tuples and
�

explain why � is in the
output of

�� ��

. The type of provenance studied by [9]

is called why-provenance according to Buneman, Khanna,
and Tan [6]. Additionally, we may also be interested in
knowing where the values of a tuple � in the result of

�� ��

are copied from in
�

. The latter type of provenance is
called where-provenance in [6] and it is this type of prove-
nance that we use for determining where annotations are
propagated from. In both works [6, 9], a “reverse” query
is generated in order to answer provenance. While the re-
verse query approach works well in general, it requires a
reverse query to be generated and evaluated every time the
provenance of an output tuple is sought for. Hence if the
provenance of a large number of output tuples is required,
this may not be the optimal way to compute provenance.

The reverse query approach is what we call the lazy ap-
proach for computing provenance; a query is generated and
executed to compute the provenance only when needed. In
this paper, we propose to trade space for time and carry
along the provenance of data as data is being transformed.
Hence, in this approach, the provenance of data is ea-
gerly computed and immediately available in the output.
The idea of eagerly computing provenance by forward-
ing annotations along data transformations is also not new
and has been proposed in various forms in existing litera-
ture [4, 18, 26]. In fact, our annotation propagation rules
which propagate annotations based on where-provenance
are similar to those proposed in [26]. In [26], however,
only information about which source relations a value is
copied from is propagated along. In contrast, our system is
flexible in the amount of information that is carried along
to the result (i.e., it could be the source relations, or the ex-

act location within the source locations, or a comment on
the data).

Numerous annotation systems have been built to sup-
port and manage annotations on text and HTML docu-
ments [14, 17, 21, 23, 25]. Recently, annotation systems for
genomic sequences [5, 12, 16] have also been built. Lalib-
erte and Braverman [17] discussed how to use the HTTP
protocol to design a scalable annotation system for HTML
pages. Schickler, Mazer, and Brooks [23] discussed the
use of a specialized proxy module that would merge anno-
tations from an annotation store onto a Web page that is
being retrieved before sending it to the client browser. An-
notea [14, 25] is a W3C effort to support annotations on any
Web document. Annotations are also stored on annotation
servers and XPointer is used for pinpointing locations on a
Web document. A specialized client browser that can un-
derstand, communicate, and merge annotations residing in
the annotation servers with Web documents is used. Phelps
and Wilensky [20, 21, 22] also discussed the use of an-
notations with certain desirable properties on multivalent
documents [22] which support documents of different me-
dia types, such as images, postscript, or HTML. DAS or
Biodas [5, 12] and the Human Genome Browser [16] are
specialized annotation systems for genomic sequence data.
In almost all of these systems, the design includes multiple
distributed annotation servers for storing annotations and
data is merged from various sources to display it graphi-
cally to an end user. The research of these systems has
been focussed on the scalability of design, distributed sup-
port for annotations, or other added features.

We designed and implemented an annotation manage-
ment system for relational databases where annotations can
be made on relational data. This idea was first proposed
in [7, 24]. Unlike Web pages, the rigid structure of rela-
tions makes it easy to describe the exact position where
an annotation is attached. Web pages, however, are often
retrieved in part or as a whole. Hence, the issue of what an-
notations to propagate along when a web page is retrieved
is straightforward. In contrast, an annotated relation in our
system may undergo a complex transformation as a result
of executing a query. We are thus concerned with how an-
notations should propagate when such complex transfor-
mations occur. To the best of our knowledge, this is the
first implementation of an annotation management system
for relational databases that would allow a user to specify
how annotations should propagate.

In Section 2, we describe pSQL and the three different
propagation schemes. In Section 3, we describe the algo-
rithm for generating a finite set of queries that can simu-
late the annotation propagation behavior of all equivalent
queries of a given pSQL query. In Section 4, we describe
the architecture of our system and a storage scheme for an-
notations as well as our translation algorithm that rewrites
a pSQL query into an SQL query against the underlying
storage scheme. In Section 5, we describe our experimen-
tal results and in Sections 6 and 7, we conclude with some
possible future extensions to our system.

2 pSQL
In our subsequent discussions, we focus on a fragment of
SQL that corresponds to conjunctive queries with union [1]
(also known as the Select-Project-Join-Union fragment of
SQL). We extend this fragment of SQL with a PROPA-
GATE clause to allow users to specify how annotations
should propagate.

Definition 2.1 A pSQL query is a query of the form
���

UNION ����� UNION ��� , �	��

, where each

���
, �������� ��� , is

a pSQL query fragment of the form shown below:
SELECT DISTINCT selectlist
FROM fromlist
WHERE wherelist
PROPAGATE DEFAULT � DEFAULT-ALL ������ ��� TO � � , ..., �! "� �# TO �

The fromlist of a pSQL query fragment is of the form
“ $ �&%'� �(�������)$ �*%�� ” where

%+�
is a tuple variable of the corre-

sponding relation $ � . The selectlist of a pSQL query frag-
ment is of the form “

%'� � , � AS � � , ...,
%+- �., - AS

� -
”

where
% �

is a tuple variable defined in fromlist, , � is an at-
tribute of the relation that corresponds to

% �
, and

� �
is an

attribute name of the output relation. The WHERE clause
is optional and the wherelist is a conjunction of one or
more equalities between attributes of relations or between
attributes of relations and constants. The PROPAGATE
clause can be defined with DEFAULT, DEFAULT-ALL, or
a list of clauses of the form “

% � / TO 0 ” definitions where% � / denotes an attribute / of the tuple that is bound to
%

and 0 is an attribute among the
�21

s.

The SQL query that corresponds to a pSQL query
�

is the
SQL query that results when all PROPAGATE clauses in

�

have been removed. The meaning of a pSQL query is simi-
lar to that of its corresponding SQL query except that anno-
tations are also propagated to each emitted tuple according
to the specification given in the PROPAGATE clauses.

Example 2.1 Consider three databases SWISS-PROT (a
protein database), PIR (another protein database), and Gen-
bank (a gene database). Each of these databases is modeled
as a relation. The schemas and an instance of each relation
are shown in Figure 1 (ignore the rest of the relations in the
figure). An annotation, shown in braces, is placed on every
column of every tuple. Each annotation can be interpreted
as the address of the value in the corresponding column of
the tuple. An example of a pSQL query with the default
propagation scheme is shown below.3 � = SELECT DISTINCT 4 .ID AS ID, 4 .Desc AS Desc

FROM SWISS-PROT s
WHERE s.ID = “q 5(5(6 ”
PROPAGATE DEFAULT

Intuitively, the default scheme specified in
�7�

propa-
gates annotations of data according to where data is copied
from. The result of

� �
executed against the relation

SWISS-PROT is shown in Figure 1. The annotation 8:9
is attached to the value q ;�;�< in the output since q ;�;�< is
copied from the ID attribute of the second tuple in SWISS-
PROT. Likewise, 8�= in the output is propagated from the

SWISS-PROT
ID Desc

z131 ��� ��� AB ����� �
q229 ���	� � CC ���	
 �
q939 ����� � ED ���	� �

PIR
ID Name

p332 ���� � AB ���	� �
p916 ����� � AB ��� �����

Genbank
ID Desc

g231 ��� � ��� AB ��� � � �
g756 ��� � � � CC ��� �
 �

Result of
3 � :

ID Desc

q229 ��� � � CC ���
 �
Mapping Table

entryid swissprot pir genbank

1 ��� � � � z131 ��� � � � p332 ��� � � g231 ��� � � �
2 ��� � � � q229 ����� ��� p916 ����� ��� g756 ������� �
3 ������� � q939 ������
 � p677 ������� � g635 ������� �

Result of
3 � :

ID Name

p332 ���� � AB ���	����� �����
p916 ���	� � AB ���	����� �����

Result of
3 � :

ID Desc

g231 ��� � � ��� � � � AB
g756 ��� � ����� �
 � CC

Figure 1: Three protein databases, a mapping table, and three annotated outputs.

annotation of the Desc attribute of the second tuple in
SWISS-PROT.

While the default scheme is a natural scheme for prop-
agating annotations, this scheme is not “robust” in that
two equivalent queries that return the same output may not
propagate the same annotations to the output.

Example 2.2 Consider two equivalent SQL queries
� � and� � � (two queries are equivalent if they produce the same

result on every database).3��
= SELECT DISTINCT � .ID AS ID, � .Name AS Name

FROM PIR � , Mapping Table �
WHERE � .ID = � .pir3�� �

= SELECT DISTINCT � .pir AS ID, � .Name AS Name
FROM PIR � , Mapping Table �
WHERE � .ID = � .pir

The results of running
� � and

� � � under the default prop-
agation scheme are shown below.

Result of
3 �

:
ID Name

p332 ���� � AB ���	� �
p916 ���	� � AB ��� �����

Result of
3 � �

:
ID Name

p332 ��� � � AB ���	� �
p916 ����� ��� AB ��� �����

For
� � , the annotations for the ID column are from the

PIR table while for
� � � , the annotations for the ID column

are from the Mapping Table.

While it is likely that a user will realise that
� � will

generate a different annotated outcome from
� � � in gen-

eral, the situation is not so straightforward for more com-
plex queries. The above example motivates the need for
a propagation scheme that is invariant under equivalent
queries. One should be able to retrieve all relevant an-
notations about a piece of output data regardless of how
the query is written, if desired. The default-all propagation
scheme propagates annotations according to where data is
copied from among all equivalent formulations of the given
query. Hence the annotated outcome is the same for equiv-
alent queries under this scheme. In case a user prefers to
retrieve annotations from one source over another, the user
is also free to specify how annotations should propagate in
the custom scheme.

Example 2.3 The queries
� �

and
� 9 are examples of

pSQL queries with the default-all and custom propagation
schemes respectively.

3 � = SELECT DISTINCT � .ID AS ID, � .Name AS Name
FROM PIR �
PROPAGATE DEFAULT-ALL3 � = SELECT DISTINCT ! .ID AS ID, ! .Desc AS Desc
FROM Genbank !
PROPAGATE ! .ID TO ID, ! .Desc TO ID

The results of
� �

and
� 9 are shown in Figure 1. The

query
� �

retrieves all tuples from the PIR table under the
default-all propagation scheme. The annotations we get in
the result are the combined annotations of results from all
equivalent queries. In the custom scheme of

� 9 , annota-
tions are propagated according to the given user specifica-
tion (i.e., " .ID TO ID, " .Desc TO ID). A clause “ " .ID TO
ID” states that the annotations associated with the value
of the ID attribute of the tuple that is currently bound to
" should propagate to the ID attribute of the output tu-
ple. Similarly, the annotations associated to the value of
the Desc attribute of the tuple that is currently bound to "
should propagate to the ID attribute of the output tuple.

Some Terminology A cell (or location) is a triple (
%
, � ,) which denotes the th column of the tuple � in relation
%
.

We sometimes use the attribute name at position instead of
the position . We also write a cell simply as a pair (� ,) in
the context where the relation

%
is clear. Each cell contains

a value of some type. We use # ��$
 to denote the value at
cell

$
(# �%$
 is called a piece of data). Let & denote the set

of all strings. Each cell
$

in a database is associated with
a set of annotations

� 8 � �(�������)8 � � where each 8 � , � � � � ��� ,
is an element in & . We also say each 8 � , � � � � ��� , is
an annotation attached to

$
. We use the notation ' �%$
 to

denote the set of all annotations attached to cell
$
.

Containment vs. Annotation-Containment. Two pSQL
queries

�
and

� � are equivalent, denoted as
�)(� � , if

for every database
�

,
�� ��
 (�

�
� ��

. The query
�

is
contained in

� � , denoted as
�+* � � , for every database�

,
�	� ��
 * � � � ��
 . Two pSQL queries

�
and

� � are
annotation-equivalent, denoted as

�,(.- � � , if
�

and
� �

produce the same annotated output on all databases. More
precisely, this means that for every database

�
,
�	� ��

is
equal to

� � � ��
 and the set of annotations ' � � �	� ��
 � � �

is identical to ' � � � � � ��
 � � �

 for every output location� � �
 in

�	� ��

. A pSQL query

�
is annotation-contained

in
� � , denoted as

�/* - � � , if for every database
�

,�	� ��
 * � � � ��
 and for every output location
� � �
 in�	� ��

, ' � � �	� ��
 � � �

 * ' � � � � � ��
 � � �

 .

Example 2.4 Figure 1 shows several examples of anno-
tated relations. The value z ��� � in SWISS-PROT is the
value at cell (SWISS-PROT, (z ���:� , AB), ID) which de-
notes the ID column of tuple (z ���:� , AB) in the SWISS-
PROT relation. Note that the attribute names in the tu-
ple (z ���:� , AB) have been omitted. The annotation

� 8 � �
is the set of annotations associated with this cell. Hence,
' ((SWISS-PROT, (z ���:� , AB), ID)) is

� 8 � � . In the result
of
� �

, ' (((p ����; , AB), Name)) is
� 8���� 8 ��� � .

2.1 The Custom Propagation Scheme

We allow the user the flexibility to specify custom prop-
agation schemes using a PROPAGATE clause of the form
“
%'� � / � TO 0 � , ...,

%�� � / � TO 0 �
”. The semantics of a

pSQL query fragment
�

with custom propagation scheme
is as follows. For every binding 	 of tuple variables to
tuples in the respective relations according to the fromlist
of
�

such that the conditions in the wherelist are satisfied,
emit an output tuple � according to the selectlist. For every
clause “

%(� � / � TO 0 � ” specified in the PROPAGATE clause,
we add the set of annotations at the location (

%��
, / �) to the

set of annotations (initially empty) at the output location
(� , 0 �). Finally, duplicate output tuples are merged. Sup-
pose � � � ������� � � are the emitted tuples and
 � � ��������
 - are the
tuples that result when duplicate output tuples have been
merged. Then, for every output location (
 � 0), ' � �
 � 0

= ���������� 1���� � � ��� ' � � � 1 � 0

 . The query

� 9 of Example 2.3
is an example of a pSQL query fragment with a custom
propagation scheme; every tuple in Genbank is emitted in
such a way that the set of annotations that is associated with
the ID column of an output tuple is the union of annota-
tions associated with the ID column and Desc column of
the corresponding tuple in Genbank.

2.2 The Default Propagation Scheme

If PROPAGATE DEFAULT is used in a pSQL query frag-
ment, the set of annotations of a piece of output data con-
sists of all the annotations associated with where that piece
of data is copied from in the source.

The semantics of a pSQL query fragment
�

with the
default propagation scheme is as follows. For every bind-
ing of tuple variables to tuples in the respective relations
according to the fromlist of

�
such that the conditions

in the wherelist are satisfied, emit an output tuple � ac-
cording to the selectlist as well as the corresponding sets
of annotations for every cell in � . Since every value of
an output cell

$ � in � is generated from some value of
an input cell

$
according to the current bindings, the set

of annotations attached to
$

is also attached to
$ � . Fi-

nally, duplicate output tuples are merged together. Sup-
pose � � � ������� � � are the emitted tuples and
 � � ��������
 - are the
tuples that result when duplicate output tuples have been
merged. Then, for every output location (
 � 0), ' � �
 � 0

= � �������� 1���� � � ��� ' � � � 1 �)0

 .
Example 2.5 Suppose we have the following pSQL query
where each fragment uses the default propagation scheme.

SELECT Desc AS Desc
FROM SWISS-PROT
PROPAGATE DEFAULT
UNION
SELECT Desc AS Desc
FROM Genbank
PROPAGATE DEFAULT

Result:
Desc

AB ��������� � � �
CC ���	
���� �
 �
ED ����� �

The first subquery emits an output tuple “AB” with an-
notations

� 8 � � and the second subquery emits the same
output tuple “AB” but with annotations

� 8 � � � . The merged
result of these two tuples is a single output tuple “AB” with
annotations

� 8 � �)8 � � � . This explains the first output tuple
in the result. A similar reasoning applies to the rest of the
output tuples.

It is easy to see that a pSQL query fragment with default
propagation scheme can be translated into a pSQL query
fragment with custom propagation scheme. For example,
the query

� �
of Example 2.1 can be rewritten into a pSQL

query with custom scheme where the propagate clause is
replaced by “PROPAGATE
 .ID TO ID,
 .Desc TO Desc”
since the ID value and Desc value of an output tuple are
copied from
 .ID and
 .Desc, respectively.

2.3 The Default-All Propagation Scheme

A pSQL query with the default propagation scheme is,
essentially, an SQL query with annotations propagated
based on where a value is retrieved according to the syn-
tax of the query. We have already seen an example of
two pSQL queries under the default propagation scheme
(Example 2.2) which are equivalent but not annotation-
equivalent.

This motivates us to define a third propagation scheme,
called the default-all scheme, where the annotation propa-
gation behavior of a pSQL query is invariant to the syntax
of the query. A pSQL query

�
with default-all propaga-

tion scheme propagates annotations according to the de-
fault propagation behavior of all equivalent formulations
of
�

. The resulting tuples that are generated by all equiva-
lent queries of

�
according to the default scheme are then

merged together. Despite the fact that there are infinitely
many equivalent formulations of

�
, we describe a method

that would compute the desired result by examining only a
finite number of pSQL queries. We call such a finite set of
queries a query-basis of

�
.

Definition 2.2 Let
�

denote a pSQL query with default-
all propagation scheme. Let � � �
 denote the SQL query
that corresponds to

�
and let � � � � �

 denote the set of

all pSQL queries
�
� under the default propagation scheme

such that � � � �
 is equivalent to � � �
 . A query basis
of
�

, denoted as � � �
 , is a finite set of pSQL queries
with default propagation scheme such that �! ��"$#&%�'�((-
�) ��*�#,+-#.%�'/'�(.

We describe next an algorithm that finds a query basis
for a pSQL query with default-all propagation scheme. The
size of the query basis that the algorithm returns is always
polynomial in the size of

�
.

3 Generating a Query Basis
The algorithm for computing a query basis for a pSQL
query with default-all propagation scheme proceeds by first
generating a representative query of

�
, called

� �
. Intu-

itively, a representative query of
�

is a query that is equiv-
alent to

�
and for every attribute / that is equal or tran-

sitively equal to an attribute 0 in the selectlist of
�

, the
annotations of / are propagated to 0 . From

� �
, a finite

number of auxiliary queries are also generated and these
queries, together with

� �
, form a query basis of

�
. Each

auxiliary query is equivalent to
�

but may propagate addi-
tional annotations to the output that are not propagated by� �

. Intuitively, only a finite number of auxiliary queries
are needed because only one auxiliary query needs to be
generated for each attribute of a relation that “contributes
annotations” to the output. In the rest of the discussion,
we restrict our language to be pSQL query fragments. We
present an algorithm for generating a query basis of a pSQL
query fragment with default-all propagation scheme. The
algorithm can be extended to handle pSQL queries in gen-
eral and the details are omitted.
Algorithm Generate-Query-Basis
Input: A pSQL query fragment

3
with default-all propagation

scheme.
Output: A query basis of

3
,
��� 3��

.

Let
3

be a pSQL query fragment of the form shown in Defini-
tion 2.1 with PROPAGATE DEFAULT-ALL clause.

1. Generate
3 � , the representative query of

3
.

Generate a query
3 � that is identical to

3
except that the

propagation scheme of
3

is replaced with the following
propagation scheme:
For every attribute “ � � � AS � ” in the selectlist, add “ �(� �
TO � ” in the PROPAGATE clause.
For every attribute “ � � � AS � ” in the selectlist and every
attribute 4 � � that is equal to �(� � or transitively equal to � � �
according to the wherelist: add “ 4 � � TO � ” in the PROPA-
GATE clause.
(The effect is that all attributes that are equal to an attribute
� in the selectlist have their annotations propagated to � .)

2. Generate auxiliary queries of
3 � .

Initialize
��� 3��

to the empty set. Add
3 � to

��� 3��
. For

every attribute “ � � � AS � ” in the selectlist of
3 � and ev-

ery “ 4 � � TO � ” in the PROPAGATE clause of
3 � , do the

following:
Create a query

3 �
that is identical to

3 � . Suppose 4 is a
tuple variable of relation � according to the fromlist of

3 � .
Add “ � 4 � ” to the fromlist of

3 �
where 4 � is a tuple vari-

able that does not occur in
3��

. Add “ 4 � � �
	 4 � � ” to the
wherelist of

3 �
and “ 4 � � � TO � ” to the PROPAGATE clause

of
3 �

. Add
3 �

to
��� 3��

.
(The auxiliary query

3 �
is equivalent to

3
but may carry

additional annotations to the output.)

3. Return
��� 3��

.

Example 3.1 Consider the three databases, SWISS-PROT,
PIR, and Genbank along with a Mapping table that con-
tains the correspondences between identifiers of genes and
proteins in the three databases in Figure 1. Such mapping

tables commonly occur in integrating many sources with
overlapping information [15]. Suppose we have the follow-
ing query

�
that integrates information from SWISS-PROT

and PIR.
SELECT DISTINCT � .swissprot AS ID,� .Name AS Name, 4 .Desc AS Desc
FROM Mapping Table � , SWISS-PROT 4 , PIR �
WHERE � .swissprot = 4 .ID AND � .pir = � .ID
PROPAGATE DEFAULT-ALL

After Step � of the above algorithm, we obtain the fol-
lowing representative query

� �
:

SELECT DISTINCT � .swissprot AS ID,� .Name AS Name, 4 .Desc AS Desc
FROM Mapping Table � , SWISS-PROT 4 , PIR �
WHERE � .swissprot = 4 .ID AND � .pir = � .ID
PROPAGATE � .swissprot TO ID, 4 .ID TO ID,� .Name TO Name, 4 .Desc TO Desc

Note that the annotations of � .swissprot and
 .ID will
propagate to the output ID column according to

� �
.

The second step of the algorithm generates four auxiliary
queries. The first query is shown below and the rest are
shown in Figure 2.3 � =
SELECT DISTINCT � .swissprot AS ID,� .Name AS Name, 4 .Desc AS Desc
FROM Mapping Table � , SWISS-PROT 4 , PIR � , Mapping Table � �
WHERE � .swissprot = 4 .ID AND � .pir = � .ID,

� � .swissprot = � .swissprot
PROPAGATE � .swissprot TO ID, 4 .ID TO ID,� .Name TO Name, 4 .Desc TO Desc,

� � .swissprot TO ID

The query
� �

is different from
� �

only in the addi-
tional highlighted terms shown in

� �
. There is an extra

relation, condition, and propagation in the FROM, WHERE,
and PROPAGATE clauses respectively. It is easy to verify
that the SQL queries of

� �
and

� �
are equivalent. There

is a homomorphism � from the tuple variables of
� �

to
those of

� �
such that � maps the fromlist of

� �
to a sub-

set of the fromlist of
� �

and the conditions in the wherelist
of
� �

imply the conditions in the wherelist of
�2�

under � .
Furthermore, � maps the selectlist of

� �
to the selectlist of� �

. There is also a homomorphism in the reverse direction.
Similarly,

� �
,
� 9 , and

� = of Figure 2 are each equivalent
to
� �

.

Intuitively, the representative query
� �

propagates annota-
tions according to where data is copied from and also where
data could have been equivalently copied from. The reason
why

� �
is generated becomes clearer if we represent

�
us-

ing conjunctive query-like notation

/ ��
���� � � �����
 � ��������� � �����
 � equalities �
where

 � ��� � � ������� � , denote vectors of variables and ev-
ery variable in

occurs in

���
for some � ������� � and equal-

ities is a list of zero of more � (� � clauses where � is a
variable that occurs amongst

���
s and � � is a constant. The

variables in

are called distinguished variables. Each sub-
goal corresponds to a relation in the fromlist of

�
. The

3 � =
SELECT DISTINCT

� .swissprot AS ID,� .Name AS Name,4 .Desc AS Desc
FROM Mapping Table � , SWISS-PROT 4 ,

PIR � , SWISS-PROT 4 �
WHERE � .swissprot = 4 .ID AND

� .pir = � .ID AND 4 � .ID = 4 .ID
PROPAGATE � .swissprot TO ID,4 .ID TO ID, � .Name TO Name,4 .Desc TO Desc, 4 � .ID TO ID

3 � =
SELECT DISTINCT

� .swissprot AS ID,� .Name AS Name,4 .Desc AS Desc
FROM Mapping Table � , SWISS-PROT 4 ,

PIR � , SWISS-PROT 4 �
WHERE � .swissprot = 4 .ID AND

� .pir = � .ID, 4 � .Desc = 4 .Desc
PROPAGATE � .swissprot TO ID,4 .ID TO ID, � .Name TO Name,4 .Desc TO Desc, 4 � .Desc TO Desc

3
 =
SELECT DISTINCT

� .swissprot AS ID,� .Name AS Name,4 .Desc AS Desc
FROM Mapping Table � , SWISS-PROT 4 ,

PIR � , PIR � �
WHERE � .swissprot = 4 .ID AND

� .pir = � .ID, � � .Name = � .Name
PROPAGATE � .swissprot TO ID,4 .ID TO ID, � .Name TO Name,4 .Desc TO Desc, � � .Name TO Name

Figure 2: Some of the auxiliary queries generated by Step ; of Generate-Query-Basis on Example 3.1.

equalities between attributes in the wherelist of
�

are rep-
resented by using the same variable in the respective posi-
tions of relations in the conjunctive query-like representa-
tion of

�
. An equality between an attribute and constant

is written out as equalities. The head of the query / ��

represents the selectlist of

�
. We use , � �
 to denote the

conjunctive query-like representation of the SQL query that
corresponds to

�
. For example, , � �
 of Example 3.1 can

be written as
A � ��� ��� ��� � :- Mapping Table(� � � ��� ��), SWISS-PROT(

� �
�),
PIR(� ���).

Similar to the semantics of pSQL queries with the de-
fault propagation scheme, annotations are propagated ac-
cording to where data is copied from for such queries [24]
by tracing the occurrence of distinguished variables in the
query. For example, by tracing the occurrence of the vari-
able � in the query / � , we can conclude that the annota-
tions in the first column of an output tuple � is obtained
from the annotations of the second column of a tuple in
Mapping Table and the first column of a tuple in SWISS-
PROT that created � . A similar argument applies to the
variables � and � in / � . Hence, the representative query� �

of Example 3.1 is annotation-equivalent to / �
.

Proposition 3.1 The representative query
� �

that is
generated by Generate-Query-Basis(

�
) is annotation-

equivalent to , � � �
 .
In Step ; the algorithm generates one query for every

position in the body where a distinguished variable occurs
in / � . For example, the following four auxiliary queries,
in conjunctive query notation, are generated based on / �

.
They are annotation-equivalent to the pSQL query frag-
ments

� � �(������� � = shown in Example 3.1 and Figure 2, re-
spectively.

A � (� ��� ���) :- Mapping Table(� � � ��� �), SWISS-PROT(
� �
�),

PIR(� ���), Mapping Table(� � � � �� � ��� �).
A � (� ��� ���) :- Mapping Table(� � � ��� �), SWISS-PROT(

� �
�),
PIR(� ���), SWISS-PROT(

� �
� �).
A � (� ��� ���) :- Mapping Table(� � � ��� �), SWISS-PROT(

� �
�),
PIR(� ���), SWISS-PROT(� � ���).

A
 (� ��� ���) :- Mapping Table(� � � ��� �), SWISS-PROT(
� �
�),

PIR(� ���), PIR(� � ��).

Proposition 3.2 For every query
� � in the result of

Generate-Query-Basis(
�

) (denoted as � � �
), , � � �
 is
annotation-contained in � ��"$#.%�' (.

Each auxiliary query carries annotations to the output
that may have been missed by the representative query of�

. We shall show next that the set of pSQL query frag-
ments in � � �
 generated by the algorithm is a query basis
for
�

. We first prove the following lemma.

Lemma 3.1 Let � � �
 denote the result of Generate-
Query-Basis(

�
) where

�
is a pSQL query fragment and

let
� � denote a pSQL query fragment under the default

propagation scheme. If
� � is equivalent to

�
, then

� � is
annotation-contained in � ��"$#.%�'�(.

Proof. We know from Proposition 3.1 that the representa-
tive query

� �
that is generated at Step � of the algorithm is

annotation-equivalent to the conjunctive query representa-
tion of the SQL query that corresponds to

�
, , � �
 . We

can also easily verify that
� � * - , � � �
 . Since , � �

and , � � �
 are equivalent queries, the minimal queries of, � �
 and , � � �
 are identical up to variable renaming. For
convenience, we shall assume that the minimal queries are
identical in the form shown below. We also assume that
there are no equalities between variables and constants, for
convenience., � �
 : � ��
 :- minpart, rest1., � � �
 : � ��
 :- minpart, rest2.

The subgoals denoted by minpart are the subgoals in
the minimal query of , � �
 or , � � �
 and rest1 and rest2
denote the rest of the subgoals in , � �
 and , � � �
 , re-
spectively. Our proof makes use of an earlier result in [24]
extended for unions of conjunctive queries. Given a con-
junctive query

�
, we use the notation

� �
'� to denote the
head of

�
, the notation

� � � , �

, to denote the th sub-

goal of
�

, and var(
� � �) to denote the list of variables of

the th subgoal of
�

.

Fact 1 ([24]) Given two unions of conjunctive queries� (�
-� � � � � and

� � (�
�1 � � � �1 , � * - � � if and only if

for every
� � , % � ������� �

, and every variable � that occurs
at both the th position of var(

� � �
'�) and the � th position
of var(

� � � � �) for some � , there exists a homomorphism �
from

�
� � (for some
 � � � ��� �) to

� � such that

1. � maps the body of
�
� � into the body of

� � and the
head of

� � � to the head of
� � , and

2. the variable that occurs at the � th position of the (th
subgoal of

� � � (i.e., var(
� � � � (�) � � �) is identical to the

variable at the th position of the head of
� � � (i.e.,

var(
� � � �
 �) � �), where

� � � � (� is a pre-image of
� � � � �

under � . That is, for some subgoal (, var(
� � � � (�) � � � =

var(
� � � �
 �) � � and � � � � � � (�
 =

� � � � � .
We shall show that for every distinguished variable � at

the th position in the head of , � � �
 and its occurrence
at the � th position of the � th subgoal � ���
 (i.e., the � th
variable of

�
is �) in the body of , � � �
 , there is a generated

query
���

in � � �
 and a homomorphism � � , � ���
��, � � �
 that satisfies the conditions (1) and (2) stated in the
fact. Then by the above fact, we have , � � �
 * - , � ���
 .
We know that , � � �
 * - � ��"$#&% '�(from Proposition 3.2.
Therefore , � � �
 * - � ��"$#&%�'�(. Since

� � * - , � � �
 and
, � � �
 * - �) ��"$#&% '�(, we have

� � * - �) ��"$#&%�'�(.
Let � be a distinguished variable at the th position in the

head of , � � �
 and suppose � occurs at the � th position of
the � th subgoal � ���
 of , � � �
 . If � ���
 is among the sub-
goals in the minpart of , � � �
 , then it must also be among
the subgoals in the minpart of , � �
 . Hence the algorithm
Generate-Query-Basis would have generated one or more
queries whose combined effect is the query , � � �
 , shown
below,

� ��
 :- minpart, rest1, � ��� � ���*� �
	
 .
(The variable � occurs at the � th position in the subgoal� ��� � ���*� �
	
 and

� �
and

�
	
are vectors of distinct vari-

ables that do not occur in , � �
 .) This corresponds to Step; of the algorithm where a new relation � is added to the
FROM clause and clauses of the form “ 0 TO / ” are added
to the PROPAGATE clause to simulate the effect of � prop-
agating annotations to the output. We assume that � occurs
under the attribute / in the output and 0 is the attribute
name of � in � in the named perspective. If � occurs un-
der another attribute

�
in the output of , � � �
 , there will

be another query generated by Step ; of the algorithm that
propagates the annotations of 0 to

�
. Hence, there is pos-

sible more than one pSQL query whose combined annota-
tion propagation effect equals that of , � ���
 .

It is easy to see that there is a homomorphism from, � ���
 to , � � �
 with the desired properties required by
the fact shown above. The homomorphism is obtained by
extending the homomorphism � � � , � �
�� , � � �
 which
we know exists since , � �
 (, � � �
 . The homomorphism
� � is extended to � � � by mapping the th variable in

� �
to

the corresponding th variable in
�

and the th variable in� 	
to the

� ��
 th variable in
�

(this is possible since
� �

and
� 	

are distinct variables). Clearly, � � � satisfies the con-
ditions required by the above fact. If � ���
 are among the
subgoals in rest2 of , � � �
 , we first claim that a subgoal� ��� �
 , where the � th variable of � � is � , must also occur
among subgoals in the minpart of

� � . With this, a sim-
ilar argument presented before shows that there must be
a homomorphism from a query , � ���
 to , � � �
 with the
desired conditions required by the above fact and hence,, � � �
 * - , � ���
 . Since the annotation propagation be-
havior of , � ���
 is equal to the combined annotation prop-
agation effect of one or more queries in � ��"$#&%�' (, we have
, � ���
 * - � ��"$#&% ' (.

Translator Postprocessor
SQL
query RDBMS

sorted
tuples

PSQL
query

final
result

Figure 3: Architecture of our system.

We show next that if � ���
 are among the subgoals in
rest2 of , � � �
 , there must exist such a subgoal � ��� �

among the minpart of , � � �
 . Since there is a homomor-
phism " from , � � �
 to the minimal query of , � � �
 and
" � �
 (� (since � is a distinguished variable), this implies
that there must be a subgoal � � ����� �7�����
 among the subgoals
in the minpart of , � � �
 such that � occurs at the � th po-
sition of this subgoal. We therefore conclude that � ��� �

exists.

Theorem 3.2 Let
�

be a pSQL query fragment with
default-all propagation scheme. The algorithm Generate-
Query-Basis

� �

returns a query basis of

�
.

Proof. Let � � �
 denote the set of pSQL query fragments(under the default propagation scheme such that the SQL
query that corresponds to (is equivalent to that of

�
(i.e.,� � (
 (� � �
). Let � � �
 denote the result of running the

algorithm Generate-Query-Basis on
�

. By Lemma 3.1,�) ��*�#.%�'�(* - �) ��"$#&% '�(. Since � � �
 * � � �
 , we im-
mediately have �) ��"$#&% '�(* - � ��*�#&%�'�(and hence the
result.

Proposition 3.3 Given a pSQL query fragment
�

with the
default-all propagation scheme, the number of queries re-
turned by Generate-Query-Basis

� �

is polynomial in the

size of
�

. Furthermore, each query in Generate-Query-
Basis

� �

is polynomial in the size of

�
.

An optmization Observe that the auxiliary pSQL queries
overlap significantly in the PROPAGATE clauses (e.g., see
Figure 2); they differ only in the last (highlighted) prop-
agation. In fact, we show that the non-highlighted prop-
agations in the auxiliary queries are unnecessary (the de-
tails are omitted). Intuitively, they are unnecessary because
these propagations are identical to the propagations of the
representative query

� �
. Hence, in our optimized imple-

mentation of Generate-Query-Basis, these non-highlighted
propagations are not generated in the auxiliary queries. We
refer to our original implementation of algorithm Generate-
Query-Basis as the unoptimized implementation.

4 System Architecture
The architecture of our Annotation Management System
is illustrated in Figure 3. We have two main modules: the
translator module and the postprocessor module. The trans-
lator module takes as input a pSQL query and returns as
output an SQL query (i.e., a union of SPJ queries) which is
sent to the RDBMS. The SQL query is then executed by the
RDBMS. The tuples that are returned by the RDBMS are
sorted in a certain order and sent to the postprocessor mod-
ule which merges annotations of identical cells of duplicate
tuples together in one pass through the returned tuples.

4.1 A Naive Storage Scheme

At present, we store our annotations using a naive stor-
age scheme: we assume that every attribute / of a rela-
tion scheme $ has an extra column / - that will be used
to store annotations. We denote this new relation with ex-
tra columns as $ � . For example, a relation $ � /�� 0
 will
be represented as $ � � / � / - � 0 � 0 -
 in the naive storage
scheme. Given a tuple � in a relation of $, if

� 8 � �(�������)8 � �
are the annotations associated with the location

� � � /
 , then
there will be

�
tuples � � �(������� � � in $ � such that � � � / - (8 �

for � ����� ��� and � � � $ (� , � � � � ��� where � � � $ denotes
the projection of � � on the attributes of $. For convenience,
we sometimes use the relation name $ to refer to $ � . As
an example, the two instances of $ shown below are both
valid representations of the tuple (a

� 8 � � 8 � � , b
��� � �).

� ��� � � �
a � � b � �
a � � b �

� � � � � �
a � � b �
a � � b �
a ��� b � �

Observe that a query returns the same result regardless
of the underlying storage instance used. In the case where
every cell has a distinct annotation that denotes its address,
then one could define $ � as a view definition of $ using the
internal row identifier used in many database systems such
as Oracle and Postgres.

4.2 The Translator

The translator module takes as input a pSQL query
�

and
translates

�
to an SQL query

� � against the naive storage
scheme. A pSQL query with default or default-all propa-
gation scheme is first reformulated into one with a custom
propagation scheme. A pSQL query with the custom prop-
agation scheme is reformulated into an SQL query (i.e.,
a union of SPJ queries). The algorithm for reformulating
a pSQL query fragment with default propagation scheme
into a pSQL fragment with custom propagation scheme is
described briefly at the end of Section 2.2. The algorithm
for reformulating a pSQL query fragment with default-
all propagation scheme into a pSQL query fragment with
custom propagation scheme is described by the Generate-
Query-Basis algorithm in Section 2.3. We describe next
the algorithm for reformulating a pSQL query with custom
propagation scheme into an SQL query.

Algorithm Custom-pSQL-To-SQL

Input: A pSQL query fragment
3

with custom propagation
scheme.
Output: An SQL query

3��
written against the naive schema.

Let
3

be a pSQL query fragment of the form shown in Defini-
tion 2.1 with a custom-propagatelist.

1. Generate intermediate SQL queries. Each intermediate SQL
query retrieves annotations (as much as possible) from the
naive schema according to the given query

3
.

Let
3 � be a query that is identical to

3
except that it does

not have the PROPAGATE clause of
3

.

For each output attribute � of
3

, create an empty bin for � .
Denote this bin as bin(�). For each propagate clause “ 4 � �

TO � ” in the custom-propagatelist of
3

, add “ 4 � � � AS � � ”
to bin(�).
Let � be the empty set of SQL queries. Repeat until all bins
are empty:

Let
3��

be a query that is identical to
3 � . For each

output attribute � of
3

, if bin(�) is nonempty, remove
a clause “ 4 � � � AS � � ” from bin(�) and add it to the
selectlist of

3��
. If bin(�) is empty, we add “NULL AS

� � ” to the selectlist of
3 �

. Add
3 �

to � .
2. Generate a wrapper SQL query

3��
for � .

SELECT DISTINCT *
FROM

� 3 � UNION 	
	�	 UNION 3 �
ORDER BY orderbylist

where � = � 3 � � � � � � 3 � and orderbylist is the list of all
output attributes in the selectlist of

3
. The orderbylist is

required so that the Postprocessor can merge annotations of
identical tuples together with one pass over the result of

3��
.

3. Return
3 �

.

Example 4.1 Consider the SWISS-PROT relation of
Figure 1 and assume that there is an extra attribute Size.
Suppose we have the following pSQL query

�
with

custom propagation scheme written against SWISS-PROT:
SELECT 4 .ID AS ID, 4 .Desc AS Desc, 4 .Size AS Size,
FROM SWISS-PROT 4
PROPAGATE 4 .ID TO Desc, 4 .Desc TO Desc,4 .Size TO Size,

Observe that every tuple in SWISS-PROT will be emit-
ted in such a way that the set of annotations associated with
the Desc column of a tuple in the output is the union of
annotations associated with both ID and Desc of the cor-
responding tuple in SWISS-PROT. Furthermore, the anno-
tations associated with the Size column of a tuple are the
same annotations associated with the Size column of the
corresponding tuple in SWISS-PROT and the column ID
of every tuple in the output does not carry any annotations.

In step 1 of algorithm Custom-pSQL-To-SQL, the fol-
lowing two intermediate SQL queries are generated since
bin(ID) is empty, bin(Desc) =

�
 � ID - AS Desc
-
,
 �Desc

-
AS Desc

- � and bin(Size) =
�
 � Size

-
AS Size

- � .3 � = SELECT 4 .ID AS ID, NULL AS ID �4 .Desc AS Desc, 4 � ID � AS Desc � ,4 .Size AS Size, 4 � Size � AS Size � ,
FROM SWISS-PROT 43 � = SELECT 4 .ID AS ID, NULL AS ID �4 .Desc AS Desc, 4 �Desc � AS Desc � ,4 .Size AS Size, NULL AS Size � ,
FROM SWISS-PROT 4

In step 2, the algorithm generates the following wrapper
SQL query:3�

= SELECT DISTINCT *
FROM (

3 � UNION 3 �)
ORDER BY ID, Desc, Size

Observe that
� �

and
� �

are unioned and the result is
sorted according to the attributes in the selectlist of

�
. The

tuples are sorted according to the selectlist of
�

so that
the Postprocessor can merge annotations associated with
identical cells in the output of

�
in one pass over the result

Suppkey

Nationkey

Supplier
(1000) Q0

Partsupp
(80000) Q3

Customer
(15000) Q4

Nation
(25) Q1

Nationkey

Region
(5) Q2

Regionkey

Default vs. Default-All

0.01

0.1

1

10

100

1000

Q0(1) Q1(1) Q2(1) Q3(1) Q4(1) Q0(3) Q1(3) Q2(3) Q3(3) Q4(3) Q0(5) Q1(5) Q2(5) Q3(5) Q4(5)

sec
on

ds
(lo

g s
ca

le)

Unannotated DB 100% Annotated DB Propagate Default 100% Annotated DB Propagate Default-All

Figure 4: Queries used in our experiments and comparison in performance for 100MB, 100% annotated TPCH database.

of
� � . Observe also that the number of SQL queries in �

is equal to the maximum bin size.

4.3 The Postprocessor

The Postprocessor scans the set of tuples returned by the
RDBMS and unions together the annotations from dupli-
cate tuples for proper display. This operation is done in
linear time in the number and size of tuples retrieved, pro-
vided that the set of emitted tuples is already sorted. For
example, if the postprocessor receives the first table of Sec-
tion 4.1 as input, it returns

�
(a

� 8 � , 8 � � , b
��� � �) � .

5 Experimental Evaluation

We conducted several experiments to evaluate the feasibil-
ity of our annotation management system. Our main goal
is to compare the performance of queries under different
propagation schemes (default, default-all, or no propaga-
tion scheme (i.e., SQL queries)) and to compare the per-
formance of queries when the number of annotations in a
database is varied.
Setup We have implemented our system on top of Oracle
9i Enterprise Edition. For our experiments we used 100MB
TPCH database (and subsequently 500MB and 1GB TPCH
databases), which we call unannotated database. We have
also modified TPCH schema to conform to our naive stor-
age scheme by adding an additional attribute for every at-
tribute of every relation in the TPCH schema. We have
created three different instances of the modified TPCH
database schema corresponding to 30%, 60% and 100% an-
notated databases. A 30% annotated database means 30%
of the total number of cells in every relation instance of
the database will contain one annotation. We ran queries
of increasing join sizes to determine how well our sys-
tem scales for this type of queries. (We did not use TPCH
queries in our experiments because they include aggregates
and nested queries.) The queries

� � �(������� � = denote queries
with zero to four joins, respectively, and are shown on
the left of Figure 4. For example,

� �
denotes the query���������	��
�����������������������
!������

with two joins, on the at-
tributes Nationkey and Regionkey respectively. The car-
dinality of each relation is shown in brackets. Our experi-

ments are conducted on a Pentium " , ;"� # GHz machine with� GB RAM.

Experiments We first measure the performance of our sys-
tem for queries under the default and default-all propaga-
tion scheme on the �
�
 % annotated database. We have
implemented and tested both optimized as well as unop-
timized versions of our Generate-Query-Basis algorithm.
For space reasons we present only our results obtained with
the optimized version, as we observed that it consistently
and significantly outperforms the unoptimized version. We
executed queries

� � � �
 � � � � �
 � � � ��$
 , � �
 �%" � , which de-
note queries with joins and one, three, and five output
attributes, respectively. We also executed the SQL query
that corresponds to each of these queries on the unanno-
tated database. The results are shown in Figure 4.

Figure 4 illustrates the execution time (the total time
taken by the translator, RDBMS, and postprocessor to emit
all tuples in the result) of each query for the default and
default-all propagation schemes for the 100MB and 100%
annotated TPCH database. As expected, the execution
time of each query under the default scheme (respectively,
default-all scheme) increases slightly as more output at-
tributes are emitted (see, for instance,

� � � �
 , � � � �
 , and� � ��$

). The increase in time is due to longer execution

time taken by Oracle as well as additional overhead in-
curred in postprocessing, as more attributes of different tu-
ples need to be compared. Additionally, for the default-all
scheme, the number of SPJ queries that are sent to Ora-
cle increases (2, 4, and 6 SPJ queries, respectively) as the
number of output attributes increases. Table 1 provides the
exact execution times of each query for �
�
�& annotated
database and the number of SPJ queries that are generated
for the default all-scheme. We note that in the worst case, a
query such as

� = ��$
 may run about # times slower than
both the query with default scheme and the actual SQL
query. This is not unexpected, however, as there are ' SPJ
queries, each with four joins, that are generated and sent
to Oracle for

� = ��$
 , instead of � . In the best case (see� = � �
), a query with default-all scheme runs about twice
as slow than the same query with default scheme. We note
however that for the default scheme, the execution times of
pSQL queries are comparable to those of SQL queries. On

Query Unannotated ��� % Def ��� % Def-All ��� % Def ��� % Def-All ����� % Def ����� % Def-All #pSQL #SPJ� ��� �
	 0.0282 0.0374 0.1316 0.0408 0.125 0.0438 0.1308 2 2� ��� �
	 0.025 0.0344 0.0658 0.034 0.072 0.034 0.0624 2 2� � � �
	 0.019 0.0312 0.0722 0.0342 0.0748 0.0346 0.075 2 2� � � �
	 0.1532 0.1752 0.3622 0.1688 0.3594 0.1718 0.356 2 2�
 � �
	 92.4604 92.2198 190.7312 91.7214 190.826 91.2248 190.3552 2 2� ��� ��	 0.0252 0.0468 0.0848 0.0468 0.084 0.05 0.084 4 4� ��� ��	 0.0312 0.0502 0.0968 0.0374 0.0968 0.047 0.103 4 4� � � ��	 0.0284 0.0502 0.1002 0.0562 0.0998 0.05 0.0968 4 4� � � ��	 0.191 0.219 1.1186 0.2216 1.1188 0.225 1.1314 4 4�
 � ��	 100.0106 113.4292 422.6232 108.2372 424.6066 109.012 419.5722 4 4� ���� 	 0.0502 0.069 0.1372 0.072 0.1438 0.069 0.1404 6 6� ���� 	 0.0438 0.0654 0.138 0.0718 0.1312 0.0658 0.1412 6 6� � �� 	 0.0406 0.0662 0.1498 0.0658 0.1468 0.0688 0.1466 6 6� � �� 	 0.231 0.287 1.6128 0.2908 1.6096 0.2968 1.6064 6 6�
 �� 	 111.8918 131.3138 858.8238 130.5282 836.5362 130.6594 850.6284 6 6

Table 1: The execution times of each query for each database and propagation scheme. The columns “#pSQL” and “#SPJ”
denote the size of the query basis and number of SPJ queries that are generated, respectively, for the default-all scheme.

the average, the pSQL queries with default scheme that we
experimented with took around 40% more time to execute
than their corresponding SQL queries, and at best the ex-
ecution time of a pSQL query with default scheme is the
same as the execution time of its corresponding SQL query
(e.g.,

� = � �
). For larger databases (500MB and 1GB), the
pSQL queries with default scheme took only about 18%
more time to execute than their corresponding SQL queries
on the average (these results are not shown).

Subsequently, we also conducted the same experiments
on �
 % and '
 % 100MB annotated databases. The results
are tabulated in Table 1. We observe that the execution
time of each query increases only slightly across differ-
ent databases. For example, the execution time of each
query for both default and default-all scheme increases
marginally when the number of annotations in the database
is doubled from �
 % annotations to '
 %. We also remark
that for the default-all scheme there is no increase in the
number of pSQL and SPJ queries that are generated when
the number of joins increases because the attributes that
are selected do not participate in the joins. The number of
pSQL and SPJ queries that are generated increases when
the number of output attributes increases and they increase
linearly. The execution times of

� � � �
 , ��� � � ��� � $ � , de-
creases slightly when compared with

� � � �
 because a join
on a small relation has been made.

We also ran the same set of experiments (results are not
shown) on

$
�

Mb and � GB TPCH databases with �
 %,

'
 % and �
�
 % annotations and we observed the same trend
as in Figure 4. All our results indicate that the time required
to translate the queries is insignificant when compared to
the execution time of the queries and the postprocessing
time of the queries is proportional to the number and size of
emitted tuples. Also, the execution times of default queries
are comparable to the performance of SQL queries since
only one SPJ is generated.

6 Discussion

So far, our pSQL queries do not allow aggregates and bag
semantics (i.e., the DISTINCT keyword must be present).

We discuss briefly next how we might extend pSQL to han-
dle aggregates and bag queries as well.
Aggregates For the default propagation scheme, if a pSQL
query contains aggregates such as count, sum, and average,
we assume the semantics that no annotations are associ-
ated with the result of these aggregates, since these aggre-
gate values are not copied from any source values. How-
ever, for aggregates such as min(8) and max(8), where 8
is an attribute name, our semantics is that the annotations
associated with the location of the resulting min (or max)
value are the union of all annotations of the corresponding8 -values whose value equals to the min (or max) value. It
remains to investigate whether the default-all propagation
scheme for pSQL queries with aggregates can be achieved.
Bag semantics It is known from [8] that two conjunctive
queries are equivalent under bag semantics if and only if
they are isomorphic. This result of [8] implies that to prop-
agate annotations for a pSQL query under the default-all
propagation scheme and bag semantics, it suffices to gen-
erate only the representative query of that pSQL query in
Algorithm Generate-Query-Basis. To handle bag queries,
however, the naive storage scheme can no longer be used
since the multiplicity of a tuple in this storage scheme de-
pends on the number of annotations that are associated with
that tuple. An alternative storage scheme that does not
modify the original relation is needed (e.g., store every an-
notation and its location in a separate relation). To propa-
gate annotations under the default-all propagation scheme
and bag semantics for unions of conjunctive queries, how-
ever, it remains to first provide a characterization of bag
equivalence for unions of conjunctive queries.

7 Conclusion and Future Work
We have described an implementation of an annotation
management system where different propagation schemes
can be used. Insofar, our system only supports annotations
on attributes of tuples. We would like to extend our sys-
tem to handle annotations on tuples or relations and, in
general, to handle annotations on hierarchical data, such
as XML. In our current system, annotations are propagated
based on where-provenance. In addition, we would like

to extend our system to propagate annotations based on
why-provenance, which will provide reasons to why a tu-
ple is in the output. The default-all propagation scheme
returns the union of all annotations of an output location re-
turned by all equivalent queries. Conceivably, there could
be a complementary propagation scheme that returns the
set of all annotations in an output location if it occurs in
the same output location in the results of all equivalent
queries. It remains to be investigated whether a query basis
can be generated for such propagation scheme. The perfor-
mance of our annotation management system on other stor-
age schemes also needs to be investigated. It would also be
interesting to investigate opportunities for optimizations on
the generated SQL queries.

Acknowledgements We thank Xinyu Hua for her help dur-
ing the initial implementation of this system and Ariel Fux-
man for helpful suggestions.

References
[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of

Databases. Addison Wesley Publishing Co, 1995.

[2] R. Apweiler, A. Bairoch, C. Wu, W. Barker, B. Boeckmann,
S. Ferro, E. Gasteiger, H. Huang, R. Lopez, M. Magrane,
M. Martin, D. Natale, C. O’Donovan, N. Redaschi, and
L. Yeh. Uniprot: the universal protein knowledgebase. Nu-
cleic Acids Research, 32:D115–D119, 2004.

[3] A. Bairoch and R. Apweiler. The SWISS-PROT protein se-
quence database and its supplement TrEMBL. Nucleic Acids
Research, 28:45–48, 2000.

[4] P. Bernstein and T. Bergstraesser. Meta-Data Support for
Data Transformations Using Microsoft Repository. IEEE
Data Engineering Bulletin, 22(1):9–14, 1999.

[5] biodas.org. http://biodas.org.

[6] P. Buneman, S. Khanna, and W. Tan. Why and Where:
A Characterization of Data Provenance. In Proceedings of
the International Conference on Database Theory (ICDT),
pages 316–330, London, United Kingdom, 2001.

[7] P. Buneman, S. Khanna, and W. Tan. On Propagation of
Deletions and Annotations Through Views. In Proceedings
of the ACM Symposium on Principles of Database Systems
(PODS), pages 150–158, Wisconsin, Madison, 2002.

[8] S. Chaudhuri and M. Y. Vardi. Optimization of real con-
junctive queries. In Proceedings of the ACM Symposium
on Principles of Database Systems (PODS), pages 59–70,
Washington, DC, 1993.

[9] Y. Cui, J. Widom, and J. Wiener. Tracing the Lineage of
View Data in a Warehousing Environment. ACM Transac-
tions on Database Systems (TODS), 25(2):179–227, 2000.

[10] DBCAT, The Public Catalog of Databases.
http://www.infobiogen.fr/services/dbcat/, cited 5 June
2000.

[11] D. E. Denning, T. F. Lunt, R. R. Schell, W. R. Shockley,
and M. Heckman. The SeaView Security Model. In IEEE
Symposium on Security and Privacy, pages 218–233, Wash-
ington, DC, 1988.

[12] R. Dowell. A Distributed Annotation System. Technical
report, Department of Computer Science, Washington Uni-
versity in St. Louis, 2001.

[13] S. Jajodia and R. S. Sandhu. Polyinstantiation integrity in
multilevel relations. In IEEE Symposium on Security and
Privacy, pages 104–115, Oakland, California, 1990.

[14] J. Kahan, M. Koivunen, E. Prud’Hommeaux, and R. Swick.
Annotea: An open rdf infrastructure for shared web annota-
tions. In Proceedings of the International World Wide Web
Conference(WWW10), pages 623–632, Hong Kong, China,
2001.

[15] A. Kementseitsidis, M. Arenas, and R. J. Miller. Map-
ping Data in Peer-to-Peer Systems: Semantics and Algo-
rithmic Issues. In Proceedings of the ACM SIGMOD Inter-
national Conference on Management of Data (SIGMOD),
pages 325–336, San Diego, CA, 2003.

[16] W. J. Kent, C. W. Sugnet, T. S. Furey, K. M. Roskin, T. H.
Pringle, A. M. Zahler, and D. Haussler. The Human Genome
Browser at UCSC. Genome Research, 12(5):996–1006,
2002.

[17] D. LaLiberte and A. Braverman. A Protocol for Scalable
Group and Public Annotations. In Proceedings of the Inter-
national World Wide Web Conference(WWW3), Darmstadt,
Germany, 1995.

[18] T. Lee, S. Bressan, and S. Madnick. Source Attribution for
Querying Against Semi-structured Documents. In Workshop
on Web Information and Data Management (WIDM), Wash-
ington, DC, 1998.

[19] A. C. Myers and B. Liskov. A decentralized model for in-
formation control. In Proceedings of the ACM Symposium
on Operating Systems Principles (SOSP), pages 129–142,
Saint-Malo, France, 1997.

[20] T. A. Phelps and R. Wilensky. Multivalent Annotations. In
Proceedings of the First European Conference on Research
and Advanced Technology for Digital Libraries, pages 287–
303, Pisa, Italy, 1997.

[21] T. A. Phelps and R. Wilensky. Multivalent documents. Pro-
ceedings of the Communications of the Association for Com-
puting Machinery (CACM), 43(6):82–90, 2000.

[22] T. A. Phelps and R. Wilensky. Robust intra-document loca-
tions. In Proceedings of the International World Wide Web
Conference(WWW9), pages 105–118, Amsterdam, Nether-
lands, 2000.

[23] M. A. Schickler, M. S. Mazer, and C. Brooks. Pan-Browser
Support for Annotations and Other Meta-Information on the
World Wide Web. In Proceedings of the International World
Wide Web Conference(WWW5), Paris, France, 1996.

[24] W. Tan. Containment of relational queries with annotation
propagation. In Proceedings of the International Workshop
on Database and Programming Languages (DBPL), Pots-
dam, Germany, 2003.

[25] W3C. Annotea Project. http://www.w3.org/2001/Annotea.

[26] Y. R. Wang and S. E. Madnick. A Polygen Model for Het-
erogeneous Database Systems: The Source Tagging Per-
spective. In Proceedings of the International Conference on
Very Large Data Bases (VLDB), pages 519–538, Brisbane,
Queensland, Australia, 1990.

